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ABSTRACT

Mismatchis known to degradethe performanceof speechrecog-
nition systems.In real life applicationsmismatchis usuallynon-
stationary, anda generalway to compensatefor slowly time vary-
ing mismatchis by using sequentialalgorithmswith forgetting.
The choiceof forgetting factor is usually performedempirically
on somedevelopmentdata,andno optimality criterion is used.In
this paperwe introducea framework for obtainingoptimalforget-
ting factor. Theproposedmethodis appliedin conjunctionwith a
sequentialnoiseestimationalgorithm,but canbe extendedto se-
quentialbias or affine transformationestimation. Speechrecog-
nition experimentsconductedfirst undera controlledscenarioon
the5K Wall StreetJournaltaskcorruptedby differentnoisetypes,
thenundera real-life scenarioon speechrecordedin a noisy car
environmentvalidatetheproposedmethod.

1. INTR ODUCTION

In real world situationsthe input of speechrecognitionsystems
is often corruptedby differentsourcesof mismatch.This signifi-
cantly degradestheir performance,andmay limit the widespread
useof speechrecognitiontechnologyin practicalapplications.Ma-
ny techniqueswereproposedto improvetheperformanceof speech
recognitionin adverseenvironments.A goodreview of thesemeth-
odscanbe found in [2]. Mismatchsourceswhich arestationary
arerelatively easyto dealwith, andnon-stationarityoften makes
theproblemmoredifficult. However, many real life scenariosin-
cludetime varying mismatchsources,andthusdealingwith non-
stationarityis animportantpracticalproblem.

One approachto deal with non-stationarityis the useof se-
quentialestimationalgorithms. The ability to track slowly time
varyingenvironmentsis facilitatedbyusingaforgettingfactor(FF).
This framework wasused,for example,for theestimationof addi-
tive bias[9], framesynchronousstochasticmatching[8], andad-
ditive noiseestimationin the log spectraldomain[4]. In all these
situationsthechoiceof thevalueof theFF is crucial for goodper-
formance. Usually the bestvalueof the FF is empirically deter-
minedusinga developmenttestset,andno optimality criterion is
involved.

A techniqueto obtainoptimalstepsizefor the recursive least
square(RLS) algorithmwassuggestedin [6], andits convergence
wasanalyzedin [7]. Thebasicideais to recursively computethe
stepsize to minimize the expectedvalueof the error, and to de-
velopanefficient recursionfor thederivativesrequiredin themin-
imization by differentiatingthe original recursion. In this paper
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we apply thesameprinciple to optimizing the forgettingfactorin
sequentialnoisemeanestimationas given in [4]. Extensionsof
the sameframework to sequentialbias estimationor frame syn-
chronousstochasticmatchingwill beconsideredin futurework.

The approachof [4] is basedon applyingthe sequentialesti-
mationalgorithmof [10] in avectorTaylorseries(VTS) [3] frame-
work. VTS is a populartechniquefor noisecompensation.A Tay-
lor seriesexpansionof a nonlinearmismatchfunction is usedto
linearizethe problem. This facilitatesestimatingnoisestatistics,
andcleanspeechfeaturesfrom thenoisyspeech.

Thepaperis organizedasfollows. In Section2 we briefly re-
view the VTS approach.This is followed by presentingthe con-
stant forgetting factor sequentialalgorithm of [4] in Section3.
Thenwe show how to derive optimal forgettingandhow to em-
bed it in the sequentialnoiseestimationalgorithm in Section4.
Section5 givesexperimentalevaluationof the algorithmon two
differenttasks: the 5K Wall StreetJournal(WSJ)taskartificially
corruptedby additive noise, a digit-string and commandwords
recognitiontask in a real car environment. This is followed by
conclusionin Section6.

