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ABSTRACT

We propose the use of a hierarchical, two-stage discriminant trans-
formation for obtaining audio-visual features that improve auto-
matic speech recognition. Linear discriminant analysis (LDA), fol-
lowed by a maximum likelihood linear transform (MLLT) is first
applied on MFCC based audio-only features, as well as on visual-
only features, obtained by a discrete cosine transform of the video
region of interest. Subsequently, a second stage of LDA and MLLT
is applied on the concatenation of the resulting single modality
features. The obtained audio-visual features are used to train a tra-
ditional HMM based speech recognizer. Experiments on the IBM
ViaVoiceTM audio-visual database demonstrate that the proposed
feature fusion method improves speaker-independent, large vocab-
ulary, continuous speech recognition for both clean and noisy au-
dio conditions considered. A 24% relative word error rate reduc-
tion over an audio-only system is achieved in the latter case.

1. INTRODUCTION

Improving automatic speech recognition(ASR) by exploiting vi-
sual, mouth region information has actively been pursued dur-
ing the last few years [1]-[5]. However, to date, allautomatic
speechreadingstudies have been limited to small vocabulary tasks,
small subject populations, and are hardly ever compared on any
common audio-visual database [1]. Thus, no definite answers exist
on the two key issues for the design ofspeaker-independent, audio-
visual, large vocabulary continuous speech recognition(LVCSR)
systems: (a) The choice of appropriatevisual features, informative
about unconstrained, continuous visual speech; and (b) The design
of audio-visual informationfusionalgorithms that outperform tra-
ditional audio-only LVCSR systems, under all possible audio and
video channel conditions. To address these issues, we participated
in the summer 2000 workshop at the Johns Hopkins University
on audio-visual ASR, seriously tackling the problem of speaker-
independent audio-visual LVCSR for the first time [6]. Although
we did consider a number of different visual feature representa-
tions, our main concentration was on fusion algorithms.

Audio-visual fusion is an instance of the general classifier com-
bination problem [7]. Here, two observation streams are avail-
able (audio and visual modalities) and provide information about
hidden class labels, such ashidden Markov model(HMM) states,
or, at a higher level, word sequences. Each stream can be used
alone to train single modality statistical classifiers to recognize
such classes. Combining the two streams can hopefully result in a
bimodal classifier that outperforms both single modality ones. A
number of techniques have been suggested for audio-visual fusion
[1], which can be broadly grouped intofeature fusion[2], [3] and

decision fusion[2]-[5] methods. The first are based on training a
traditional HMM classifier on the concatenated vector of the audio
and visual features. Decision fusion techniques combine classifi-
cation decisions based on single modality observations, typically
by appropriately weighting their respective log-likelihoods.

In this paper, we exclusively consider feature fusion. Decision
fusion techniques are presented in two accompanying papers [8],
[9]. To eliminate duplication, visual feature extraction, the audio-
visual database, and the experimental framework, common to all
three papers, are described in most detail here. Specifically, in this
work, we propose the use oflinear discriminant analysis(LDA)
[10] to discriminantly reduce the dimensionality of the concate-
nated audio-visual feature vector, followed by amaximum like-
lihood linear transform(MLLT) [11] to improve data modeling.
The method outperforms feature fusion by means of plain audio
and visual feature concatenation [2], [3], and it improves LVCSR
under both clean and noisy audio conditions. LDA and MLLT
are also used to incorporate dynamic information into the audio
and visual feature streams, preceding fusion. Hence, the whole
scheme amounts to ahierarchical, two-stage application of these
transforms, and it is referred to as HiLDA (Hierarchical LDA).

Section 2 of the paper reviews LDA and MLLT. Section 3 de-
scribes their use in obtaining single modality features. Feature
fusion is presented in Section 4. The audio-visual database, exper-
imental paradigm, and LVCSR experiments are reported in Sec-
tions 5, 6, and 7, respectively. A summary follows in Section 8.

2. FEATURE TRANSFORMATIONS FOR IMPROVED
CLASSIFICATION

LDA and MLLT are used to map features to new spaces for im-
proved classification. Both assume that a set ofclassesC (such as
HMM states) is a-priori given, as well as that the training set data
vectorsxl , l = 1 ;:::; L , of dimensiond , arelabeledasc(l) 2 C .

