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ABSTRACT

The question addressed in this paper is whether and under

what conditions blind source separation is possible using
only second-order statistics. It is well known that for sta-
tionary, i.i.d. sources the answer is negative due to the
inherent unitary matrix ambiguity of output second-order
information. It is shown in this paper however, that if the
sources’ power is allowed to vary with time, unique identi-
fiability can be achieved without resorting to higher order
statistics. In many applications the sources’ power does
change with time (e.g., speech or fading communication
signals), and therefore the result has practical relevance.
A novel second-order source separation method is proposed
based on a generalized eigen-decomposition of appropriate
correlation matrices and the identifiability conditions are
investigated. Asymptotic performance results for the out-
put SIR are developed.

1. INTRODUCTION

The use of sensor array to separate a desired signal from un-
wanted interferers has received considerable attention. Re-
cently, there has been a renewed interest in it driven by
applications in wireless and cellular communications. The
classical assumption to simplify the problem that the ar-
ray manifold is parameterized by the direction of arrivals
(DOAS) is less useful for communication applications due to
multipath and angle spread effects. Instead, a more generic
mizing matriz formulation is preferred.

When training data are available, the problem is simpli-
fied to standard MMSE filtering concepts. In the absence
of training data however, the statistical characteristics of
the received signal have to be exploited to achieve blind sig-
nal separation. For stationary sources, the common blind
approaches are (explicitly or implicitly) based on the sig-
nal’s higher (than second) order statistics (HOS) (e.g., [3])
and assumes non-Gaussian signals. The question of whether
second-order based blind methods are applicable is still a
valid one, considering the success of such methods in the
case of SIMO systems (e.g., [8]). Second-order methods
may have the added benefit of requiring shorter data records
than HOS-based methods.

When the sources are stationary, ii.d. (in space and
time) it is well known that second-order methods suffer
from a unitary matrix ambiguity and cannot successfully
separate the signals [1]. If the i.i.d. assumption (in time)
is relaxed, it was shown in [2] that second-order based so-
lutions are possible, by exploiting information present in
correlation matrices of non-zero lags.

In this paper we maintain the i.i.d assumption and exploit
certain non-stationarities in the source signals to achieve a
second-order separation method. A typical non-stationarity
of signals may arise from possible variations in the sources’
power. Examples include communication signals propagat-
ing through a fading channel. Our method is based on gen-
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eralized eigenanalysis of two correlation matrices obtained
at different time periods. Under certain conditions it di-
rectly yields the zero-forcing solution.

The exploitation of nonstationarities of the signals in or-
der to separate them attracts a lot interest recently. Re-
lated work includes [10], which dealt with “gated signals”,
i.e., situations where the signal of interest is present in one
observation interval but absent in another. [7] generalized
that work to the case where the signal of interest changes
its power from one level to another. Both approaches as-
sume stationary interferers and propose subspace solutions.
The method of [7] uses generalized eigenanalysis and in that
respect is closer to our approach. Our method however, con-
siders the more general case where the interferers as well as
the signal of interest are nonstationary. In that case it turns
out that the subspace solution has a different interpretation
from that in [7]. The same signal model has also been stud-
ied in [5] where an algorithm based on maximum-likelihood
criterion was proposed. Other related work include [9, 11]
which dealt with the problem of detecting a CDMA signal
using the data obtained before and after the onset of its
transmission. The exploitation of non-stationarities in the
source signals in order to separate them is not entirely new.

2. PROBLEM STATEMENT

We consider a narrowband mixing problem of the form
x(n) = As(n) , (1)

where the received vector x(n) consists of the output of L
sensors, the source vector s(n) = [s1(n),...,sx(n)]’ con-
tains K sources, and A is the L x K mixing matrix. Due to
the lack of space only results for the noiseless case will be
presented here. We focus on the case where the sources are
non-stationary. Two observation intervals are taken into
account,

Asl(n), n:Ml,...,N1+M1—1,

x1(n)
ASz(’n,), n=M2,...,N2+M2—1, (2)

Xz(n)

where x1(n), x2(n), s1(n), and s2(n) are segments of x(n)
and s(n) in the two intervals, respectively. We assume that
in each interval the sources are stationary but the sources’
power may be different resulting in a second-order non-
stationarity. Notice that the array response is assumed un-
changed through the observation period. We further make
the following assumptions with regard to (2):

(AS1) L > K (no less sensors than sources);

(AS2) si(n) and sz(n) are spatially independent, tempo-
rally i.i.d., zero-mean;

(AS3) The mixing matrix A is full column-rank.

