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ABSTRACT

In thispaper, weproposethepeakof thepolynomialWigner-Ville
distribution as an instantaneousfrequency estimatorfor polyno-
mial frequency modulatedsignalsin thepresenceof multiplicative
andadditive complex Gaussianprocesses.We show that this esti-
matoris unbiasedandwe derive ananalyticexpressionof its
asymptoticvariance. Simulationresults,basedon Monte-Carlo
realisations,arepresentedin orderto show thevalidity of thethe-
oreticalderivations.

1. INTRODUCTION

In many engineeringapplicationssuchasradar, sonar, telecommu-
nicationsandenginediagnosis,thesignalsunderconsiderationare
known to benon-stationary, i.e., their spectralcontentsvary with
time. Time-frequency analysis,amongothermethods,was pro-
posedto dealwith suchsignals[1]. Time-frequency distributions
(TFDs)arenaturalextensionsof theFouriertransform.They map
a onedimensionalsignal,function of time only, to a two dimen-
sionalquantity, functionof time andfrequency.

A conceptintimatelyrelatedto time-frequency distributionsis
thatof instantaneousfrequency (IF) [2]. In many situations,theIF
characterisesimportantphysicalparametersof thesignal.For this,
it is of greatimportanceto have effective techniquesto estimate
theinstantaneousfrequency of a givensignal.

DiverseIF estimationmethodshave beendevelopedfor con-
stant, or slowly varying, amplitudesfrequency modulated(FM)
signalsembeddedin additive noise. Someof thesemethodsare
parametricandsomearenon-parametric.In general,parametric
methodsusea signalmodelandthe goal, in this case,is to esti-
matesomeparametersin order to obtain the IF [3, 4, 5]. Non-
parametricmethods,on the otherhand,usemethodsthat do not
requirefull knowledgeof thesignal. A well-known classof non-
parametricmethods,for IF estimation,is basedon time-frequency
distributionsof thesignal[6, 7].

In practice,in additionto theadditive noise,thesignalunder
considerationmaybesubjectedto arandom amplitudemodulation
which behavesasmultiplicative noise[8]. Thus,it is importantto
have suitableIF estimationmethodsfor suchsignals. In [9], we
proposedthepeakof theWigner-Ville asanIF estimatorfor linear
FM signalscorruptedby multiplicative andadditive noise.In this
paper, weextendthis resultto thecaseof higher-orderpolynomial

FM signals.Theestimatorconsideredhereis basedonthepeakof
thepolynomialWigner-Ville distributions(PWVD) [10]. Theuse
of this particularclassof time-frequency distributionsstemsfrom
the fact that the PWVD yields maximumenergy concentration,
aboutthesignalIF, for polynomialFM signals.

In particular, wederive analyticalexpressionsfor thebiasand
asymptoticvarianceof the IF estimatorin thecaseof polynomial
FM signalscorruptedby multiplicative andadditive complex cir-
cular Gaussiannoise. We presentsomeexamples,usingMonte-
Carlo simulations,to show the validity of the derived theoretical
results.

The paperis organisedas follows. In Sections2 and3, we
definetheproblemmathematicallyandgive a brief review of the
PWVD. In Section4, we derive the analyticalexpressionsof the
biasandvariancefor theestimator. Someexamplesarepresented
in Section5; whereas,Section6 concludesthepaper.

2. PROBLEM STATEMENT

Let theobservedsignal, ������� , begivenby�������
	��
������������������������� (1)

wherethe stationaryprocesses������� and ������� are assumedcir-
cular complex Gaussianand independentwith meansand vari-
ancesgiven by ��������� �� � and �"!#�����$ � respectively. The noise-
less polynomial FM signal �%����� is given by �������&	('*),+.-0/21�	354#6�798;:=<>@?�A�B > � >*C whereB > arerealcoefficientsand D is theor-
derof thepolynomialphase.Note that thederivationbelow does
not requirethe knowledgeof the coefficients B > ; it only assumes
thesignalto beapolynomialFM one.

