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ABSTRACT

Mismatchis known to degradethe performanceof speectrecog-
nition systems.In real life applicationsmismatchis usuallynon-
stationaryanda generalway to compensatéor slowly time vary-
ing mismatchis by using sequentialalgorithmswith forgetting.
The choice of forgetting factoris usually performedempirically
on somedevelopmentdata,andno optimality criterionis used.In
this paperwe introducea framework for obtainingoptimalforget-
ting factor The proposednethodis appliedin conjunctionwith a
sequentiahoiseestimationalgorithm, but canbe extendedto se-
quentialbias or affine transformationestimation. Speechrecog-
nition experimentsconductedirst undera controlledscenarioon
the 5K Wall StreetJournaltaskcorruptedby differentnoisetypes,
thenundera real-life scenarioon speechrecordedin a noisy car
ervironmentvalidatethe proposednethod.

1. INTRODUCTION

In real world situationsthe input of speechrecognitionsystems
is often corruptedby differentsourcesof mismatch. This signifi-
cantly degradestheir performanceand may limit the widespread
useof speechiecognitiontechnologyin practicalapplications Ma-
ny techniquesvereproposedo improve theperformancef speech
recognitionin adwerseernvironments. A goodreview of thesemeth-
odscanbe foundin [2]. Mismatchsourceswhich are stationary
arerelatively easyto dealwith, and non-stationarityoften males
the problemmoredifficult. However, mary reallife scenariosn-
cludetime varying mismatchsourcesandthus dealingwith non-
stationarityis animportantpracticalproblem.

One approachto deal with non-stationarityis the use of se-
guential estimationalgorithms. The ability to track slowly time
varyingervironmentss facilitatedby usingaforgettingfactor(FF).
This framevork wasused for example for the estimationof addi-
tive bias[9], frame synchronoustochastianatching[8], andad-
ditive noiseestimationin the log spectraldomain[4]. In all these
situationsthe choiceof the valueof the FF is crucialfor goodper
formance. Usually the bestvalue of the FF is empirically deter
minedusinga developmenttestset,andno optimality criterionis
involved.

A techniqueto obtainoptimal stepsizefor the recursve least
square(RLS) algorithmwassuggestedh [6], andits corvergence
wasanalyzedn [7]. Thebasicideais to recursvely computethe
stepsizeto minimize the expectedvalue of the error, andto de-
velopanefficientrecursiorfor the derivativesrequiredin the min-
imization by differentiatingthe original recursion. In this paper
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we apply the sameprinciple to optimizing the forgettingfactorin
sequentiahoise meanestimationas given in [4]. Extensionsof
the sameframework to sequentiabias estimationor frame syn-
chronousstochastianatchingwill be consideredn futurework.

The approacthof [4] is basedon applyingthe sequentiaksti-
mationalgorithmof [10] in avectorTaylorserieVTS) [3] frame-
work. VTS is a populartechniqueor noisecompensationA Tay-
lor seriesexpansionof a nonlinearmismatchfunction is usedto
linearizethe problem. This facilitatesestimatingnoise statistics,
andcleanspeecHeaturedrom the noisyspeech.

The paperis organizedasfollows. In Section2 we briefly re-
view the VTS approach.This is followed by presentinghe con-
stant forgetting factor sequentialalgorithm of [4] in Section3.
Thenwe shawv how to derive optimal forgettingand how to em-
bedit in the sequentialnoise estimationalgorithmin Section4.
Section5 gives experimentalevaluationof the algorithmon two
differenttasks:the 5K Wall StreetJournal(WSJ)taskartificially
corruptedby additive noise, a digit-string and commandwords
recognitiontaskin a real car environment. This is followed by
conclusionin Section6.

2. THE VTS APPROACH

VectorTaylor seriesapproach3] is usedto compensaté thelog
spectradomainfor theeffectof additive noisein thelinearspectral
domain.Becauseoiseis additive in thelinearspectradomainthe
mismatchfunction will be nonlinearin the log spectraldomain.
Denotethenoisyspeechgleanspeechandnoisein thelog spectral
domainby z, z, andn respectrely. The mismatchfunctionin the
log spectradomaincanbewritten as

z = f(n,z) = z + log(1 + exp(n — x)). (1)

