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ABSTRACT decision fusiorj2]-[5] methods. The first are based on training a

) ) o traditional HMM classifier on the concatenated vector of the audio
We propose the use of a hierarchical, two-stage discriminant trans-gq yisual features. Decision fusion techniques combine classifi-
formation for obtaining audio-visual features that improve auto- cation decisions based on single modality observations, typically
matic speech recognition. Linear discriminant analysis (LDA), fol- by appropriately weighting their respective log-likelihoods.
lowed by a maximum likelihood linear transform (MLLT) is first In this paper, we exclusively consider feature fusion. Decision
applied on MFCC based audio-only features, as well as on visual-gqjon techniques are presented in two accompanying papers [8],
only features, obtained by a discrete cosine transform of the V|deo[9]_ To eliminate duplication, visual feature extraction, the audio-
region of interest. Subsequently, a second stage of LDAand MLLT g\ 5| database, and the experimental framework, common to all

is applied on the goncatenatiqn of the resulting single quality three papers, are described in most detail here. Specifically, in this
features. The obtained audio-visual features are used to train a tra;,

- . ; work, we propose the use tifiear discriminant analysigLDA)
ditional HMM based speech recognizer. Experiments on the IBM

Y o [10] to discriminantly reduce the dimensionality of the concate-
ViaVoice™™ audio-visual database demonstrate that the proposed, sieq audio-visual feature vector, followed byraximum like-

feature fus_ion method improves s_peaker-independent, Iarge_ vocabrinood linear transform(MLLT) [11] to improve data modeling.
ulary, continuous speech recognition for both clean and noisy au-the method outperforms feature fusion by means of plain audio
Q|o conditions cc_)n5|dered. A 24_1% rel_atlve yvord error rate reduc- 4.4 visual feature concatenation [2], [3], and it improves LVCSR
tion over an audio-only system is achieved in the latter case. under both clean and noisy audio conditions. LDA and MLLT
are also used to incorporate dynamic information into the audio

1. INTRODUCTION and visual feature streams, preceding fusion. Hence, the whole
scheme amounts tolderarchical two-stage application of these
Improving automatic speech recognitiqhSR) by exploiting vi- transforms, and it is referred to as HiLDA (Hierarchical LDA).
sual, mouth region information has actively been pursued dur-  Section 2 of the paper reviews LDA and MLLT. Section 3 de-

ing the last few years [1]-[5]. However, to date, alitomatic scribes their use in obtaining single modality features. Feature
speechreadingtudies have been limited to small vocabulary tasks, fusion is presented in Section 4. The audio-visual database, exper-
small subject populations, and are hardly ever compared on anyimental paradigm, and LVCSR experiments are reported in Sec-
common audio-visual database [1]. Thus, no definite answers existtions 5, 6, and 7, respectively. A summary follows in Section 8.
on the two key issues for the desigrspieaker-independerdudio-
visual, large vocabulary continuous speech recognit{th'CSR)
systems: (a) The choice of appropriateual featuresinformative
about unconstrained, continuous visual speech; and (b) The design
of audio-visual informatioriusionalgorithms that outperform tra-
d_itional audio-only I.‘\./CSR systems, under a_II possible audi_o_and roved classification. Both assume that a setla§sesC (such as
yldeo channel conditions. To address these issues, we par_nmpate MM states) is a-priori given, as well as that the training set data
in the summer 2000 W0r|_<shop at th_e Johns Hopkins University vectorsx;, [ = 1,..., L, of dimensiond , arelabeledasc(l) € C.
on audio-visual ASR, seriously tackling the problem of speaker-
independent audio-visual LVCSR for the first time [6]. Although
we did consider a number of different visual feature representa-2.1. Linear Discriminant Data Projection
tions, our main concentration was on fusion algorithms.
Audio-visual fusion is an instance of the general classifier com-
bination problem [7]. Here, two observation streams are avail-
able (audio and visual modalities) and provide information about
hidden class labels, such hglden Markov modgHMM) states,
or, at a higher level, word sequences. Each stream can be us
alone to train single_ r_nodality statistical classifiers to recogni_ze Sw :ZPr(c)E“), Sp :ZPT(C)(m(C)—m)(m(C)—m)T, (1)
such classes. Combining the two streams can hopefully resultin a
bimodal classifier that outperforms both single modality ones. A
number of techniques have been suggested for audio-visual fusiorrespectively. In (1)Pr(c)=L./L, c € C, is the class empirical
[1], which can be broadly grouped infeature fusiori2], [3] and probability mass function, whetg. :Eleéc(,),c ,andd; ;=1, if

