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ABSTRACT

A promising class of nonlinear multiuser detectors is introduced
for CDMA systems. These “iterated-decision” multiuser detectors
use optimized multipass algorithms to successively cancel multiple-
access interference (MAI) from received data and generate symbol
decisions whose reliability increases monotonically with each it-
eration. They significantly outperform decorrelating detectors and
linear minimum mean-square error (MMSE) multiuser detectors,
but have the same order of computational complexity. When the
ratio of the number of users to the spreading factor is below a cer-
tain threshold, iterated-decision multiuser detectors asymptotically
achieve the performance of the “optimum” multiuser detector, i.e.,
maximum-likelihood (ML) decoding.

1. INTRODUCTION

A variety of multiuser detectors have been proposed for CDMA
channels over the last decade and a half as solutions to the prob-
lem of mitigating multiple-access interference (MAI) [1]. Ex-
amples include single-user matched filter receivers, decorrelating
detectors, minimum mean-square error (MMSE) linear multiuser
detectors, decision-feedback multiuser detectors, successive can-
cellers, and multistage detectors. Optimum maximum-likelihood
(ML) detection, while superior in performance, is not a practical
option because of its high complexity.

In this paper, we introduce a class of remarkably efficient mul-
tipass multiuser detectors that is a particularly attractive alterna-
tive to conventional detectors. These new detectors, which can
be related to the iterated-decision equalizers developed in [2], are
structurally similar to multistage detectors [3] in that they both
generate tentative decisions for all users at each iteration and sub-
sequently use these to cancel MAI at the next iteration. However,
unlike the heuristically motivated multistage detectors, these new
iterated-decision multiuser detectors take into account the reliabil-
ity of tentative decisions and are optimized to maximize the signal-
to-interference+noise (SINR) ratio at each iteration. We show that
these new detectors can achieve asymptotically optimum perfor-
mance while retaining surprisingly low complexity.

2. CHANNEL MODEL

For the purposes of illustration (and to simplify exposition), we
consider aP -user discrete-time synchronous channel model, where
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theith user modulates anM -ary PSK symbolxi onto a randomly
generated signature sequencehi = [hi[1], hi[2], : : :, hi[Q]]T of
lengthQ assigned to that user, where the taps of the sequence
are mutually independent, zero-mean, complex-valued, circularly
symmetric Gaussian random variables with variance1=Q. The re-
ceived signal is

r = HAx+w; (1)

whereH = [h1j � � � jhP ] is the Q � P matrix of signatures,
A = diagfA1; : : : ; AP g is theP � P diagonal matrix of re-
ceived amplitudes,x = [x1; x2; : : : ; xP ]

T is theP � 1 vector of
data symbols, andw is aQ-dimensional Gaussian vector with in-
dependent zero-mean, complex-valued, circularly symmetric com-
ponents of varianceN0.

3. THE ITERATED-DECISION MULTIUSER DETECTOR

The iterated-decision multiuser detector we now develop processes
the received data in an iterative fashion. Specifically, during each
iteration or “pass,” the received data is premultiplied by a matrix,
and tentative decisions made in the previous iteration are then used
to construct and subtract out an estimate of the MAI. The resulting
MAI-reduced data is then passed on to a slicer, which makes a new
set of tentative decisions. With each successive iteration, increas-
ingly refined hard decisions are generated using this strategy.

The structure of the iterated-decision multiuser detector is de-
picted in Fig. 1, with the parameters of all systems and signals cor-
responding to thelth pass denoted using the superscriptl. On the
lth pass of the equalizer wherel = 1; 2; 3; : : :, the received vector

r is first premultiplied by aP � Q matrixBly = [bl1j � � � jblP ]y,
producing theP�1 vector~rl = B

ly
r. Next, an appropriately con-

structed estimatêzl of the MAI is subtracted from~rl to produce~xl,

i.e., ~xl = ~rl � ẑl whereẑl = D
ly
x̂
l�1 with Dl = [dl1j � � � jdlP ],

a P � P matrix. Sinceẑl is intended to be some kind of MAI
estimate, we restrict attention to the case in which the diagonal el-
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Fig. 1. Iterated-decision multiuser detector structure.



ements ofDl are zero. Finally, a bank of slicers then generates
theP � 1 vector of hard decisionŝxl from ~xl using a minimum-
distance rule.

Whenx andx̂l�1 are vectors of zero-mean uncorrelated sym-
bols, each with energyEs, such that their normalized correlation
matrix is of the form

E[x � x̂l�1
y

]

Es
� �

l�1 4
= diagf�l�11 ; �

l�1
2 ; : : : ; �

l�1
P g; (2)

then the slicer input for theith user at thelth iteration can be ex-
pressed as

~x
l
i = b

ly

i hiAixi + v
l
i (3)

wherevli is complex-valued, marginally Gaussian, zero-mean, and
uncorrelated withxi, whose variance is a function ofbli anddli.