VTS s introducedo approximatehis nonlinearfunctionby a Tay-
lor seriesexpansionof orderi. We call this i** orderexpansion
fi(n, z). In anextensionof VTS in [5], f*(n, x) is approximated
by a minimum meansquareerror first orderpolynomial. We call
this polynomialg®(n, z). Thisfacilitatesparameteestimatiorand
featurecompensationThe basicapproachandits extensionin [5]
aresummarizedbelan. Details canbe foundin [3]-[5]. For the
following the noise probability densityfunction (pdf) p(n) is as-
sumedo be Gaussianandthecleanspeectpdf p(z) is aGaussian
mixture of size M.
1. Represenf(n, z) byits it orderVTs, f(n, ).
2. ApproximatetheVTS by alinearfunctiong®(n, z) = A‘z+
B'n + C* andobtainthe MMSE estimatesf A%, B?, and
C*. These2 stepsarerequiredto geta linear relation be-
tweenz, z, andn, sothatit becomegpossibleto expressthe
pdf of z in termsof z andn pdfs.



3. Initialize the noisepdf p(n) usingthefirst NV framesof an
utteranceTypically we useN = 10.

4. Derivep(z) givenp(z),
functiong*(n, z).

p(n), andthelinearapproximation

5. For eachtestutteranceefinethe estimateof thenoisemean
un (using sequentialor batch estimation),and derive the
corresponding(z).

6. Derive anMMSE estimatet given z, p(z), andp(z): £ =
7. Map & to thecepstrundomain. This mappingis doneasin
thetraditionalparallelmodelcombination(PMC) formula-
tion [1]
In what follows we are interestedin the noise meanestimation
(step5 above). Traditionally maximumlikelihood estimationin
the frameawork of the EM algorithmis used. Kim [4] appliedthe
sequentialapproachof [10, 11] to obtain sequentiakstimatesof
thenoisemean.A constanforgettingfactoris usedto track slowly
varying ervironment. We introduce sequentialnoise estimation
with optimal forgettingbasedon the framavork suggestedn [6].
Both sequentiaklgorithmswill be presentedn the following two
sections.

3. SEQUENTIAL ESTIMATION WITH CONSTANT
FORGETTING

In what follows we assumethat in the log spectraldomainclean
speechX is representedy a Gaussiammixture of size M with
meansandvariances{ ptzm, oom | 1 < m < M}, andthe noise
is Gaussiarwith meanu,, andvariances?2. As we assumecom-
ponentsareindependentve presentalgorithmsin scalarform and
repeatthe sameprocessingor every vector dimension. Also in
the following we assumehat the Taylor seriesorderi is known,
andhencedropthe dependencef the seriescoeficientsoni. In-
stead,sincethe seriescoeficients dependon the mixture compo-
nentindex, we call thesecoeficients A,,,, B.,, andC,, toindicate
dependencenm.

Thesequentiahlgorithmin [4] is obtainedby maximizingwith
respecto p thefollowing Kullback-Leibler(KL) measurg10, 11]

Qit1(pe, ) = Elog p(Ze1, Liva|p)| Zev1, pe], (D)

where Z; 1, is the sequencef obserationsand L;+1 is the se-
qguenceof mixtureindices. For the given Gaussiammixture model
Equation(2) reducego

M
Z (mlze41)er m(p)/02ms  (3)

R

1
Qit1(pt, p) = —5

where
erm(p) = 2, — By — Chn. (4)

Applying the stochasticapproximationalgorithm[10] to the ob-
jective function in Equation(3) leadsto the following sequential
algorithm. The recursionis shavn belav in a slightly modified
way to facilitate derivation of optimal forgettingin the next sec-
tion. The corvergenceof thisrecursiorto thetrue parametewralue
is guaranteedundersomesuitableregularity conditions,as dis-
cussedn [12].

Am/lzm -

P = it + esep1 Ky (5)

Kiy1 = (1 — E)Kt + €riy1 (6)

M

St41 = Z p(m|zi11)err1,m (1) Bm /02, (7)
m=1
M
reri = Y p(mlze1)Br, [otn, ®)
m=1

wherethe noise meanat time frame ¢ is denotedu:, pzm and
o2, aremeanandvarianceof mixture componenim of the clean
speech,anthe noisy speechrespectiely. z; is the noisy obsera-
tion at framet, andthe forgettingfactorp = 1 — ¢, wheree is a
non-ngjative constanwith valuelessthanl.

