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ABSTRACT theith user modulates ah/-ary PSK symbolz; onto a randomly

4 generated signature sequedge= [hi[1], hi[2], ..., hi[Q))T of
length Q assigned to that user, where the taps of the sequence
are mutually independent, zero-mean, complex-valued, circularly
jsymmetric Gaussian random variables with variatya@. The re-
ceived signal is

A promising class of nonlinear multiuser detectors is introduce
for CDMA systems. These “iterated-decision” multiuser detectors
use optimized multipass algorithms to successively cancel multiple
access interference (MAI) from received data and generate symbo
decisions whose reliability increases monotonically with each it-

" e ) r=HAx+w, (2)
eration. They significantly outperform decorrelating detectors and
linear minimum mean-square error (MMSE) multiuser detectors, Where H = [hy|---|hp] is the @ x P matrix of signatures,
but have the same order of computational complexity. When the A = diag{Ai,..., Ap} is the P x P diagonal matrix of re-
ratio of the number of users to the spreading factor is below a cer-ceived amplitudess = [z1,z»,...,zp]" is the P x 1 vector of

tain threshold, iterated-decision multiuser detectors asymptotically data symbols, and is aQ-dimensional Gaussian vector with in-
achieve the performance of the “optimum” multiuser detector, i.e., dependent zero-mean, complex-valued, circularly symmetric com-
maximume-likelihood (ML) decoding. ponents of varianca/o.

1. INTRODUCTION 3. THE ITERATED-DECISION MULTIUSER DETECTOR

A variety of multiuser detectors have been proposed for COMA The iterated-decision multiuser detector we now develop processes
channels over the last decade and a half as solutions to the probthe received data in an iterative fashion. Specifically, during each
lem of mitigating multiple-access interference (MAI) [1]. Ex- iteration or “pass,” the received data is premultiplied by a matrix,
amples include single-user matched filter receivers, decorrelatingand tentative decisions made in the previous iteration are then used
detectors, minimum mean-square error (MMSE) linear multiuser to construct and subtract out an estimate of the MAI. The resulting
detectors, decision-feedback multiuser detectors, successive carMAl-reduced data is then passed on to a slicer, which makes a new
cellers, and multistage detectors. Optimum maximum-likelihood set of tentative decisions. With each successive iteration, increas-
(ML) detection, while superior in performance, is not a practical ingly refined hard decisions are generated using this strategy.
option because of its high complexity. The structure of the iterated-decision multiuser detector is de-
In this paper, we introduce a class of remarkably efficient mul- picted in Fig. 1, with the parameters of all systems and signals cor-
tipass multiuser detectors that is a particularly attractive alterna- responding to théth pass denoted using the supersctipbn the
tive to conventional detectors. These new detectors, which canlth pass of the equalizer whele= 1,2, 3, . . ., the received vector
be related to the iterated-decision equalizers developed in [2], arer s first premultiplied by aP x Q matrix B = bi---|bb]T,
structurally similar to multistage detectors [3] in that they both
generate tentative decisions for all users at each iteration and sub
sequently use these to cancel MAI at the next iteration. However, L A N P . . !
unlike the heuristically motivated multistage detectors, these new'€- X =1 — 2 Wh_erezAl =D"x with D' = [dy]--- [dp],
iterated-decision multiuser detectors take into account the reliabil-2 £ > P matrix. Sincez’ is intended to be some kind of MAI
ity of tentative decisions and are optimized to maximize the signal- estimate, we restrict attention to the case in which the diagonal el-

to-interference+noise (SINR) ratio at each iteration. We show that

producing theP x 1 vectori! = B''r. Next, an appropriately con-
structed estimat# of the MAl is subtracted frord’ to producex’,

7l |
these new detectors can achieve asymptotically optimum perfor- f,——» :ﬁ y} 1] 'l
mance while retaining surprisingly low complexity. My BID 2 -5— % {F] g
lo— r~PI T/ r? gl
2. CHANNEL MODEL = iy
. . . . o | — -1
For the purposes of illustration (and to simplify exposition), we 0 fill
consider aP-user discrete-time synchronous channel model, where D . %
This work has been supported in part by Qualcomm, Inc., the Army U gt

Research Laboratory under Cooperative Agreement DAAL01-96-2-0002, . . .
and Sanders, a Lockheed-Martin Company. Fig. 1. Iterated-decision multiuser detector structure.



ements ofD! are zero. Finally, a bank of slicers then generates
the P x 1 vector of hard decision&' from %' using a minimum-
distance rule.

Whenx andx'~! are vectors of zero-mean uncorrelated sym-
bols, each with energ¥s, such that their normalized correlation
matrix is of the form

Elx %1
Es
then the slicer input for théth user at théth iteration can be ex-
pressed as = bﬁT hi Aizi + 0! 3)

-1

1 A . _ _
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wherev! is complex-valued, marginally Gaussian, zero-mean, and

uncorrelated withz;, whose variance is a function bf andd:.