Given the model (2) and the above assumptions, second-
order information of the output signal is limited to the two



correlation matrices,

R: = E[xi(n)x¥(n)] AD; AT 3)
R: = E[x:(n)xf(n)] = AD,A"

where Dy = diag{o?y,...,0%1}, D2 = diag{ols,-..,0%5},
and o7 and o2, are the power of s;(n) in the two intervals,
respectively. If furthermore, the sources are Gaussian, no
further output statistical information can be obtained.

3. SEPARATION OF NON-STATIONARY
SOURCES USING SECOND-ORDER
STATISTICS

3.1. A Zero-forcing Solution

Let us consider the generalized eigendecomposition of
(R1,R2), i.e., to find (A, g) such that

(R1 — AR2)g=0. (4)

Notice that R; and Ry share identical signal and noise
subspace because of their structure (see (3)). The L — K
noise eigenvectors satisfy (4) as they are orthogonal to the
columns of A. Therefore, they are also the generalized
eigenvectors of (Ri,R) with arbitrary eigenvalues. Of
course, if L = K no noise eigenvectors exist.

Of more interest are the other K generalized eigenvectors
that lie in the signal subspace. It will be instructive to first
make clear the following notation. Let a; be the ith column
of A (i.e., A = [ai,...,ax]) representing the signature of
the ¢th source. Let further A; = [al, PR : VAL TN : T N aK]
be the collection of the signatures of interferers to the ith
source. The column space of A; is the interference subspace
to the sth source. Then define IT; = A;(AFA)"'AF to
be the projection matrix onto the interference subspace and
II;- =1 —1II; to be the projection matrix onto the orthog-
onal subspace correspondingly.

With these conventions we are ready to present our first
result.

Proposition 1 Let R1 and R be given by (8) and assume
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1,...,Kand k#1.

o2 IIta, . .
Then \; = 5+, g = ﬁ , 1=1,..., K, satisfy (4).
m P
Before proceeding to the proof, we want to indicate that
g; falls into the orthogonal complement of the interference
subspace to the ith source. It can be easily verified that®.
gla, = 6(i — k). Therefore, g; represents a zero-forcing
beamformer for the ith source, g7 x(n) = gf > arsk(n) =
si(n).
Proof: Rewrite (4) as Efil(afl —Xoh)aa’g =0 . Using
the fact that af’g; = 0, Vk # i, then we obtain (ai21 -
)\iaizz)aiaf gi = 0 which is satisfied with \; = ¢}, /0. O

A remark on the second-order source separation method
based on Proposition 1 is appropriate on the topic of dis-
tinguishing those zero-forcing eigenvectores (one for each
source) from the noise eigenvectors. It is impossible to
resort to the eigenvalues as is generally used because the
eigenvalues corresponding to the noise eigenvectors can as-
sume any value. This can be achieved by noting that zero-
forcing eigenvectors are in the signal subspace of the re-
ceived signal while the noise eigenvectors are in the noise
subspace. Therefore, the distances of the generalized eigen-
vectors to the two orthogonal complementary subspaces
provides information to distinguish them.

Vk, | =

)

i

1§(-) is the Kronecker delta function.

3.2. More on Identifiability

Proposition 1 exploits the sources’ power change in order
to separate them. It also states the identifiability condition
that no two sources change their power by the same pro-
portion (see (AS 4)). It is natural therefore to investigate
what happens when two or more sources violate (AS 4).
The answer is given by the following result.

Proposition 2 Let without loss of generality the first
K' sources wiolate (AS 4), i.e., onjop = A 1 =
1,....,K" , K < K. Then X\ is a generalized
esigenvalue of (Ri,Rz2) with multiplicity K' and the
corresponding eigenvectors lie in the space spanned by
(Mg .xan,..., Oggcac}, where Mg e = 1 —
Mgii1.x and Mgip.x = AK' +1 @ K)JA"(K' +1 :
K)A(K'+1: K)|"'A”(K'+1 : K) is the projection matriz
onto the subspace {ag/t1,...,aKx}. O

The proof is along the same lines as that of Propostion 1.

Propositon 2 indicates that a group of sources with pro-
portionally equal power change can be separated from the
rest, but cannot be separated from each other. On the other
hand the existence of such a group does not inhibit the sep-
aration of other sources, the associated eigenvalues of which
have multiplicity one.

A special case of the above remark is the situation where
a group of L sources remains stationary (i.e., o /o7 = 1)
while the rest change their power. The method can sepa-
rate the non-stationary sources but not the stationary ones.
Finally, the case where all but one source remain stationary
is the setup addressed in [10, 7, 9, 11].