4. SEQUENTIAL ESTIMATION WITH OPTIMAL
FORGETTING

A reasonablavayto obtainoptimalforgettingis to try to maximize
themeasuren Equation(3) with respecto theforgettingfactoror
alternatvely with respecto . Bervenisteetal. [6] suggesteduch
anapproachoy recursvely minimizing the expectederrorin are-
cursive leastsquargRLS) setting.They usedtheoriginal recursion
to getanexpressiorfor therequiredderiatives.
Here,recursie maximizationof Equation(3) with respecto ¢

canbedoneusingthefollowing gradientalgorithm

et
€441 = [et + O:St+1Vt]5—: ©)

where sy 11 is definedin Equation(7), V; = 0u:/0¢, « is the
learningrate, ande™ ande~ are upperand lower boundsto be
discussedbelow.

Note that u; is an uncorventionalfunction of ¢, andalsoits
derivative. However, by differentiating Equations(5) and (6) ,
with respecto ¢, we canobtainrecursiongo calculatetherequired
derivatives. Therequiredrecursionsreshavn belor togethemith
recursiondor p and K modifiedto includetime dependeng. The
algorithmconsistsof Equationg(10)- (13) in additionto Equation
(9) for updatingthe forgettingfactor

Pl = pg + €t3t+1K;_|}1 (10)

Kir1 =1 —e)Ke + i1 (11)

Wipr = (1 — e)We + (re41 — Ke) (12)

Vier = Vil — K ire) +
8t+1Kf+11(1 - GtK;,-l1Wt+1) (13)
In the updateEquation(9), e~ ande™ are upperand lower

boundsto prevent the forgetting factor from taking too small or

too large values. Usually thereis no problemin settinge™ very

closeto zerobut e requiressomeadjustmentor obtainingbest
performance.Also the learningrate o canbe setto a very small

positive numberor a decreasingequence In ourimplementation
we foundthattakinga: = K; givesvery goodperformancendin

additiondoesnot requiremanualadjustmenbf the learningrate.

Accordingly Equation(9) is modifiedto

o+
€41 = [€r + Kep18e41 V)i, (14)

Thusthe final algorithm, asusedin our experiments,consistsof
Equationg10)-(14).



| Estimation ] SNR10 [ Variable |

No Comp. 46.6 51.6
Seql.0 15.6 27.2
Seq0.95 17.4 20.3
SeqOpt 15.8 20.3

Batch 15.9 26.4

Tablel: Word errorrates(%) for the baselinesystem(No Comp.)
anddifferentnoisemeanestimationalgorithms.

Convergenceof the algorithmin [6] was proved, undersuit-
ableconditions,in [7]. The proposedalgorithm, however, differs
from thatin [6, 7]. For example,the weightingby the posteriors
p(m|z:), which arefunctionsof the noisemeanandthe forgetting
factor complicateshe convergenceanalysis. Theoreticalconver-
genceanalysisof the proposedrecursionis outsidethe scopeof
this paper andexperimentalresultswill be usedto assesits per
formance.

5. EXPERIMENT AL RESULTS

The proposedalgorithmhasbeenevaluatedon two differentdata-
bases.Thefirst onecorrespondso a controlledevaluationon the
5K Wall StreetJournaltask corruptedby additive noise. The ob-
jective of this evaluationis to illustrate and study the behaior of
the proposedhoise compensatioriechniqueunderan exact addi-
tive noiseassumption.The secondevaluationis carriedout using
a databaseecordedn a moving car, andinvolve real background
noiseconditionsaswell asvarioussourceof distortionsin thecar
ernvironment.

