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ABSTRACT

Consider the problem of estimating the parameters in a
continuous-time autoregressive (AR) model given measure-
ments taken at arbitrary time instants. In this paper the
Cramér-Rao bound for this problem is derived by using a
technique based on the Slepian-Bang’s formula and residue
calculus. Furthermore, we investigate by means of numeri-
cal experiments how different sampling schemes can affect
accuracy. Interestingly enough, however, for the examples
studied, the estimation accuracy is relatively insensitive to
the choice of sampling strategy.

1. INTRODUCTION

The problem of estimating the parameters in a continuous-
time AR model given samples taken at irregularly spaced
time instants has been the subject of research for a fairly
long time [1, 2]. In this paper the Cramér-Rao bound
(CRB) for the problem under study is considered. The mo-
tivation for this is twofold: to provide bounds for judging
the performance of various estimators, for instance those in
[1]; and to illustrate by numerical examples how the sam-
pling scheme can affect the estimation accuracy. We note
here that the corresponding CRB in the case of regular
sampling has been derived in [3, 4]. However, the results
and methods therein appear not to be extendable to irreg-
ular sampling in a straightforward manner, so in this paper
a different approach is considered. As a further remark,
notice that the CRBs for the related problem of estimating
the parameters of polynomial-phase signals from irregularly
sampled data have been presented in [5]. Apart from the
mentioned papers, not much literature on the topic appears
to exist.

2. CRAMER-RAO BOUND

Consider the following real-valued scalar continuous-time
AR process:

A(5)u0) =e(t) W

where e(t) is continuous-time white noise of variance o2,
d

47 is the differentiation operator and A(s) is a polynomial
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of degree 2n, n > 1, with all its zeros strictly in the left
half plane. For a rigorous treatment of continuous-time
stochastic processes see, e.g., [6, 7]. Assume further that
all zeros of A(s) are distinct and that A(s) has no zeros on
the real axis. Under these assumptions, we can write, since
the process is real-valued,

n

A(s) = [T(s = pi)(s =) (2)

j=1

where {p;, p; }7—1 are the zeros of A(s) and (-)* denotes the
complex conjugate. The model is fully parameterized by
the real parameter vector

0= [131 Pt * Pn  Pn 0'2]T (3)
where (-) and () denote the real and imaginary parts, re-
spectively.

The assumptions that all roots {p;, pj}7=1 are distinct,
that p; > 0 for j = 1,...,n, and that A(s) is of even
degree are clearly restrictive, but not seriously so, as we
believe for the following reasons: Firstly, in many applica-
tions, including spectral line analysis, the poles of A(s) are
distinct and non-real. Secondly, our choice of model and its
parameterization are motivated by the clarity of presenta-
tion. However, it should be stressed that the results herein
can easily be extended to the case where A(s) has distinct
zeros on the real axis as well.

Assume now that the process is sampled at N time in-
stants ¢; < --- < ty. From (1) it follows [8] that the co-
variance matrix

y(t)
R2 E{ Do [u(t)

: y(tn)] } (4)
y(tn)

can be expressed as
1 100
R=_— ®(s)['(s)ds (5)
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where fffm denotes integration along the imaginary axis,
element k, of T'(s) equals

Tk.(s) zeltk—tz\s (6)



and
2
o
®(s) 2 ———— 7
(s) A)A(—s) (7
is the spectrum of the process y(t).
The Cramér-Rao inequality states that for any unbiased
estimate 6 of the parameter-vector @ we must have [8]

E{(®-0)®-6)} > (®)

where J is the Fisher Information Matriz (FIM) and the
matrix inequality A > B means that A — B is nonnega-
tive definite. Under the additional assumption that e(t) is
Gaussian, a convenient expression for J is given by Slepian-
Bang’s formula (see, e.g., [9]):

[Tt = S {RTRRTRY ()

Here Tr{-} denotes the trace, R} £ %R and 6y denotes
the kth element of the parameter-vector @ which corre-
sponds to any of the parameters p;, p; or o>. We write
[Tk.i|{t:}iZ1] to stress that J is conditioned on the sam-
pling instants.