4. PERFORMANCE ANALYSIS

In this section, we are going to analyze the performance
of the proposed method when the two correlation matrics
can only be estimated from average of finite samples. We
will use the output siganl-to-interference-ratio (SIR) as the
figure of merit.

Let wus consider the sample average

& 1 Ni—-Mi+1 H 7 1 Ng—
Ry = - E Rg = <1
1= 77 =M, x1(n)xy’ (), Ro = §7 neMs

estimates
xg(n)x& (n),
and the associated generalized eigenvectors g; and eigenval-

ues A;, t = 1,..., L. According the Proposition 1, the ith
source is extracted by filtering the received signal with a

vector matched to g;, i.e., §;(n) = g x(n). Then the out-

put SIR of the ¢th source in the first interval is given by
ofiai E[gig" |a;

Zj;éi o} al'E[g:g! |a;

SIR;; = (5)

Similarly, we can define SIR;2 for the second interval. SIR;1
and SIR;2 may be different due to the power change of the
sources. However, the asymptotic performance solely de-
pends on the correlation matrix E[gigf{ ], hence the proce-
dure and results of the analysis will apply to both SIR;;
and SIRQ.

Suppose the estimate g; deviates from the real g; by a
small zero-mean error Ag; = g; — g;, due to imperfect es-
timation. Then substituting g; = g; + Ag; into (5), we
get
01'21{1 + afIE[AglAng]al} (6)
ZJ.# o;,alE[Ag;Aglla;

where we have used the fact that Ag; is zero-mean and
gfa; = §(i — 7). In order to evaluate (6) the expression for

the correlation matrix E[Ag;Agf] is necessary. Next, we
employ perturbation analysis tools to develop it.

Besides Agi, let us further deﬁpe the errors AR = f{l -
Ri, AR2> = Ro—Ry and AN\; = A\; — ;. Applying standard

SIR;1 =




perturbation techniques on (4), we obtain the following first
order approximations:

_ 8 (AR1 — MiAR)g;

AN
' g/ Rogi

(7)

and
(R1 — AMiR2)Ag; = (ANMR2 — ARy + MAR2)g: - (8)

Since no additive noise was assumed, R; and R;, i = 1,2,
share identical noise subspaces (if the sources are sufficient
rich). Therefore the noise eigenvectors can be perfectly es-
timated from finite data and (8) only applies to g; in the
signal subspace. Hence Ag; is also in the signal subspace
and (8) can be solved using (R1 — AR2)" where t denotes
the pseudo-inverse.

A more useful version of (7) and (8) can be obtained if
we apply the expressions of \; and g; from Proposition 1,
as well as the definitions of AR; and AR, and the model
equations (2).

Lemma 1 (7) and (8) can be expressed as
1 ,.. N
ANi = = (65 — Nioh) | 9)
47

and

Agi = (Ri—\R2)[(67 — \idh)a; — A(Fi1 — Aifi2)] , (10)

where  &51 = Nil Ziv;z;h_l [sit(m)|?,  fi =
Nil Z:;Lﬁll_l si1(n)s1(n) denote the sample source vari-

ance and cross-correlation vector respectively; &;2, Ti2 are
defined similarly. O

The proof is straightforward though tedious.

According to (10), E[Ag;Ag/] has several auto- and
cross-correlation terms to be evaluated. To avoid unneces-
sary complication and make the results conceptually clear,
we assume that there is no overlap between the two obser-
vation intervals of s(n) so that s1(n) and s2(n) are indepen-
dent. We further assume that s;(n) and sz(n) are Gaussian.
Then the following results can be obtained.

Lemma 2 If the sources are independent (AS2) and

Gaussian, and the two segments of each source do not over-
4

lap, then E[&ﬁ] = @1+ Nil)o'?l; E[&?z] = 1+ ng)o'iz;
E[67,6%] = ool Efndh] = (1 + Nll)oflei, Elfi16%)] =
ohopei, Elfi2671] = ofiohei, Blfi263] = (1 + N%)‘T?zei;
E[f‘“f‘g] = ‘]vall D, + (1 =+ Nll)()';lleieiT, E[f‘lzf‘g] = (;V’Zl D> +
1+ J\%)afzeieiT, E[#ntf] = chobeiel, where e, =
[0,...,0,1,0,...,0]% has 1 in the 3" position and D1 =
diag{cli,...,0%}, Dy = diag{cls,...,0%s}. m|

The proof of Lemma 2 is also a straightforward procedure if
we apply the Gaussian and independence assumption. Sim-
ilar but more complicated expressions can be derived for the
non-Gaussian case.