2. THE VTS APPROACH

VectorTaylor seriesapproach[3] is usedto compensatein thelog
spectraldomainfor theeffectof additivenoisein thelinearspectral
domain.Becausenoiseis additive in thelinearspectraldomainthe
mismatchfunction will be nonlinearin the log spectraldomain.
Denotethenoisyspeech,cleanspeech,andnoisein thelogspectral
domainby � , � , and � respectively. Themismatchfunction in the
log spectraldomaincanbewritten as
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VTS is introducedto approximatethisnonlinearfunctionby aTay-
lor seriesexpansionof order ' . We call this ')(+* orderexpansion�-,$� ��
���
 . In anextensionof VTS in [5],

�-,.� ��
���
 is approximated
by a minimum meansquareerror first orderpolynomial. We call
thispolynomial / ,�� ��
���
 . This facilitatesparameterestimationand
featurecompensation.Thebasicapproachandits extensionin [5]
aresummarizedbelow. Details canbe found in [3]-[5]. For the
following the noiseprobability densityfunction (pdf) 0 � �	
 is as-
sumedto beGaussian,andthecleanspeechpdf 0 � ��
 is aGaussian
mixtureof size 1 .

1. Represent
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 by its ' (+* orderVTS,
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2. ApproximatetheVTSbyalinearfunction / , � ��
$��
���2 , ���3 , �4�65 , andobtaintheMMSE estimatesof 2 , , 3 , , and

5 , . These2 stepsarerequiredto get a linear relationbe-
tween� , � , and � , sothatit becomespossibleto expressthe
pdf of � in termsof � and � pdfs.



3. Initialize thenoisepdf 0 � �7
 usingthefirst 8 framesof an
utterance.Typically we use89� �;:

.

4. Derive 0 � �<
 given 0 � ��
 , 0 � �7
 , andthelinearapproximation
function / , � ��
$��
 .

5. For eachtestutterancerefinetheestimateof thenoisemean=7> (using sequentialor batchestimation),and derive the
corresponding0 � �?
 .

6. Derive anMMSE estimate@� given � , 0 � �?
 , and 0 � ��
 : @�A�BDC ��E �GF .
7. Map @� to thecepstrumdomain.This mappingis doneasin

thetraditionalparallelmodelcombination(PMC) formula-
tion [1]

In what follows we are interestedin the noisemeanestimation
(step5 above). Traditionally, maximumlikelihoodestimationin
the framework of the EM algorithmis used. Kim [4] appliedthe
sequentialapproachof [10, 11] to obtain sequentialestimatesof
thenoisemean.A constantforgettingfactoris usedto trackslowly
varying environment. We introducesequentialnoiseestimation
with optimal forgettingbasedon the framework suggestedin [6].
Both sequentialalgorithmswill bepresentedin the following two
sections.

3. SEQUENTIAL ESTIMA TION WITH CONSTANT
FORGETTING

In what follows we assumethat in the log spectraldomainclean
speechH is representedby a Gaussianmixture of size 1 with
meansandvariancesI =7JLK 
�M	NJLK E �4OQPRO 1TS , andthe noise
is Gaussianwith mean=7> andvarianceM N> . As we assumecom-
ponentsareindependentwe presentalgorithmsin scalarform and
repeatthe sameprocessingfor every vector dimension. Also in
the following we assumethat the Taylor seriesorder ' is known,
andhencedrop thedependenceof theseriescoefficientson ' . In-
stead,sincethe seriescoefficientsdependon the mixture compo-
nentindex, wecall thesecoefficients 2 K ,

3 K , and 5 K to indicate
dependenceon

P
.

Thesequentialalgorithmin [4] is obtainedby maximizingwith
respectto = thefollowing Kullback-Leibler(KL) measure[10, 11]
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where
Y
(+V�W is the sequenceof observationsand [ (+V\W is the se-

quenceof mixture indices.For thegivenGaussianmixturemodel
Equation(2) reducesto
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where
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Applying the stochasticapproximationalgorithm [10] to the ob-
jective function in Equation(3) leadsto the following sequential
algorithm. The recursionis shown below in a slightly modified
way to facilitatederivation of optimal forgetting in the next sec-
tion. Theconvergenceof this recursionto thetrueparametervalue
is guaranteed,undersomesuitableregularity conditions,as dis-
cussedin [12].
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where the noisemeanat time frame r is denoted= ( , = JLK and
M Ni K aremeanandvarianceof mixturecomponent

P
of theclean

speech,andthenoisyspeechrespectively. � ( is thenoisyobserva-
tion at frame r , andthe forgettingfactor st� � !pk , where k is a
non-negative constantwith valuelessthan1.