The second order model (3) turns out to be a useful one for
analyzing and optimizing the performance of the iterated-decision
multiuser detector. In particular, during thelth pass, the SINR at

each slicer input, defined as
li(b
l
i;d

l
i) = Esjbl

y

i hiAij2=var vli
for i = 1; 2; : : : ; P , achieves a maximum value of [4]



l
i =

�
1

([I+�l]�1)ii
� 1

�
� 1

1� j�l�1i j2
(4)

when1

B
l / [N0I + EsHA(I� �l�1�l�1

y

)AyHy]�1HA (5)

D
l
= �

l�1y
h
B

ly
HA� diag

n
(B

ly
HA)11; : : :; (B

ly
HA)PP

oiy
; (6)

where�l = Es(I��l�1�l�1
y

)AyHyHA=N0 andI is the identity
matrix.

This result fordli is intuitively satisfying. If x̂l�1i = xi so

that�l�1i = 1, then the inner productdl
y

i x̂
l�1 exactly reproduces

the MAI component of~rli. More generally,�l�1i describes our
confidence in the quality of the estimatex̂l�1i . If x̂l�1i is a poor
estimate ofxi, then�l�1i will in turn be low, and a smaller weight-
ing is applied to the MAI estimate that is to be subtracted from
~rli. On the other hand, if̂xl�1i is an excellent estimate ofxi, then
�l�1i � 1, and nearly all of the MAI is subtracted from~rli. Note
that the diagonal ofDl is indeed zero, as stipulated previously.

Some comments can be made about the special case ofl = 1.
During the first pass, MAI subtraction is not performed because
�
0 = 0, so the vector̂x0 does not need to be defined. More-

over, the matrixB1 reduces to an expression for the linear MMSE
multiuser detector. Thus, the performance of the iterated-decision
multiuser detector, after just one iteration, is identical to that of
the linear MMSE multiuser detector. In Section 4, we show that
the iterated-decision multiuser detector, after multiple iterations,
performs significantly better than the linear MMSE detector.

Next, the properties ofvli suggest that the probability of sym-
bol error for theith user at thelth iteration can be approximated by
the high signal-to-noise ratio (SNR) formula for theM -ary PSK
symbol error rate of a symbol-by-symbol threshold detector for
additive white Gaussian noise (AWGN) channels, given by [5]

Pr(�
l
) = 2Q

�
sin
� �

M

�p
2
l
�
; (7)

1Using a matrix identity, we may alternatively write

B
l
/ HA[N0I+ Es(I� �

l�1
�
l�1y)AyHyHA]�1;

which may be easier to evaluate depending onP andQ.

whereQ(v) = 1p
2�

R1
v

e�t
2=2dt. For the special case of QPSK

(M = 4), the exact probability of symbol error at thelth iteration
is given by [5]

Pr(�
l
) = Q

�p

l
�h

2�Q
�p


l
�i

: (8)

For the case of accurate power control, i.e.,A = AI so�l�1 =

�l�1I), in the large system limit (P ! 1 with �
4
= P=Q held

constant), the SINR in (4) for each user converges in the mean-
square sense to [4]
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whereF(y; z) = (
p
y(1 +

p
z)2 + 1�

p
y(1�

p
z)2 + 1)2 and

1=�l = Es(1�j�l�1j2)jAj2=N0. The iterative algorithm for com-
puting the set of correlation coefficients�l, and in turn predicting
the sequence of symbol error probabilities is as follows.

1. Set�0 = 0 and letl = 1.
2. Compute the SINR
l from �l�1 via (9). [It is worth point-

ing out that for systems with few users, we can alternatively
(and in some cases more accurately) compute
l from �l�1

via (4).]
3. ComputePr(�l) from 
l via (7).
4. Compute�l via the approximation [4]

�
l � 1� 2 sin

2

� �

M

�
Pr(�

l
): (10)

5. Incrementl and go to step2.

In the special case of QPSK, it can be shown that the algorithm can
be streamlined by eliminating Step 3 and replacing the approxima-
tion (10) with the exact formula

�
l
= 1� 2Q

�p

l
�
: (11)

4. PERFORMANCE

In this section, we focus exclusively on the case of accurate power
control.

From Steps 2 and 3 of the algorithm, we see thatPr(�l) can be
expressed asPr(�l) = G(�; �; �l�1), whereG(�; �; �) is a mono-
tonically decreasing function in both SNR1=� and correlation
�l�1, but a monotonically increasing function in�. The mono-
tonicity of G(�; �; �) is illustrated in Fig. 2 where the solid curves
plot G(�; �; �) as a function of1=(1� �) for various values of�.
Meanwhile, from Step 4 of the algorithm, we see that we can also
expressPr(�l) asPr(�l) = H(�l), whereH(�) is a monotonically
decreasing function of�l. The dashed line in Fig. 2 plotsH(�) as
a function of1=(1� �).