The second order model (3) turns out to be a useful one for
analyzing and optimizing the performance of the iterated-decision

multiuser detector. In particular, during tith pass, the SINR at
each slicer input, defined ag(b!,d!) = &|b! h; A;|?/var v!

fori =1,2,..., P, achieves a maximum value of [4]
. 1 ) 1
i=l—-1) — 4
k <([I+al]‘1)n‘ 1—|p; ' @
whert
Do [Nol + EHA(I— pl ' p ) ATHT'HA )
1 1—1f 51 . 1 if t
D' =p [B HA— dlag{(B HA),...,B HA)PP}] ,(6)

wherea! = &,(I-p'p' 1" )ATH'HA /N, andI is the identity
matrix.

This result ford! is intuitively satlsfylng |fml Y= 2 s0
thatp!~" = 1, then the inner produel! %'~ exactly reproduces
the MAI component of.. More generally,o!~* describes our
confidence in the quality of the estimatg . If 2.~! is a poor
estimate oft;, thenpﬁ‘1 will in turn be low, and a smaller weight-
ing is applied to the MAI estimate that is to be subtracted from
7. On the other hand, if.~" is an excellent estimate of;, then
pi~' = 1, and nearly all of the MAIl is subtracted frofy. Note
that the diagonal ob' is indeed zero, as stipulated previously.

Some comments can be made about the special cdse af

During the first pass, MAI subtraction is not performed because

p° = 0, so the vectok® does not need to be defined. More-
over, the matri@B' reduces to an expression for the linear MMSE

multiuser detector. Thus, the performance of the iterated-decision

multiuser detector, after just one iteration, is identical to that of
the linear MMSE multiuser detector. In Section 4, we show that
the iterated-decision multiuser detector, after multiple iterations
performs significantly better than the linear MMSE detector.
Next, the properties aft suggest that the probability of sym-
bol error for theith user at théth iteration can be approximated by
the high signal-to-noise ratio (SNR) formula for thé-ary PSK
symbol error rate of a symbol-by-symbol threshold detector for
additive white Gaussian noise (AWGN) channels, given by [5]

Pr(e') = 20 (sin (%) \/Z_'y’> , (7

1Using a matrix identity, we may alternatively write

B! x HANoI + & (I - p~Lpl -t ATHIHA] !

which may be easier to evaluate dependingrband Q.

" expres®r(e') asPr(e!) =

whereQ(v) = = [e™" */24¢. For the special case of QPSK
(M = 4), the exact probability of symbol error at tfth iteration

is given by [5]

Pr(")

2(va) [2-e(v)].

For the case of accurate power control, ife.= AIsop'~

p'~I), in the large system limit — oo with 3 2 P/Q held
constant), the SINR in (4) for each user converges in the mean-
square sense to [4]

(8)

1

l 1 1
= ~1). : 9
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whereF ( y, V(1 +Vz)2 +1-/y(1 - /2z)? + 1)?and
1/¢' = €£.(1 |pl Y12)) A2/ No. The iterative algorlthm for com-

puting the set of correlation coefficiergs and in turn predicting
the sequence of symbol error probabilities is as follows.

1. Setp® = 0andletl = 1.

2. Compute the SINR from pl ! via (9). [It is worth point-
ing out that for systems with few users, we can alternatively
(and in some cases more accurately) comryﬂltfeom pit
via (4).]

3. ComputePr( 1y from~' via (7).

4. Compute' via the approximation [4]

pl~1—2sin® (%) Pr(e').

5. Increment and go to step.

In the special case of QPSK, it can be shown that the algorithm can
be streamlined by eliminating Step 3 and replacing the approxima-
tion (10) with the exact formula

plzl—zg(ﬁ).

4. PERFORMANCE

(10)

(11)

In this section, we focus exclusively on the case of accurate power
control.

From Steps 2 and 3 of the algorithm, we see he') can be
expressed aBr(e') = G(¢, 8, p' "), whereG(-, -, -) is a mono-
tonically decreasing function in both SNR/¢ and correlation
p'~', but a monotonically increasing function jh The mono-
tonicity of G(-, -, -) is illustrated in Fig. 2 where the solid curves
plot G(¢, B, p) as a function ofl /(1 — p) for various values oB.
Meanwhile, from Step 4 of the algorithm, we see that we can also
H(p'), whereH(-) is a monotonically
decreasing function gf'. The dashed line in Fig. 2 plo#(p) as
a function of1/(1 — p).