4. SEQUENTIAL ESTIMA TION WITH OPTIMAL
FORGETTING

A reasonablewayto obtainoptimalforgettingis to try to maximize
themeasurein Equation(3) with respectto theforgettingfactoror
alternatively with respectto k . Benvenisteetal. [6] suggestedsuch
anapproachby recursively minimizing theexpectederror in a re-
cursiveleastsquare(RLS)setting.They usedtheoriginalrecursion
to getanexpressionfor therequiredderivatives.

Here,recursive maximizationof Equation(3) with respectto k
canbedoneusingthefollowing gradientalgorithm

k (ZV�W �
C k ( �vu�m (+V\W.w-( Fyx)zx�{ 
 (9)

where m (ZV�W is definedin Equation(7), w-( �}| = ( gh|�k , u is the
learningrate, and k V and k o are upperand lower boundsto be
discussedbelow.

Note that = ( is an unconventionalfunction of k , andalso its
derivative. However, by differentiatingEquations(5) and (6) ,
with respectto k , wecanobtainrecursionsto calculatetherequired
derivatives.Therequiredrecursionsareshown below togetherwith
recursionsfor = and n modifiedto includetime dependentk . The
algorithmconsistsof Equations(10)- (13) in additionto Equation
(9) for updatingtheforgettingfactor.
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In the updateEquation(9), k o and k V are upperand lower
boundsto prevent the forgetting factor from taking too small or
too large values. Usually thereis no problemin setting k o very
closeto zerobut k V requiressomeadjustmentfor obtainingbest
performance.Also the learningrate u canbe setto a very small
positive numberor a decreasingsequence. In our implementation
wefoundthattaking u ( � nD( givesverygoodperformanceandin
additiondoesnot requiremanualadjustmentof the learningrate.
Accordingly, Equation(9) is modifiedto

k (+V\W �
C k ( � n (+V\W m (+V\W.w-( F�x)zx�{ % (14)

Thusthe final algorithm,asusedin our experiments,consistsof
Equations(10)-(14).



Estimation SNR10 Variable

No Comp. 46.6 51.6
Seq1.0 15.6 27.2
Seq0.95 17.4 20.3
SeqOpt 15.8 20.3
Batch 15.9 26.4

Table1: Worderrorrates(%) for thebaselinesystem(No Comp.)
anddifferentnoisemeanestimationalgorithms.

Convergenceof the algorithm in [6] wasproved, undersuit-
ableconditions,in [7]. The proposedalgorithm,however, differs
from that in [6, 7]. For example,the weightingby the posteriors
0 �+P E � ( 
 , which arefunctionsof thenoisemeanandtheforgetting
factor, complicatesthe convergenceanalysis.Theoreticalconver-
genceanalysisof the proposedrecursionis outsidethe scopeof
this paper, andexperimentalresultswill beusedto assessits per-
formance.

5. EXPERIMENT AL RESULTS

Theproposedalgorithmhasbeenevaluatedon two differentdata-
bases.Thefirst onecorrespondsto a controlledevaluationon the
5K Wall StreetJournaltaskcorruptedby additive noise. The ob-
jective of this evaluationis to illustrateandstudythe behavior of
the proposednoisecompensationtechniqueunderan exact addi-
tive noiseassumption.Thesecondevaluationis carriedout using
a databaserecordedin a moving car, andinvolve realbackground
noiseconditionsaswell asvarioussourcesof distortionsin thecar
environment.

5.1. Experimentson artificial noise

In this section,the proposedalgorithm is testedon the 5K Wall
StreetJournaltask,corruptedby additivenoise.Two typesof noise
areused;thefirst is white Gaussiannoiseat 10 dB SNR,andthe
secondis obtainedby mixing two white Gaussiannoisesat 10and
5 dB SNRrespectively. Themixing coefficientvarieslinearlyfrom
zero to onewithin the utterance.The SI-84 training set (WSJ0)
is usedto constructtree clusteredtriphoneHMMs using the al-
gorithm in [13]. A 39 dimensionfeaturevectorconsistingof 12
MFCC, log energy1, andtheir first andsecondorderderivativesis
usedby thesystem.A 5K lexicon andthestandardtrigrammodel
provided by NIST areusedin all experiments.Decodingis per-
formedusinga dynamiconepassdecoder[14]. The word error
ratefor cleanspeechis 4.7%.For bothtypesof noisetheerrorrate
increasesto 46.6%and51.6%respectively. Weperformnoisecom-
pensationusingtheVTS methodoutlinedin Section2, basedon a
1st orderapproximation.The cleanspeechmodel 0 � ��
 usedfor
noisecompensationis obtainedby estimatinga 64-Gaussianmix-
turemodelin thecepstraldomainonasubsetof theWSJ0training
dataandmappingit into the log-spectraldomain. The batch,se-
quentialwith constantforgetting,andsequentialwith optimal for-
gettingaretestedfor noisemeanestimation.For thealgorithmwith
optimalforgetting, k o wassetto 0.001,while k V wasvaried.The
resultsaresummarizedin Table1. Seq s standsfor sequentiales-
timationwith forgettingfactor s , and Seq Opt standsfor optimal
forgettingwith k.VA� : % :?� .