For a given1=� and �, the sequence of error probabilities
Pr(�l) and correlation coefficients�l can be obtained by start-
ing at the left end of the solid curve (corresponding to�0 = 0)
and then successively moving horizontally to the right from the
solid curve to the dashed line, and then moving downward from
the dashed line to the solid curve. Each “step” of the resulting
descending staircase corresponds to one pass of the multiuser de-
tector. In Fig. 2, the sequence of operating points is indicated on
the solid curves with theÆ symbols.

That the sequence of error probabilitiesPr(�1);Pr(�2); : : :
obtained by the recursive algorithm is monotonically decreasing



suggests that additional iterations always improve performance.
The error rate performance for a given SNR of1=� and a given
� eventually converges to a steady-state value ofPr(�1), which
is the unique solution to the equation

Pr(�
1
) = G(�; �;H�1(Pr(�1))); (12)

corresponding to the intersection of the dashed line and the appro-
priate solid curve in Fig. 2.

If � is relatively small, Fig. 2 suggests that steady-state per-
formance is approximately achieved with comparatively few it-
erations, after which additional iterations provide only negligibly
small gains in performance. This observation can also be read-
ily made from Fig. 4, where bit-error rate is plotted as a function
of SNR per bit for1; 2; 3; 5, and an infinite number of iterations,
with � = 0:77. It is significant that, for small�, few passes are re-
quired to converge to typical target bit-error rates, since the amount
of computation is directly proportional to the number of passes re-
quired; we emphasize that the complexity of a single pass of the
iterated-decision multiuser detector is comparable to that of the
decorrelating detector or the linear MMSE multiuser detector.

As � increases, Fig. 2 shows that the gap between the solid
curve and the dashed curve decreases. Thus the “steps” of the de-
scending staircase get smaller, and there is a significant increase in
the number of iterations required to approximately achieve steady-
state performance. Moreover, the probability of error at steady-
state becomes slightly larger.

When� is greater than some SNR-dependent threshold, not
only can (12) have multiple solutions, but one of the solutions oc-
curs at a high probability of error, as illustrated by the curve in
Fig. 2 corresponding to� = 4. The dependence of the threshold
on SNR is shown in Fig. 5. As the SNR increases, the� threshold
increases and the curve becomes much sharper at the threshold.

In Fig. 6, we compare the theoretical and simulated bit-error
rates of the iterated-decision multiuser detector with the bit-error
rates of various other multiuser detectors as a function of SNR,
with � = 1 and power control. The iterated-decision multiuser de-
tector significantly outperforms the other detectors at moderate to
high SNR, and asymptotically approaches the matched filter bound
for the single-user channel. Thus, perfect MAI cancellation is ap-
proached at high SNR.

Next, in Fig. 7, we compare the effect of� on the bit-error
rates of the various multiuser detectors when decodingP = 128
simultaneous users at an SNR per bit of 7 dB with power control.
The iterated-decision multiuser detector has clearly superior per-
formance when� . 2.

5. CODED AND ADAPTIVE IMPLEMENTATIONS

For coded systems, an iterated-decision multiuser decoder is read-
ily obtained (Fig. 3), and takes a form analogous to the iterated-
decision equalizer-decoder structure described in [2]. The data
streamsxi[n], i = 1; 2; : : : ; P of the P users are encoded us-
ing separate encoders, and the corresponding streams of coded
symbols can be thought of as rows of aP � N matrix �X =
[�x[1]j � � � j�x[N ]]. The receiver obtains a set of vectors, one for
each symbol period having the form

r[n] = HA[n]�x[n] +w[n] for n = 1; 2; : : : ; N . (13)

At the receiver, theQ � N matrix of the received vectors,R =
[r[1]j � � � jr[N ]], is processed in an iterative fashion. EachQ � 1
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Fig. 2. Theoretical iterated-decision multiuser detector perfor-
mance, with power control. The solid curves plot QPSK symbol
error rate as a function of the correlation coefficient� for vari-
ous values of� = P=Q, with an SNR per bit of 7 dB. Along each
curve,Æ’s identify the theoretically predicted decreasing error rates
achieved withl = 1; 2; : : : decoding passes, and the intersections
with the dashed line are the steady-state values (l!1).

column ofR, which represents a particular symbol period, can
be processed independently to produce aP � 1 column of the
matrix ~Xl = [~xl[1]j � � � j~xl[N ]]. Each1 � N row of the matrix
~Xl, corresponding to the data for a particular user, is then input to
a soft-decision ML decoder, which produces a row in theP �N

matrix X̂l = [x̂l[1]j � � � jx̂l[N ]], the tentative decisions for theP
users. These tentative decisions must be re-encoded before being

processed by the matrixDly [n].
Adaptive implementations can likewise be developed in a man-

ner analogous to those described in [2] and [1, 6].
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Fig. 3. Structure of a communication system that combines iterated-decision multiuser detection with channel coding.
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