5.1. Experimentson artificial noise

In this section,the proposedalgorithmis testedon the 5K Wall
StreetJournalask,corruptedby additive noise. Two typesof noise
areused;thefirst is white Gaussiamoiseat 10 dB SNR, andthe
seconds obtainedby mixing two white Gaussiamoisesat 10 and
5 dB SNRrespectiely. Themixing coeficientvarieslinearly from
zeroto onewithin the utterance. The SI-84 training set (WSJO0)
is usedto constructtree clusteredtriphone HMMs using the al-
gorithmin [13]. A 39 dimensionfeaturevector consistingof 12
MFCC, log enegy*, andtheir first andsecondorderderivativesis
usedby the system.A 5K lexicon andthe standardrigram model
provided by NIST areusedin all experiments. Decodingis per
formed using a dynamicone passdecoder{14]. The word error
ratefor cleanspeechs 4.7%. For bothtypesof noisetheerrorrate
increase$o 46.6%and51.6%respectiely. We performnoisecom-
pensatiorusingthe VTS methodoutlinedin Section2, basedna
1st order approximation. The cleanspeechmodelp(z) usedfor
noisecompensatiolis obtainedby estimatinga 64-Gaussiamix-
turemodelin the cepstraldomainon a subsebf the WSJOtraining
dataand mappingit into the log-spectraldomain. The batch,se-
guentialwith constanforgetting,andsequentialvith optimal for-
gettingaretestedor noisemeanestimation Forthealgorithmwith
optimalforgetting, e~ wassetto 0.001,while e* wasvaried. The
resultsaresummarizedn Tablel. Seq p standgor sequentiaks-
timationwith forgettingfactorp , and Seq Opt standgor optimal
forgettingwith e™ = 0.05.

1in orderto mapa featurevectorbackandforth betweerthe cepstrum
andlog-spectrundomain,CO (the first cepstralcoeficient) is usedasen-
ey coeficient (ratherthanthetraditionalshort-termenegy)

| e [ SNR10 [ Variable ]

0.05 15.8 20.3
0.10 16.5 19.6
0.15 171 20.5

Table 2: Word error rates(%) for optimal sequentialestimation
algorithmfor differentforgettingconstane™.

As expectedfor the constantnoisea forgetting factor of 1.0
(no forgetting)works best. Also a largeincreasan the word error
rateis obseredif theforgettingfactoris changedo 0.95. For the
variablenoiseaforgettingfactorof 0.95works substantiallybetter
than no forgetting. In both casesthe optimal algorithm leadsto
similar performanceo the bestmanuallytunedforgetting factor
Thisis importantin practicalsituationswhereervironmentrapidly
changegrom anutteranceo anotheror whenno sufiicient devel-
opmentdata,for handtuning of the forgettingfactor is available.
The resultsof the batchalgorithm,alsoshavn in the table, shav
thatit is highly desirableto use sequentiakstimation,especially
for varyingnoiseconditions.

To studythe sensitvity of the optimal algorithmto the value
of €™, we have run experimentsfor et = 0.1 and0.15. Note
thatgivenvalueof e indicatesa minimumvalueof the forgetting
factor pmin = 1 — e'. Resultsare shavn in Table2. We can
obsere thatthe performanceof the algorithmis slightly sensitve
to the value of e*. However, this sensitvity is not asprominent
comparedo thatof the constanforgettingalgorithmto theforget-
ting factor For example for thevariablenoise theerrorrateof the
constanforgettingalgorithmincreaseso 27.2%whenthe forget-
ting valuemovesfrom 0.95to 1.0. Ontheotherhandtheerrorrate
increase®nly to 20.5%whenet changegrom 0.1t0 0.15.

5.2. Experimentson realnoise

Ournoisecompensatioalgorithmis alsoevaluatedonanin-house
hands-freelatabas¢ CARVUI database)ecordednsidea moving
car Thedatawascollectedin Bell Labsareaundervariousdriving
conditions(highway/city roads)andnoiseenvironments(with and
withoutradio/musidn thebackground)About2/3rdof therecord-
ings containmusicor babblenoisein the background Simultane-
ousrecordingsveremadeusinga close-talkingmicrophoneanda
16-channebrrayof 1storderhypercardioidnicrophonesnounted
on the visor. A total of 56 spealkrs participatedin the datacol-
lection, including mary non-natve speakrsof AmericanEnglish.
Therecordedext is madeof variousmaterials,including phonet-
ically balancedTIMIT sentencessomedigits stringswith 1 to
7 digits, and about85 shortcommandwords, like “window up”,
“turn radiooff”, etc. Thespeechmaterialfrom 50 spealkrsis used
for training,andthe datafrom the 6 remainingspealersis usedfor
test,leadingto atotal of 4417 utterancesvailablefor trainingand
993 utterancedor test. The datais recordedat 24kHz sampling
rateandis down-sampledo 8kHz andfollowed by a MFCC fea-
ture extraction stepfor our speechrecognitionexperiments. The
recognitiontask consistsof commandwords and digits string of
unspecifiedength,modelledby a finite stategrammar In our ex-
perimentsdatafrom 2 channelnly areused.Thefirst oneis the
close-talkingmicrophong(CT), the secondoneis a singlechannel
from the microphonearray referredto as Hands-Freedata (HF)
henceforvard. TheaverageSNRis about21dBfor theCT channel
and8dB for the HF channel We shouldalsopoint out thatthe test
utterancesreusuallyvery short,rangingfrom 0.6 to 5.8 seconds
with anaveragedurationof 1.8 seconds.