1In orderto mapa featurevectorbackandforth betweenthecepstrum
andlog-spectrumdomain,C0 (the first cepstralcoefficient) is usedasen-
ergy coefficient (ratherthanthetraditionalshort-termenergy)

k V SNR10 Variable

0.05 15.8 20.3
0.10 16.5 19.6
0.15 17.1 20.5

Table 2: Word error rates(%) for optimal sequentialestimation
algorithmfor differentforgettingconstantk V .

As expectedfor the constantnoisea forgetting factor of 1.0
(no forgetting)worksbest.Also a largeincreasein theword error
rateis observed if theforgettingfactoris changedto 0.95. For the
variablenoisea forgettingfactorof 0.95workssubstantiallybetter
than no forgetting. In both casesthe optimal algorithm leadsto
similar performanceto the bestmanuallytunedforgetting factor.
This is importantin practicalsituationswhereenvironmentrapidly
changesfrom anutteranceto another, or whenno sufficient devel-
opmentdata,for handtuningof the forgettingfactor, is available.
The resultsof the batchalgorithm,alsoshown in the table,show
that it is highly desirableto usesequentialestimation,especially
for varyingnoiseconditions.

To studythe sensitivity of the optimal algorithmto the value
of k.V , we have run experimentsfor k.V9� : % � and

: % �L� . Note
thatgivenvalueof k V indicatesa minimumvalueof theforgetting
factor s K , > � � !�k V . Resultsare shown in Table 2. We can
observe that theperformanceof thealgorithmis slightly sensitive
to the valueof k.V . However, this sensitivity is not asprominent
comparedto thatof theconstantforgettingalgorithmto theforget-
ting factor. For example,for thevariablenoise,theerrorrateof the
constantforgettingalgorithmincreasesto 27.2%whenthe forget-
ting valuemovesfrom 0.95to 1.0.Ontheotherhandtheerrorrate
increasesonly to 20.5%when k V changesfrom 0.1 to 0.15.

5.2. Experimentson realnoise

Ournoisecompensationalgorithmis alsoevaluatedonanin-house
hands-freedatabase(CARVUI database)recordedinsideamoving
car. Thedatawascollectedin Bell Labsarea,undervariousdriving
conditions(highway/city roads)andnoiseenvironments(with and
withoutradio/musicin thebackground).About2/3rdof therecord-
ingscontainmusicor babblenoisein thebackground.Simultane-
ousrecordingsweremadeusinga close-talkingmicrophoneanda
16-channelarrayof 1storderhypercardioidmicrophonesmounted
on the visor. A total of 56 speakersparticipatedin the datacol-
lection,includingmany non-native speakersof AmericanEnglish.
Therecordedtext is madeof variousmaterials,includingphonet-
ically balancedTIMIT sentences,somedigits strings with 1 to
7 digits, andabout85 shortcommandwords, like “window up”,
“turn radiooff ”, etc.Thespeechmaterialfrom 50speakersis used
for training,andthedatafrom the6 remainingspeakersis usedfor
test,leadingto a total of 4417utterancesavailablefor trainingand
993 utterancesfor test. The datais recordedat 24kHz sampling
rateandis down-sampledto 8kHz andfollowed by a MFCC fea-
ture extractionstepfor our speechrecognitionexperiments.The
recognitiontaskconsistsof commandwords anddigits string of
unspecifiedlength,modelledby a finite stategrammar. In our ex-
periments,datafrom 2 channelsonly areused.Thefirst oneis the
close-talkingmicrophone(CT), thesecondoneis a singlechannel
from the microphonearray, referredto as Hands-Freedata(HF)
henceforward.TheaverageSNRis about21dBfor theCT channel
and8dB for theHF channel.We shouldalsopoint out thatthetest
utterancesareusuallyvery short,rangingfrom 0.6 to 5.8 seconds
with anaveragedurationof 1.8seconds.