Our primary interestis in estimatingthe instantaneousfre-
quency of thesignal ������� definedasE > �����F	HGIKJMLON �����L � 	 354#6QP;8 <R >@?
S�T B > � >2U�SOV

By writing the non-zeromeanmultiplicative noise ������� as�������W	X���Y�Y�[Z\����� , with �WZ.����� beinga zero-meancomplex
circularGaussiannoiseprocesswith variance� �� , wecanre-write
theexpressionin Equation(1) as�������]	 � � �����������^� Z ����� �_���������`�������	 a � � ab�c' )�-ed�f_gih�+O-0/�1�1 �^� S ����� (2)
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In Equation(2), jlk g 	nm*obp U�Srq Imag- k g 1

Real- k g 1.s and � S �����t	� Z �����u�%�������v�w������� is a zero-meancircular complex Gaussian
noisewith varianceequalto � �$�x 	y�2� �� �z���$ � . Note that the
instantaneousfrequenciesof the signals '*)_-ed�f_glh�+.-0/21�1 and '*),+.-0/21
areexactly thesame,i.e.,E > �����F	 GIKJ � L � j k g � N �������L � 	 GIKJ � LON �����L �X{

We observe that, in this case,the problemof estimatingthe
IF of thepolynomialFM signal ������� affectedby multiplicativeand
additivenoiseis equivalentto thatof estimatingtheIF of aconstant
amplitudepolynomialFM signal, � S �����|	}a ���Qa%�#'*)�-0d f gih�+.-0/21�1
(having the sameIF law as ������� ), but affectedby additive noise
only.

3. PROPOSED ESTIMATOR

The polynomialWigner-Ville distribution wasdesignedto repre-
sent,in thetime-frequency plane,polynomialFM signalsasarow
of deltafunctionsaboutthesignalIF. Thisclassof time-frequency
distributionsis definedas[10]~ -��*1� ���5� E ��	t�Y�U � �*�,�� >@? S �%������� >�� ���O�b������� U�>2� ��' U )5���9��� L � (3)	 ���U �&� -��*1� ���,� � � �_' U )5���\�_� L � (4)

where� isanevenintegerwhichindicatestheorderof non-linearity
of thePWVD. Thecoefficients � > and � U�> ( T 	 G � I � {c{_{ � �\� I ) are
calculatedsothatthePWVD is realandequalto~ -��*1� �2�
� E ��	�� �c� � EQ�`E > �������,�
for signalsgivenby ��������	 3,4%6 7 8 : <>@?�A B > � >*C (i.e., polynomial
FM signals).Therealnessof thePWVD implies that � > 	 � � U�> .
NotethattheWigner-Ville distribution(WVD) is a memberof the
PWVDsclasswith parameters� 	 I

and � S 	 � � U�S 	�! { � . Full
detailsof thedesignproceduremaybefoundin [10].

Thekernelof aparticularPWVD,referredto asthesixthorder
PWVD, is givenby [10]

� -���1� ���5� E ��	 � �������^! { � I � �F�O�9��� � ! { � I � � �¡ � �������^! { ¢b� � �F�O�9��� � ! { ¢9� � � �¡ � ����� � ! { £9¢ � �F�O�9������! { £\¢ � � � { (5)

This distribution is optimal, in the senseof maximumsignal
energy concentrationaroundthesignalIF, for linear, quadraticand
cubic FM signals �%�����W	 354#6�7\8;:=<>@?�A�B > � >*C with D¥¤n¦ . In
Figure1, we displaythis time-frequency for a noiselessquadratic
FM signal. Observe that the peaksof the distribution reveal the
IF law of thesignal.In thepresenceof complex circularGaussian
multiplicative andadditive noises,asin Equation(1), thesixth or-
derPWVD distribution canstill reveal theIF of thesignal,but its
performanceis degraded. Figure2 illustratesthis point. In this
lastfigure,we chose( a ���§a�	=¨O��� �� 	 G ) for theGaussianmul-
tiplicative noiseand( !O��� �$ 	 G ) for the Gaussianadditive one.

In the next section,we will consideran arbitraryorderpoly-
nomial FM signalcorruptedby multiplicative andadditive com-
plex Gaussiannoisesand usethe peakof the appropriateorder
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Fig. 1. ThesixthorderPWVD of anoiselessquadraticFM signal
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Fig. 2. ThesixthorderPWVD of a quadraticFM signalcorrupted
by multiplicative andadditive noises.

PWVD to estimatethesignalIF. We, then,evaluatethestatistical
performanceof theestimator. Precisely, we will derive analytical
expressionsof thebiasandvarianceof suchanestimator.