2.1. Linear Discriminant Data Projection

LDA seeks a projection matrixPLDA of sizeD � d , whereD <
d ; jCj , such that the projected training samplefPLDA xl ; l =
1 ;:::; L g is “well separated” into the set of classesC according to
a function of the training samplewithin-class scattermatrix SW
and itsbetween-class scattermatrixSB [10]. These matrices are

SW =
X

c2C

Pr(c)�(c); SB=
X

c2C

Pr(c)(m(c)�m)(m(c)�m)>; (1)

respectively. In (1),Pr(c)=Lc=L , c 2 C , is the class empirical
probability mass function, whereLc=�L

l=1�c(l);c , and�i;j=1 , if
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Fig. 1. Feature extraction for audio-visual ASR by a hierarchical, two-stage application of LDA and MLLT (see also (2), (3), (4), and (6)).

i= j ; 0 , otherwise;m(c) and�(c) denote the class sample mean
and covariance, respectively; finally,m = � c2C Pr(c)m

(c) is
the total sample mean.

To estimatePLDA , we compute thegeneralizedeigenvalues
and right eigenvectors of the matrix pair (SB ,SW ) that satisfy
SBF = SWF� [10]. Matrix F = [ f1;:::; fd] has as columns
the generalized eigenvectors. Let theD largest eigenvalues be at
thej1;:::; jD diagonal positions of� ; then,PLDA= [ fj1 ;:::; fjD ]

>.

2.2. Maximum Likelihood Data Rotation

MLLT seeks a square, non-singular, data rotation matrixPMLLT
that maximizes the observation data likelihood in the original fea-
ture space, under the assumption of diagonal data covariance in the
transformed space. Such a rotation is beneficial, since, in LVCSR,
diagonal covariances are typically assumed when modeling the ob-
servation class conditional probability distribution. The desired
rotation matrix is obtained numerically by solving [11]

PMLLT= argmax
P
fdet(P)L

Y

c2C

(det(diag(P�(c)P>)))�
Lc

2 g;

wherediag(�) , det(�) , denote matrixdiagonalanddeterminant.

3. SINGLE MODALITY FEATURES

To obtain single modality (audio- and visual-only) features, first
LDA and subsequently MLLT are applied on a concatenation of
consecutivestatic features, as a means of incorporatingdynamic
speech information and improving recognition. Let us denote the
audio- and visual-only, time-synchronous, static features of dimen-
sion ns , by y(s)t 2 Rns , wheres = A ;V, respectively. Let us
considerJs consecutive such feature vectors and denote by

x
(s)
t = [ y

(s)>

t�bJs=2c
;:::; y

(s)>
t ;:::;y

(s)>

t+dJs=2e�1
]>; (2)

their concatenation of dimensionds=Js ns . The final audio- and
visual-only feature vectors of dimensionDs are then

o
(s)
t = P

(s)
MLLT P

(s)
LDA x

(s)
t ; where s = A ;V; (3)

and matricesP (s)
LDA andP (s)

MLLT are of dimensionsDs� ds and
Ds�Ds , respectively (see also Fig. 1). ValuesnA=24 , JA=9 ,
DA=60 , andnV=24 , JV=15 , DV=41 , are used here.

The audio-only static features consist of 24 mel-frequency cep-
stral coefficients, computed over a sliding window of 25 msec, and
at a rate of 100 Hz.Feature mean normalization(FMN) is used
to obtainy(A)t [12]. Static visual features are extracted using an

appearance based technique [5], [6]. First, a statistical face track-
ing algorithm is used to detect the speaker’s face and estimate the
mouth location and size [13]. Based on these, a size-normalized,
64 � 64 pixel region of interest(ROI) is extracted for every video
frame at 60 Hz, containing the speaker’s mouth. Subsequently,
a two-dimensional, separable,discrete cosine transform(DCT) is
applied to the ROI, and the 24 highest-energy (over all training
data) DCT coefficients are retained as static features. To facilitate
audio-visual fusion, linear interpolation is used to obtain visual
features, time-synchronous to the audio ones at 100 Hz. Finally,
FMN is employed to compensate for lighting variations, providing
the final visual-only static featuresy(V)t (see Fig. 1).

4. AUDIO-VISUAL FEATURE FUSION

Two feature fusion methods are considered (see also Fig. 1). The
first (baseline one) uses the concatenation of the synchronous au-
dio and visual features as the joint bimodal feature vector [2], [3];
the second is the proposed HiLDA technique.

4.1. Concatenative Feature Fusion

The joint, concatenated audio-visual feature vector is (see also (3))

o
(AV)

t = [o(A)>t ; o (V)>t ]> 2 R
D ; (4)

whereD = DA + DV . We model the generation process of a
sequence of such features by asingle-streamHMM, with emission
(class conditional observation) probabilities, given by [12]

Pr [o(AV)t j c ] =
KcX

k=1

w ckND (o(AV)t ;m c k ; s c k ) : (5)

In (5), c2 C denote the HMM context dependent states (classes).
In addition, mixture weightsw ck are positive adding up to one,
Kc denotes the number of mixtures, andND (o ;m ; s) is theD-
variate normal distribution with meanm and a diagonal covari-
ance matrix, its diagonal being denoted bys .