The matrix R in (5) and its derivatives can be evalu-
ated straightforwardly by residue calculus [10]. A detailed
derivation can be found in [11], whereas in this paper we
merely summarize the results. For notational convenience,
let us introduce the following functions:

1
A
s) =
) = G s —p s p0)
. d L Bi(s), L=k (10)
A @ _Jas b=
Pron (8) = g, Aile) {o,k 1%k
In [11] it is shown that R and R}, can be written as
R=2) ", (11)
Jj=1
R, =2) ¥,.,, (12)

j=1
where ¥y, and ¥, 0, are N x N residue matrices. The
matrix ¥, is given by [11]

n
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The procedure of evaluating ¥, 6, is divided into three
cases, namely, 6, corresponding to P, P or >, The residue
matrix 'Ilp]. o2 18

=y (14)

o2

pj,o2

where ¥, is given by (13). To evaluate ¥, o, for 6; cor-
responding to Py, and P the cases k # j and k = j need to
be treated separately. For k # j it holds that

2
g
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[ ﬁ 5l(pi)]f3k,0k (pi)T(p;)  (15)
15k
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where

—4px (Ipel® — °)Bi(s), 6k ~ D

—4pr (Ipe® + s°)Bi(s), 6k ~ P (16)

Br.6, (s) = {
For the case k = j it can be shown that
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and © is an N x N matrix whose element k, ! equals Q;; =
[tx —ti]. In (18) ® denotes element-wise multiplication.
We now summarize the steps for computing the CRB:

I) Compute the matrix ¥, for j = 1,... ,n according
to (13) and (10).

IT) Compute the matrix ¥y, g, for j =1,... ,n and k =
1,...,2n+ 1. To do so, use the fact that ¥, o218
given by (14), and that ¥, 5 and ¥, 5 for k =
1,...,n are given by (15)-(16) for k # j and by (17)-
(18) for k = j.

III) Evaluate R according to (11) and R}, fork =1,... ,2n+
1 according to (12).

IV) Compute the FIM according to (9).

3. NUMERICAL EXAMPLES

The CRB derived in Section 2 is conditioned on the sam-
pling instants {t;}}_,. However, if the sampling process is
random and independent of e(t) we rather want to compute,
cf. [5],

ORB = { By, [71{t:}] }_1 (19)

where [J|{t;}] is the conditional Fisher information matrix
in (9). Finding an analytic expression for (19) given a prob-
abilistic description of the sampling process appears to be
far from trivial. We state this as an open research prob-
lem and resort to numerical evaluation of (19) by means of
Monte-Carlo simulations. In the examples below we have
used 200 Monte-Carlo runs.
We consider the following sampling strategies:



a) (Deterministic) uniform: t; =iT,1=1,... ,N.
b) Uniformly distributed: t; = 34_, Aty, ¢ = 1,...,N,
where

At}c =T + Jk, Jk ~ Uniform(—5o, 60) (20)

and &, are independent of e(t) for all ¢, and independent
of §; for all j # k. Here T = E{At} is the mean sample
interval. In Example 1 and Example 2 below, we chose
do=T/2.

c) Two-point distributed: as b) above but

Aty = Ao w?th probab?l?ty Po (21)
A1 with probability 1 — po.

Also here, Ay, are independent of each other and of e(t).
In this case the mean sample interval is T = E{Aty} =
polo + (1 — po)A1. In Example 3.1 and Example 3.2
below, we chose po = 1/2, Ag = T'/2 and A; = 3T/2.

d) Gapped-data sampling:
t=0,A,...,(N-1D)AAA+A ... A+ (N-1A,
o (Ng — DA, (Ng —1D)A+A, ...,
(Ng — 1)A+ (N -1A
(22)
In this case the mean sample interval is
(Ng — A + (N — 1A

T= .
N4N —1

(23)

In the examples below, the values of the parameters are
chosen as N =5, A =T/10, Ny = N/N and A so that
(23) is fulfilled.