4. BIAS AND VARIANCE OF THE IF ESTIMATOR

ConsidertheIF estimationof thesignal ©�ª�«�¬ in Equation(1). From
the resultsin Section2, we know that this problemis equivalent
to the estimationof the IF of ©\­_ª�«�¬¯®±° ²�³§°�´%µ,¶_·e¸�¹_º¼»�½.·0¾2¿�¿ in
Equation(2) (recallthat ©%ª�«�¬ and © ­ ª�«�¬ havethesameIF, asshown
in Section2). We can,thus,statethediscrete-timeversionof the
problemasfollows.

Considerthediscrete-timeversionof themodelin Equation(2),
namely,À ª2Á�Âr¬
®�© ­ ª2Á�Âr¬�Ã�Ä ­ ª2Á�Âr¬,Å ÁÆ®�Ç#Å_ÈcÈcÈ5Å�ÉËÊ&Ì9È (6)

where ©\­�ª2Á�Âl¬ is thepolynomialFM signalwhoseIF is to bees-
timated(and whoseamplitudeis equalto ° ² ³ ° ) and Ä ­ ª2Á�Âr¬ is
a zero-meancircularcomplex Gaussiannoisewith varianceequal
to Í�ÎÏ�Ð ®Ñª2Í�Î³ Ã�Í ÎÏ ¬ ; É is the numberof observationsand Â
the samplingperiod. Without lossof generality, we will assumeÂn®ÑÌ . The PWVD (in discrete-timeform) of the noisy signalÀ ª2Á�¬ is givenbyÒ ·�Ó*¿Ô ª2Á
Å*Õ�¬�® Ö×³ÙØ Ú Ö

Ó*Û ÎÜ Ý Ø
­cÞ ©\­�ª2Á§Ã^ß Ý"à ¬�Ã�Äl­_ª2Á§Ã^ß Ý�à ¬ áâ Þ ©#ã­ ª2Á[Ê
ß
Ý à ¬�Ã^Äiã­ ª2Á[Ê
ß Ý à ¬ á�µ Ú ¶ Î�ä9å ³ (7)



3Thekernelof thenoisysignalexpressedas

� -��*1æ �2�
���ç�]	 �*�,�� >@? S � � S �2�§�^� > �ç���^� S �2�Q��� > �Æ� �¡ � �O�S �2� � � > �ç�����i�S �2� � � > �ç� �
caneasilybeshown to beequalto [11]

� -��*1æ �2�F���ç�F	 � -��*1�*x �2�
���ç���^èvé;�2�
���ç�����c�c� (8)

where

� -��*1�*x �2�F���Æ�
	 �*�*�� >ê? S � � S �2�|�`� > �ç���.�S �2� � � > �ç� �
andè é �2�
���ç�]	 ë�ì x� >@?
S �.í*îS �2�§�^� > �ç��� � - í î 1S �2� � � > �ç��ï

¡ P ì xR >@?
SFð >�ñ � U�SS �2�§�^� > �ç�ò� S �2�Q��� > �Æ��l� � - U�S 1S �2� � � > �Æ�ò� �S �2� � � > �Æ� s�ó
with � S being the numberof the different coefficients � > in the
kernel,and ð > , T 	 G � {c{c{ ��� S , beingthemultiplicity of eachcoef-
ficient � > . Notethat : ì x>@? S ð > 	 �9� I , and � >õô	�� )÷ö T ô	 8 [10].

The termsindicatedby dots, in Equation(8), correspondto
quantitieswhich involve productsof morethanonenoiseterm. If
we assumethe power in � - �*1�*x �2�
���ç� and è é �2�F���Æ� muchlarger
thanthatin thediscardedterms,we canwrite

� -��*1æ �2�
���Æ��ø � -��*1�*x �2�F���ç���ùè é �2�F���ç�
Using the linearity of the expectationoperatorand the i.i.d

property of the complex Gaussiannoise � S �2��� , we can easily
show that thepower in èvé;�2�
���ç� , for a fixednon-zerolag � , is
equalto D 	 E � è é �2�F���ç���Kè �é �2�
���Æ� �	 I �\a � � a �,-�� U�S 1 �5� �$�x �lì xR >ê? S ð �> {

The IF estimate,for eachtime instant,is obtainedat the fre-
quency at which the PWVD hasits peak. That is, The PWVD
basedestimate úE > of the true IF

E > is definedasthe frequency at
which thereal-valuedfunction a ~ -��*1æ �2�
� E �ca � is maximum,i.e.,û�üü E a ~ -��*1æ �2�
� E �ca �,ý � ?�þ� î 	�! { (9)