2. FEATURE TRANSFORMATIONS FOR IMPROVED
CLASSIFICATION

LDA and MLLT are used to map features to new spaces for im-

LDA seeks a projection matriP.pa of SizeD x d, whereD <
d,|C|, such that the projected training samgl®.pa x;, [ =
1,..., L} is “well separated” into the set of classesaccording to
a function of the training sampheithin-class scattematrix Sw
R émd itsbetween-class scattematrix S g [10]. These matrices are

cec ceC
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Fig. 1. Feature extraction for audio-visual ASR by a hierarchical, two-stage application of LDA and MLLT (see also (2), (3), (4), and (6)).

i=3:0, otherwise;m® andX(® denote the class sample mean appearance based technique [5], [6]. First, a statistical face track-

and covariance, respectively; finalsh = X ccc Pr(c) m is ing algorithm is used to detect the speaker’s face and estimate the

the total sample mean. mouth location and size [13]. Based on these, a size-normalized,
To estimatePrns , We compute th@eneralizedeigenvalues 64 x 64 pixel region of interes{ROI) is extracted for every video

and right eigenvectors of the matrix pairS(z,Sw) that satisfy frame at 60 Hz, containing the speaker’s mouth. Subsequently,

SsF = SwFA [10]. Matrix F = [f1,...,f;] has as columns  a two-dimensional, separabldiscrete cosine transforfDCT) is

the generalized eigenvectors. Let thelargest eigenvalues be at  applied to the ROI, and the 24 highest-energy (over all training

thej ..., jp diagonal positions of ; then,Pupa = [£j,,..., fip] data) DCT coefficients are retained as static features. To facilitate
audio-visual fusion, linear interpolation is used to obtain visual
2.2. Maximum Likelihood Data Rotation features, time-synchronous to the audio ones at 100 Hz. Finally,
FMN is employed to compensate for lighting variations, providing
MLLT seeks a square, non-singular, data rotation maaix..r the final visual-only static featurag"’ (see Fig. 1).

that maximizes the observation data likelihood in the original fea-
ture space, under the assumption of diagonal data covariance in the
transformed space. Such a rotation is beneficial, since, in LVCSR,
diagonal covariances are typically assumed when modeling the ob- i i .
servation class conditional probability distribution. The desired WO feature fusion methods are considered (see also Fig. 1). The
rotation matrix is obtained numerically by solving [11] fl_rst (basgllne one) uses the cpn_cate_natlon of the synchronous au-
dio and visual features as the joint bimodal feature vector [2], [3];

the second is the proposed HiLDA technique.

4. AUDIO-VISUAL FEATURE FUSION

Puir = arg maxp {det(P)* [(det(diag(PE©PT))) ¥},
ceC

. . ) 4.1. Concatenative Feature Fusion
wherediag(e), det(e), denote matrixdiagonalanddeterminant

The joint, concatenated audio-visual feature vector is (see also (3))
3. SINGLE MODALITY FEATURES oY) [oMT oM T]T ¢ R @)

whereD = D, + D+ . We model the generation process of a
sequence of such features bgiagle-streanHMM, with emission
(class conditional observation) probabilities, given by [12]

To obtain single modality (audio- and visual-only) features, first
LDA and subsequently MLLT are applied on a concatenation of
consecutivestatic features, as a means of incorporatohgamic
speech information and improving recognition. Let us denote the
audio- and visual-only, time-synchronous, static features of dimen- K.

sionns, by y{” € R™, wheres = A,V, respectively. Let us Prio™|c] = chk Np (oY ;mep,scr).  (5)
consider.J; consecutive such feature vectors and denote by k=1