In our system, the concatenated audio-visual observation vec-
tor (4) is of dimension 101. This is rather high, and it can cause
inadequate modeling in (5) due to the curse of dimensionality. To
avoid this, we seek lower dimensional representations of (4), next.

4.2. Hierarchical Fusion Using Feature Transformations

The visual features currently used contain less speech classifica-
tion power than audio features, even in the case of extreme noise in



Fig. 2. IBM ViaVoiceTM audio-visual database example subjects.

the audio channel (see Section 7). One would therefore expect that
a lower-dimensional representation of (4) could lead to equal, or
even better, HMM performance, given the lack of accurate prob-
abilistic modeling in very high dimensional spaces. Similarly to
Section 3, we consider LDA, followed by MLLT, as a means of
obtaining such a dimensionality reduction. The final audio-visual
feature vector is then (see also (3) and (4))

o
(HiLDA)

t = P
(AV)
MLLT P

(AV)
LDA o

(AV)

t : (6)

In our experiments, the LDA matrixP(AV)
LDA is of size60 � 101 ,

giving rise to 60-dimensional HiLDA audio-visual features.

5. THE AUDIO-VISUAL DATABASE

To allow speaker-independent audio-visual LVCSR experiments,
a suitable database has been collected at the IBM T.J. Watson Re-
search Center [6]. It consists of full-face frontal video and audio of
290 subjects (see also Fig. 2), uttering ViaVoiceTM scripts (con-
tinuous read speech with mostly verbalized punctuation), with a
10,400 word vocabulary. The database video is of size704 � 480
pixels, interlaced, captured in color at a rate of 30 Hz (60 fields per
second are available at a resolution of 240 lines), and is MPEG2
encoded at the relatively high compression ratio of about 50:1.
High quality wideband audio is synchronously collected with the
video at a rate of 16 kHz in an office environment at a 19.5 dB
SNR. The database duration is close to 50 hours (24,325 utter-
ances). To date, this is the largest audio-visual database collected,
and the only one suitable for LVCSR [1]-[5].

6. EXPERIMENTAL FRAMEWORK

Approximately 42 hours of data are used in speaker-independent
audio-visual ASR experiments, partitioned into three sets: The
training set that contains 35 hours of data (17,111 utterances) from
239 subjects, used for HMM parameter estimation. Theheld-out
set of close to 5 hours of data (2,277 utterances) from 25 additional
subjects, used for roughly optimizing thelanguage model(LM)
weight and the word insertion penalty duringlattice rescoring, as
well as, in [8], [9], for training parameters relevant to audio-visual
decision fusion. Finally, the 2.5-hourtest set (1,038 utterances)
from the 26 remaining subjects is provided for HMM evaluation.

Two audio conditions are considered: The original database
clean audio (19.5 dB SNR), and a degraded one, where the audio
is artificially corrupted by additive “babble” speech noise (8.5 dB
SNR). All HMMs, as well as the LDA and MLLT matrices used in
feature extraction, are trained in thematchedcondition.

All experiments are conducted using the HTK toolkit [12].
Due to its LVCSR decoding limitations, a lattice rescoring strat-
egy is followed: First, using the IBM LVCSR decoder with a tri-
gram LM and IBM-trained HMM systems, appropriate ASR lat-

Lattices Rescored Oracle Anti-oracle LM-only

“Lat” 14.44 5.53 46.83 29.57
“NLat” 48.10 26.81 96.12 58.31

“NAVLat” 36.99 16.84 103.69 52.02

Table 1. Test set word error rate (WER, %) of the rescored lattices
by the corresponding HTK trained system. Oracle, anti-oracle, and
language model (LM) only best path WERs are also depicted.

tices are generated. These lattices are subsequently rescored us-
ing the HTK decoder by various context-dependent triphone HTK-
trained HMM systems, based on a number of feature sets and fu-
sion strategies. Three sets of such lattices are generated for both
the held-out and test sets (see Table 1). Lattices:

� Lat are based oncleanaudio-only features;
� NLaton noisyaudio-only features (matched training); and
� NAVLatare based onnoisyHiLDA audio-visual features.

Lattice rescoring results on the test set, expressed inword error
rate (WER), % [12], are reported in Section 7.

7. EXPERIMENTS

First, baseline audio-only results are obtained for both clean and
noisy audio conditions, using HMMs trained in the matched audio
condition to rescore lattices “Lat” and “NLat”, respectively. Per-
formance deteriorates significantly from a 14.44% WER for clean
audio to a 48.10% WER in the noisy case (see also Table 1).