Note that for all considered sampling strategies, a)-d) the
mean sample interval is by definition T2 E{t; — t;—1}.

Example 1 Inthe first example we consider an AR process
with poles at p1 +¢p1 = —0.05 £ 7. Two experiments are
performed: Firstly we fix the number of samples N = 100
and vary the mean sample interval T between 0.01 and 0.5.
Secondly N is varied between 10 and 200, for a fixed T'.
Figure 1 shows the result of the first experiment. The CRB
for estimating p1 is shown for different values of 7. Note
that p1 can be interpreted as the location of a “spectral
line”, so estimating p; is of particular practical relevance.
We note two things from Figure 1:

1. CRB decreases for increasing T (this behavior was
also seen in [1]).

2. There is, maybe somewhat surprisingly no big differ-
ence between the CRB for different sampling schemes.
This behavior was also seen in [5] for a different but
related problem. Note that the length of the interval
during which the process is observed is &~ NT', which
is independent of the sampling scheme used.

Figure 2 shows the result of the second experiment. Here
T = 0.5 as N is varied. Owing to obvious reasons the CRB
decreases as NN increases and for sufficiently large NT it ap-
pears that the CRB decreases linearly with N (for a fixed

T). We will return to this observation later. Furthermore,
we see also in this example that the CRB is almost inde-
pendent of the sampling scheme.

Example 2 In this example the behavior of the CRB for
estimating the location of two closely spaced spectral lines
is considered. The first spectral line is fixed, as p1 = —0.1
and p1 = 1, while the second spectral line is varying ac-
cording to p2 = p1/(1 + 0) and P2 = p1 + 6. For p; << ps
the normalization of p2 will make the peaks of the spectral
lines to be of approximately the same height. The num-
ber of samples is N = 100 and the mean sample interval
is T = 0.5. In Figure 3 the CRB for estimating pi, as a
function of ¢ for different sampling strategies is shown. It
is observed that the accuracy increases rapidly with increas-
ing 4, until a certain threshold is reached, which seems to
constitute a “fundamental” bound on the achievable accu-
racy. Moreover it is seen, as in the previous example, that
the achievable accuracy, for a fixed mean sample interval,
is very insensitive to the choice of sampling scheme.

4. ASYMPTOTIC BEHAVIOR

Direct evaluation of the expression in (9) for the CRB be-
comes impractical as N increases. However, the CRB can
be extrapolated for large N. The following result aim at
providing some justification for doing that.

Proposition 1 Assume that the following conditions hold:

C1: All sampling intervals t;, —tr—1 are multiples of a mini-
mum value € > 0. In other words, ty —tx—1 = Mye and
t1 = M;e for some sequence of strictly positive integers
{Mk}kN=1-

C2: The sequence of sampling intervals {tx — tx—1} (or,
equivalently, M) is a realization of a white station-
ary random process. Furthermore, there is a constant
¢ < oo such that sup; <<, Mk < c.

Then it follows that
Eggn  [Terl{ti}i] 1
E{ti}§f=vl [Jkk|{tz}f£1] 2

(24)

as N — oco. In other words, the diagonal elements of the
average Fisher Information matrix are proportional to NV if
N is sufficiently large.

Proof 1 See [11].

5. CONCLUDING REMARKS

The CRB for estimating the parameters in a continuous-
time AR model given irregularly sampled data was con-
sidered. A conceptually simple method for computing the
CRB by using Slepian-Bang’s formula in combination with
residue calculus was developed. Furthermore, the influence
on the parameter estimation of different sampling patterns
was demonstrated by means of some numerical examples.
One of the conclusions from these examples is that the CRB
is relatively insensitive to the sampling scheme as long as
the mean inter-sampling distance is maintained.
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Figure 2: CRB for p1 as a function of N for the process
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