<& = [y(s)T . y(s)Tm y(s)T ‘ ]T ) In (5), c € C denote the HMM context dependent states (classes).
¢ t=lJs/2m Tt 2 Ttk s /21 -1 0 In addition, mixture weightsu ., are positive adding up to one,

their concatenation of dimensiah = .J; ns . The final audio- and K« denotes the number of mixtures, aft (o;m,s) is the D-

visual-only feature vectors of dimensidp, are then variate normal distribution with meam and a diagonal covari-
ance matrix, its diagonal being denoted by
ol = P P x{), where s =AV, 3) In our system, the concatenated audio-visual observation vec-
tor (4) is of dimension 101. This is rather high, and it can cause
and matricesP, '3\ andP(?) . are of dimension®D, x ds and inadequate modeling in (5) due to the curse of dimensionality. To
D, x D, , respectively (see also Fig. 1). Values=24, Ja=9, avoid this, we seek lower dimensional representations of (4), next.

D =60, andny=24, Jy=15, Dy=41, are used here.
The audio-only static features consist of 24 mel-frequency cep-4 5 - pjierarchical Fusion Using Feature Transformations
stral coefficients, computed over a sliding window of 25 msec, and
at a rate of 100 HzFeature mean normalizatioFMN) is used The visual features currently used contain less speech classifica-
to obtainy(*’ [12]. Static visual features are extracted using an tion power than audio features, even in the case of extreme noise in



; | Lattices || Rescored| Oracle | Anti-oracle | LM-only |
“Lat” 14.44 5.53 46.83 29.57
i | “NLat” 48.10 26.81 96.12 58.31
“NAVLat” 36.99 16.84 103.69 52.02

Table 1. Test set word error rate (WER, %) of the rescored lattices
by the corresponding HTK trained system. Oracle, anti-oracle, and
language model (LM) only best path WERSs are also depicted.

=299

Fig. 2. IBM ViaVoice™ audio-visual database example subjects.

the audio channel (see Section 7). One would therefore expect thatices are generated. These lattices are subsequently rescored us-
a lower-dimensional representation of (4) could lead to equal, or ing the HTK decoder by various context-dependent triphone HTK-
even better, HMM performance, given the lack of accurate prob- trained HMM systems, based on a number of feature sets and fu-
abilistic modeling in very high dimensional spaces. Similarly to sion strategies. Three sets of such lattices are generated for both

Section 3, we consider LDA, followed by MLLT, as a means of

obtaining such a dimensionality reduction. The final audio-visual

feature vector is then (see also (3) and (4))

o(tHiLDA) — PAY) pAv) O(tAV).

MLLT + LDA

(6)

In our experiments, the LDA matri 5% is of size60 x 101,
giving rise to 60-dimensional HiLDA audio-visual features.

5. THE AUDIO-VISUAL DATABASE

To allow speaker-independent audio-visual LVCSR experiments,
a suitable database has been collected at the IBM T.J. Watson Re;
search Center [6]. It consists of full-face frontal video and audio of

290 subjects (see also Fig. 2), uttering ViaVditescripts (con-

tinuous read speech with mostly verbalized punctuation), with a

10,400 word vocabulary. The database video is of Bizex 480

pixels, interlaced, captured in color at a rate of 30 Hz (60 fields per
second are available at a resolution of 240 lines), and is MPEG2
encoded at the relatively high compression ratio of about 50:1.
High quality wideband audio is synchronously collected with the
video at a rate of 16 kHz in an office environment at a 19.5 dB
SNR. The database duration is close to 50 hours (24,325 utter
ances). To date, this is the largest audio-visual database collecte

and the only one suitable for LVCSR [1]-[5].

6. EXPERIMENTAL FRAMEWORK

d

the held-out and test sets (see Table 1). Lattices:

e Latare based onleanaudio-only features;

¢ NLaton noisyaudio-only features (matched training); and

e NAVLatare based onoisyHiLDA audio-visual features.
Lattice rescoring results on the test set, expressedoid error
rate (WER), % [12], are reported in Section 7.