Subsequently, it is investigated whether visual-only features
provide useful speech information in the LVCSR domain. Visual-
only HMMs are trained and used to rescore lattices “NLat”. Of
course, such lattices do contain audio information, therefore the
obtained results cannot be interpreted as visual-only recognition.
As Table 2 shows, in the case where no LM information is used,
the performance improves from a 78.14% WER, when no visual
feature information is present (random lattice path), to a 61.06%
WER, when the visual-only HMM is used in rescoring. Similarly,
in the case where the LM scores are utilized, the WER improves
from 58.31% (best lattice path based on LM alone) to 51.08%,
when the visual-only HMM scores are also employed. Clearly, the
visual features do provide useful information for LVCSR.

Next, it is demonstrated that visual speech information im-
proves ASR performance, using the HiLDA fusion method. In
Table 3, fusion results are depicted for both clean and noisy audio.
In the first case, lattices “Lat” are rescored using HMMs trained
on concatenated audio-visual features (AV-concat), as well as on
HiLDA features (AV-HiLDA). When using the former, some per-
formance degradation with respect to the baseline clean audio-only
WER is observed (from a 14.44% WER to a 16.00% one). How-
ever, the HiLDA feature fusion outperforms the audio-only base-
line by achieving a 13.84% WER, which amounts to a 4% rela-
tive reduction in WER. In the noisy audio case, lattices “NLat”
are first rescored. Both fusion techniques give substantial gains
over the noisy audio-only baseline performance, with HiLDA be-
ing again the best method. When rescoring the “NAVLat” lattices,
both results improve significantly. The HiLDA algorithm yields a
36.99% WER, compared to the baseline noisy audio-only 48.10%
WER. This amounts to a 24% WER relative reduction. Notice that
“NAVLat” lattice rescoring provides the fair result to report for the
HiLDA technique. However, the concatenative feature fusion re-
sult is “boosted” by its superior “NAVLat” lattices. Its actual, free



Condition WER (%)

Visual-only (with LM) 51.08
LM-only (no features) 58.31

Visual-only, with no LM 61.06
Random lattice path 78.14

Noisy audio-only 48.10

Table 2. “NLat” lattice rescoring results (in WER, %) on the
test set obtained with or without visual-only HMM and language
model (LM) scores. Noisy audio-only WER is also shown.

decoding performance is expected to be worse than the 40.00%
WER, but better than the 44.97% WER, reported in Table 3.

It is of course not surprising that HiLDA outperforms feature
concatenation. In our implementation, concatenated audio-visual
features are of dimension 101, compared to audio-only and HiLDA
features, that are both of dimension 60. HiLDA uses a discrimi-
native feature projection to efficiently “compact” features (4), and,
implicitly, it models the correlation, reliability, and possible asyn-
chrony of the audio- and visual-only feature streams. The curse of
dimensionality and undertraining are likely also to blame for the
performance degradation compared to the clean audio-only sys-
tem, when concatenated features are used.

8. SUMMARY

We presented a novel technique for fusing audio and visual infor-
mation at the feature level in bimodal ASR. The algorithm consists
of a two-stage, hierarchical application of LDA and MLLT, first on
single modality, static features, and subsequently on their concate-
nation. The initial LDA captures class-discriminant static and dy-
namic information within the audio-only and visual-only feature
streams, whereas the subsequent LDA provides a discriminative
feature projection that compresses the concatenation of the result-
ing audio and visual features. In both cases, the MLLT provides
a data rotation that significantly improves data modeling. We ap-
plied the algorithm to speaker-independent, large vocabulary, con-
tinuous audio-visual speech recognition, and we demonstrated that
it reduced the word error rate of an audio-only state-of-the-art sys-
tem for both clean and (matched) noisy audio conditions, by about
4% and 24%, relative, respectively. This constitutes the first time
that such improvements have been obtained in the LVCSR domain.

In this paper, we also presented the basic framework of our
work on audio-visual ASR during the summer 2000 workshop at
the Johns Hopkins University, namely visual feature extraction, the
audio-visual database, and the experimental paradigm followed.
Alternative techniques for incorporating visual information based
on decision fusion have also been employed at this workshop.
Such algorithms are presented in accompanying papers [8] and [9].
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Audio Condition: Clean Noisy
Rescored Lattices: “Lat” “NLat” “NAVLat”

Audio-only 14.44 48.10 –

AV-concat (4) 16.00 44.97 40.00
AV-HiLDA (6) 13.84 42.86 36.99

Table 3. Audio-visual feature fusion performance (in WER, %) on
the test set using concatenated and hierarchical LDA audio-visual
features in both clean and noisy audio conditions.
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