| TestData || Corr | Sub | Del [ Ins| Err | S.Err|

CT 97.9| 14| 0.7 | 04| 25 6.3
HF 74.0| 104 | 155| 11| 271 | 44.8

Table 3: Recognitionresults(in %) of the close-talking(CT) mi-
crophonedataandHands-Fre€HF) datausingCT model.

[ TestData | Corr]| Sub| Del [ Ins| Err [ S.Err]
CT - Batch 978 15| 06| 04| 2.6 6.3
CT-Seq.095( 979 | 15| 06 | 04| 25 6.2
CT-SeqOpt || 98.0| 1.4 | 06 | 04| 2.4 | 6.0
HF - Batch 926 | 55| 20| 18| 9.2 21.7
HF-Seq.0.95| 920 | 53 | 2.7 | 22| 10.2| 23.1
HF-Seq.Opt || 922 | 54 | 25 | 21| 9.9 | 234

Table 4: Recognitionresults(in %) on compensate€T and HF
testdatausingCT model.

A setof triphonemodelsis built ontheCT trainingdatausinga
decisiontreestatetying algorithm[13] with aggressie tying given
thelimited amountof training data. For the noisecompensatiora
128-Gaussiamixturesmodelis trainedin the cepstraldomainon
thesameCT dataandthenmappedo thelog-spectraomain.The
decodeiis tunedon the CT testdata,leadingto a word error rate
of 2.5%anda stringerrorrateof 6.3%. Whenrecognizingthe HF
data,the error ratesdegradessignificantly mainly dueto a large
increasen Deletions,asindicatedon Table3.

The objective of our evaluationis to study whetherthe pro-
posednoisecompensatioralgorithm canimprove the recognition
of the HF data,without having to modify the recognitionsystem,
without unduly degrading recognitionperformanceon the clean
CT data. Recognitionresultsaregivenin Table4 after batch,se-
guentialcompensationvith fixed forgettingfactorand sequential
compensatiomwith optimal forgetting factor on both the CT and
HF testdata. This tableillustratesthat the proposedcompensa-
tion algorithmdoesnot affect the cleanspeech(CT) recognition,
andnostatisticadifferencds obseredbetweertheoriginalresults
on uncompensatedataandary of the compensatedata. This is
worth noticingsincemary noisecompensatioapproachegendto
degradeperformanceon cleanspeectdata.On the otherhand,for
thenoisychanne(HF), thenoisecompensatioapproacheadsto a
significanterrorreductioncomparedo the baselinesystemwhere
morethan60% reductionof theword errorrateis obsered, from
27.1%down to about10%. Again, no statisticaldifferencesreob-
sened betweerthe differentestimationmodefor the noisemean.
This canbe explainedsincethetestutterancesreon averagevery
short(1.8sec.)makingit difficult to tracknoisefluctuationsjf ary.
However, it illustratesthe effectivenessof the proposedapproach
asanoisecompensatiomlgorithm.We shouldalsoemphasiz¢hat
sincethe noise can be sequentiallyestimated frame after frame,
the proposedhoisecompensatiormpproachs well suitedfor real
time applicationsjs computationallyefficientanddoesnotrequire
anexplicit speech/non-speectetection.

6. CONCLUSION

We have presenteé methodfor optimizingtheforgettingfactorin
sequentiakstimationalgorithms. Traditionally the forgettingfac-
toris choserbasednadevelopmensetandnooptimality criterion
is involved. We appliedthe proposedmethodto sequentiahoise

meanestimationin a VTS setting. The proposedalgorithmwas
testedon a large vocahulary noisy speechrecognitiontask with
artificial noiseand a small vocahulary car databasevith real life
noise. The obtainedperformancas comparableo the bestmanu-
ally setforgettingfactor Dueto its sequentiahature thealgorithm
is well suitedto real-timeapplications. Futurework includesap-
plying thesameprincipleto othersequentiakchemesassequential
biasor affine transformatiorestimation.
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