For a givenl/¢ and 3, the sequence of error probabilities
Pr(e') and correlation coefficientg’ can be obtained by start-
ing at the left end of the solid curve (correspondingsfo= 0)
and then successively moving horizontally to the right from the
solid curve to the dashed line, and then moving downward from
the dashed line to the solid curve. Each “step” of the resulting
descending staircase corresponds to one pass of the multiuser de-
tector. In Fig. 2, the sequence of operating points is indicated on
the solid curves with the symbols.

That the sequence of error probabiliti®s(e'), Pr(e?), . ..
obtained by the recursive algorithm is monotonically decreasing



suggests that additional iterations always improve performance.
The error rate performance for a given SNR1¢g{ and a given

B eventually converges to a steady-state valuBgg*), which

is the unique solution to the equation

Pr(e) = G(¢, 8, H™' (Pr(e™))),

corresponding to the intersection of the dashed line and the appro-
priate solid curve in Fig. 2.

If B is relatively small, Fig. 2 suggests that steady-state per-
formance is approximately achieved with comparatively few it-
erations, after which additional iterations provide only negligibly
small gains in performance. This observation can also be read-
ily made from Fig. 4, where bit-error rate is plotted as a function
of SNR per bit forl, 2, 3,5, and an infinite number of iterations,
with 8 = 0.77. Itis significant that, for smal, few passes are re-
quired to converge to typical target bit-error rates, since the amount
of computation is directly proportional to the number of passes re-
quired; we emphasize that the complexity of a single pass of the

(12)

10°

|
N
T

Probability of Symbol Error
=
o

1/(1-p)

iterated-decision multiuser detector is comparable to that of the Fi9- 2 Theoretical iterated-decision multiuser detector perfor-
decorrelating detector or the linear MMSE multiuser detector. ~ mance, with power control. The solid curves plot QPSK symbol
As j increases, Fig. 2 shows that the gap between the solig€rror rate as a function _of the correlatlor_1 coefficientor vari-
curve and the dashed curve decreases. Thus the “steps” of the deg2US Values off = P/@Q, with an SNR per bit of 7 dB. Along each
scending staircase get smaller, and there is a significant increase ifUrve.°'s identify the theoretically predicted decreasing error rates
the number of iterations required to approximately achieve steady-achieved withl = 1,2, ... decoding passes, and the intersections

state performance. Moreover, the probability of error at steady- With the dashed line are the steady-state valuies o).
state becomes slightly larger.

When g is greater than some SNR-dependent threshold, not column of R, which represents a particular symbol period, can

only can (12) have multiple solutions, but one of the solutions oc-
curs at a high probability of error, as illustrated by the curve in
Fig. 2 corresponding t8 = 4. The dependence of the threshold
on SNR is shown in Fig. 5. As the SNR increases,Ahbreshold
increases and the curve becomes much sharper at the threshold.

In Fig. 6, we compare the theoretical and simulated bit-error
rates of the iterated-decision multiuser detector with the bit-error
rates of various other multiuser detectors as a function of SNR,
with 8 = 1 and power control. The iterated-decision multiuser de-
tector significantly outperforms the other detectors at moderate to
high SNR, and asymptotically approaches the matched filter bound
for the single-user channel. Thus, perfect MAI cancellation is ap-
proached at high SNR.

Next, in Fig. 7, we compare the effect gfon the bit-error
rates of the various multiuser detectors when decoding 128
simultaneous users at an SNR per bit of 7 dB with power control.
The iterated-decision multiuser detector has clearly superior per-
formance wher$ < 2.

(1]

(3]
5. CODED AND ADAPTIVE IMPLEMENTATIONS

be processed independently to produc® a 1 column of the
matrix X' = [x'
X!, corresponding to the data for a particular user, is then input to
a soft-decision ML decoder, which produces a row in thex N
matrix X! = [%'[1]| - - - |%'[V]], the tentative decisions for thie
users. These tentative decisions must be re-encoded before being
processed by the matr®'’ [n].

Adaptive implementations can likewise be developed in a man-
ner analogous to those described in [2] and [1, 6].

[1]]---|X'[N]]. Eachl x N row of the matrix
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Fig. 3. Structure of a communication system that combines iterated-decision multiuser detection with channel coding.
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Fig. 4 Theoretical iterated-decision multiuser detector perfor- Fig. 6. Theoretical ¢ — oo0) and experimentally observed
mance with power control, as a function of SNR per bit. The suc- (@ = 128) performance for various multiuser detectors, with
cessively lower solid curves depict the QPSK bit-error rate with power control. The solid curves depict QPSK bit-error rates with
B = P/Q = 0.77 as a function of SNR per bit for 1, 2, 3, 5, and 8 = P/Q = 1 as a function of SNR per bit.
oo decoding iterations.
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depict the matched filter bound for the single-user channel.