Finally, with the two lemmas, we have

2
E[AgiAgZH] = %(fﬁ — AiRz)T(Rl + MRy — 20'2'213@'87;}1)
(R1 — MRo)' . (11)

In (11), we set N1 = N2 = N for convenience. Substituting
(11) into (6), we can see that the SIR increases linearly with
respect to the data length. This effect will be verified by
the simulations as explained next.

5. MODEL EXTENSION AND PARAFAC
ANALYSIS

Before going to simulation results, we want to indicate an
interesting extension of the signal model of (2). To exploit
the nonstationarity of the source signals, (2) uses the data
of two observation intervals. It is natural then to think of
using more. Suppose that P intervals are considered,

xp(n) = Asp(n), n=Mp,...,.Ny+ M, —1, p= 1,({32,)
where x,(n) and s,(n), p = 1,..., P are the segments of
x(n) and s(n) in the pth interval. Again, s,(n)’s are as-
sumed spatially independent, temporally i.i.d., zero-mean
stationary processes with different second-order statistics
(due to power variation of each source signals). Then the
second-order statistical information is provided by the P
correlation matrices of the output signal,

R, = E[xp(n)xf(n)] = ADpAH , p=1,...,P, (13)

where D, = diag{o7,,...,0%,} and o}, is the power of the
ith source in the pth interval. a?p should be different for
different ¢ and p, according to the nonstationarity assump-
tion. The question now is how to obtain s,(n)’s based on
(13).

Let us write (12) down to the scalar form

K

Pigp = QikOlhy , Hi=1,..., K, p=1,...,P, (14)
k=1

where rij;, is the (¢, j)th element of Ry, i is the (4, k)th el-
ement of A, and o}, is the kth diagonal element of D,. (14)
is a K-component trilinear decomposition of the three-way
M x M x P array with typical element z;j,, being special
in that there are two dimensions sharing the same entry
set. Trilinear decomposition is usually referred as PAR-
Allel FACtor (PARAFAC) analysis, a tool recently intro-
duced into the communications and signal processing fields
[6]. Under some mild conditions, the PARAFAC model is
unique, i.e., A and D, can be uniquely identified (modulo
inherent permutation and scalar of the columns) from R,.
The identifiability is actually a corollary of uniqueness of
low-rank decomposition of three-way arrays.

To solve the PARAFAC model, the alternating least-
square (ALS) fitting algorithm is usually used. The ALS
algorithm updates one of the estimate A or D (D =
[oip]KxP]), each at a time given the initial estimate of
the other, in the sense of least-square fitting to the data
[rijp]mMxnrxp. It resorts to the symmetry of the PARAFAC
model of (14) to implement the round-robin updating.

Once the estimate of A is available, the estimation of
sp(n) from (12) becomes a simple LS-inverse problem.

6. SIMULATIONS

The simulation is performed in the scenario of using
2 antennas to separate 2 BPSK signals transmitted
through Rayleigh fading channels with maximum normal-

ized Doppler frequency of %. The steering (mixing)
matrix of the antenna array is fixed, A = [0.30.87; 0.660.15].
The noise is AWGN.

A block of length IV of data are used in each experiment.
They are broken into two equal length non-overlapping seg-
ments to be used in the algorithm. Fig. 1 and Fig. 2 show
the output SINR versus the data length N for the two pieces
of the two signals. Fig. 1 is the noiseless case and Fig. 2
the noisy. Comparing the output SINR of each source in
each piece with their respective input SINR (given under



the plots), we can see the excellent performance of the pro-
posed technique in interference cancellation. Fig. 1 also
shows the consistency of the experiment and theoretic re-
sults; while in Fig. 2 the noisy results is compared with the
noiseless ones (copied from Fig. 1) to show the impact of the
presence of noise on the output SINR. This result is more
clearly shown in Fig. 3 which gives the output SINR versus
input SNR for each sources in each interval. The output
SINR, there is obtained when 400 data points are used so
that the asymptotic (with respect to IN) value is achieved.
We can see that the output SINR linearly increases with
the input SNR.

7. CONCLUSIONS

In this work, a method of blind source separation using only
second-order statistics is proposed. This method assumes
power variations of the sources to provide identifiability.
Also, the method provides zero-forcing beamforming vec-
tors directly in a single step. A limitation of the proposed
approach is its inability to handle additive noise. Adapta-
tions of this framework to the noisy case is an interesting
future research topic.
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