TestData Corr Sub Del Ins Err S.Err

CT 97.9 1.4 0.7 0.4 2.5 6.3
HF 74.0 10.4 15.5 1.1 27.1 44.8

Table3: Recognitionresults(in %) of theclose-talking(CT) mi-
crophonedataandHands-Free(HF) datausingCT model.

TestData Corr Sub Del Ins Err S.Err

CT - Batch 97.8 1.5 0.6 0.4 2.6 6.3
CT - Seq.0.95 97.9 1.5 0.6 0.4 2.5 6.2
CT - Seq.Opt 98.0 1.4 0.6 0.4 2.4 6.0

HF - Batch 92.6 5.5 2.0 1.8 9.2 21.7
HF - Seq.0.95 92.0 5.3 2.7 2.2 10.2 23.1
HF - Seq.Opt 92.2 5.4 2.5 2.1 9.9 23.4

Table4: Recognitionresults(in %) on compensatedCT andHF
testdatausingCT model.

A setof triphonemodelsis built ontheCT trainingdatausinga
decisiontreestatetying algorithm[13] with aggressive tying given
thelimited amountof trainingdata.For thenoisecompensation,a
128-Gaussianmixturesmodelis trainedin thecepstraldomainon
thesameCT dataandthenmappedto thelog-spectraldomain.The
decoderis tunedon theCT testdata,leadingto a word error rate
of 2.5%anda stringerrorrateof 6.3%.WhenrecognizingtheHF
data,the error ratesdegradessignificantly, mainly dueto a large
increasein Deletions,asindicatedonTable3.

The objective of our evaluationis to study whetherthe pro-
posednoisecompensationalgorithmcanimprove the recognition
of theHF data,without having to modify the recognitionsystem,
without unduly degradingrecognitionperformanceon the clean
CT data. Recognitionresultsaregiven in Table4 after batch,se-
quentialcompensationwith fixed forgettingfactorandsequential
compensationwith optimal forgetting factoron both the CT and
HF test data. This table illustratesthat the proposedcompensa-
tion algorithmdoesnot affect the cleanspeech(CT) recognition,
andnostatisticaldifferenceisobservedbetweentheoriginalresults
on uncompensateddataandany of thecompensateddata. This is
worth noticingsincemany noisecompensationapproachestendto
degradeperformanceon cleanspeechdata.On theotherhand,for
thenoisychannel(HF), thenoisecompensationapproachleadsto a
significanterrorreductioncomparedto thebaselinesystem,where
morethan60%reductionof theword error rateis observed, from
27.1%down to about10%.Again,nostatisticaldifferencesareob-
servedbetweenthedifferentestimationmodefor thenoisemean.
This canbeexplainedsincethetestutterancesareon averagevery
short(1.8sec.),makingit difficult to tracknoisefluctuations,if any.
However, it illustratesthe effectivenessof the proposedapproach
asanoisecompensationalgorithm.Weshouldalsoemphasizethat
sincethe noisecanbe sequentiallyestimated,frameafter frame,
the proposednoisecompensationapproachis well suitedfor real
timeapplications,is computationallyefficientanddoesnot require
anexplicit speech/non-speechdetection.

6. CONCLUSION

Wehave presentedamethodfor optimizingtheforgettingfactorin
sequentialestimationalgorithms.Traditionally the forgettingfac-
tor ischosenbasedonadevelopmentsetandnooptimalitycriterion
is involved. We appliedthe proposedmethodto sequentialnoise

meanestimationin a VTS setting. The proposedalgorithmwas
testedon a large vocabulary noisy speechrecognitiontask with
artificial noiseanda small vocabulary car databasewith real life
noise.Theobtainedperformanceis comparableto thebestmanu-
ally setforgettingfactor. Dueto its sequentialnature,thealgorithm
is well suitedto real-timeapplications.Futurework includesap-
plying thesameprincipleto othersequentialschemes,assequential
biasor affine transformationestimation.
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