7. EXPERIMENTS

First, baseline audio-only results are obtained for both clean and
noisy audio conditions, using HMMs trained in the matched audio
condition to rescore lattices “Lat” and “NLat”, respectively. Per-
formance deteriorates significantly from a 14.44% WER for clean
audio to a 48.10% WER in the noisy case (see also Table 1).
Subsequently, it is investigated whether visual-only features
provide useful speech information in the LVCSR domain. Visual-
only HMMs are trained and used to rescore lattices “NLat”. Of
course, such lattices do contain audio information, therefore the
obtained results cannot be interpreted as visual-only recognition.
As Table 2 shows, in the case where no LM information is used,
the performance improves from a 78.14% WER, when no visual
feature information is present (random lattice path), to a 61.06%

WER, when the visual-only HMM is used in rescoring. Similarly,
In the case where the LM scores are utilized, the WER improves
from 58.31% (best lattice path based on LM alone) to 51.08%,
when the visual-only HMM scores are also employed. Clearly, the
visual features do provide useful information for LVCSR.

Next, it is demonstrated that visual speech information im-

Approximately 42 hours of data are used in speaker-independentproves ASR performance, using the HiLDA fusion method. In
audio-visual ASR experiments, partitioned into three sets: The Table 3, fusion results are depicted for both clean and noisy audio.
training set that contains 35 hours of data (17,111 utterances) fromin the first case, lattices “Lat” are rescored using HMMs trained

239 subjects, used for HMM parameter estimation. ékl-out

on concatenated audio-visual features (AV-concat), as well as on

set of close to 5 hours of data (2,277 utterances) from 25 additionalHiLDA features (AV-HiLDA). When using the former, some per-

subjects, used for roughly optimizing ttenguage mode{LM)
weight and the word insertion penalty durilagtice rescoring as
well as, in [8], [9], for training parameters relevant to audio-visual
decision fusion. Finally, the 2.5-hotiestset (1,038 utterances)
from the 26 remaining subjects is provided for HMM evaluation.

formance degradation with respect to the baseline clean audio-only
WER is observed (from a 14.44% WER to a 16.00% one). How-
ever, the HIiLDA feature fusion outperforms the audio-only base-
line by achieving a 13.84% WER, which amounts to a 4% rela-
tive reduction in WER. In the noisy audio case, lattices “NLat”

Two audio conditions are considered: The original database are first rescored. Both fusion techniques give substantial gains
clean audio (19.5 dB SNR), and a degraded one, where the audimver the noisy audio-only baseline performance, with HiLDA be-

is artificially corrupted by additivefabble¢ speech noise (8.5 dB
SNR). AllHMMs, as well as the LDA and MLLT matrices used in
feature extraction, are trained in thetchedcondition.

All experiments are conducted using the HTK toolkit [12].
Due to its LVCSR decoding limitations, a lattice rescoring strat-
egy is followed: First, using the IBM LVCSR decoder with a tri-
gram LM and IBM-trained HMM systems, appropriate ASR lat-

ing again the best method. When rescoring the “NAVLat" lattices,
both results improve significantly. The HiLDA algorithm yields a
36.99% WER, compared to the baseline noisy audio-only 48.10%
WER. This amounts to a 24% WER relative reduction. Notice that
“NAVLat” lattice rescoring provides the fair result to report for the
HILDA technique. However, the concatenative feature fusion re-
sult is “boosted” by its superior “NAVLat” lattices. Its actual, free



| Condition | WER (%) ] Audio Condition: || Clean Noisy
Visual-only (with LM) 51.08 Rescored Lattices}| “Lat” | “NLat” | “NAVLat”
LM-only (no features) 58.31 [ Audio-only | 14.44] 48.10 | - ]
Visual-only, with no LM 61.06 AV-concat (4) 16.00 | 44.97 40.00
Random lattice path 78.14 AV-HILDA (6) 13.84 | 42.86 36.99

| Noisy audio-only | 4810 |

Table 2 “NLat” lattice rescoring results (in WER, %) on the Table 3. Audio-visual feature fusion performance (in WER, %) on
test set obtained with or without visual-only HMM and language the test set using concatenated and hierarchical LDA audio-visual
model (LM) scores. Noisy audio-only WER is also shown. features in both clean and noisy audio conditions.
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