To determine úE > , we considertheexpansionof a ~ - �*1æ �2�
� E �ca �
up to secondorderaround � E§�`E > � , i.e.,a ~ -��*1æ �2�
� E �ca � øÿa ~ -��*1æ � E > �ca � ��� EQ�`E > � û ü a ~ -��*1æ �2�F� E �ca �ü E ý � ? � î� GI � EQ�`E > � � û ü �9a ~ -��*1æ �2�F� E �ca �ü E � ý � ? � î (10)

Differentiating(10)with respectto
E

resultsinü a ~ -��*1æ �2�
� E �ca �ü E ø û ü a ~ -��*1æ �2�
� E �ca �ü E ý � ? � î�X� EQ��E > � û ü �\a ~ -��*1æ �2�
� E �ca �ü E � ý � ? � î (11)

andusingequation(9) we obtain:úE > ø E > � P û ü a ~ -��*1æ �2�
� E �ca �ü E ý � ? � î�� û ü � a ~ - �*1æ �2�
� E �ca �ü E � ý � ? � î V {
(12)

Takingtheexpectedvalueof (12), theexpressionsfor thebias

andvariancein theestimateof
E > arefoundto be

Bias ������ ���
	�	
��� E �����
û���� � -��*1æ������ ��� � �� � ý �! "� >û�� � � � - �*1æ#�$�%� �!� � �� � � ý �! "� >

&(''') (13)

Var � ���� ���
	�	*� E �����
+,,,- ,,,. û ��� � - �*1æ �$�%� �!� � �� � ý �! "� >û/� � � � -��*1æ ����� �!� � �� � � ý �! "� >

0 ,,,1,,,2
3 & ''') (14)

Using similar derivationsasthosein [11] (AppendixA), the
previousexpressionsresultin

Bias � úE > �2������	 ! (15)

Var � úE > �2������ø � � �$�x : ì x>@?
S ð �>� IKJ � � a ���§a �54 � 4 � G �5� I 4 � G �ø � �2� �� ��� �$ � : ì x>ê? S ð �>� IKJ � � a ���§a � 4 � 4 � G �5� I 4 � G � (16)

In the lastequation,we usedtheanalysisresultof Section2,
namely� �$�x 	 �2� �� �^� �$ � .

Notethat thevariancedecreaseswith increasingvaluesof 4
or increasingvaluesof thewindow length(

I 4 � G ) in thePWVD
(referto Equation(7)) . In themiddleof thetime interval (assum-
ing 6 odd) wherethewindow lengthcanbe chosenequalto the
signal length(i.e.,

I 4 � G 	 6 ), thevarianceis minimum and
equalto

Var � úE > �F	 I ¦ �2� �� ��� �$ � : ì x>@?
S ð �>� I�J � � a ���Qa � 6 � 6 � � G � { (17)

At other time instants � , the implementationof the PWVD ne-
cessitatessmallerwindow lengths(

I 4 � G87 6 ) resultingin a
decreasein thestatisticalperformanceof theestimator.

For theparticularcasewhere a ���§a\	�� (constant)and��� 	 ! , i.e., the signal underconsiderationis just a constant
amplitudepolynomialFM signalembeddedin complex Gaussian
noise,theIF estimatorvarianceexpressionbecomes

Var � úE > �F	 � � �$ : ì x>@?
S ð �>� I�J � � � � 4 � 4 � G �5� I 4 � G �
which is exactly theresultobtainedin [11], wherewetreatedcon-
stant amplitudepolynomialFM signalsonly.



45. EXAMPLE

Let us considerthe IF estimationof a quadraticFM signalat the
middleof thesignalinterval. Thepeakof thesixth orderPWVD,
whosekernelis givenby (5), is usedhereastheIF estimator. The
noiselesssignal ������� is modulatedby a complex circular Gaus-
siannoise ������� ( ������� �� ) and, then,addedto a complex circu-
lar Gaussiannoise ������� ( !#��� �$ ), as suggestedin Equation(1).
The noisy signal ������� is sampledat 9 	 G and the numberof
observations 6 is chosenequalto 129. The additive andmulti-
plicative noiseprocessesareassumedindependent.In thesimula-
tions,theoverallsignal-to-noiseratio(SNR),definedasSNR$�x 	G !�:<;>= S�A ��a ���§a � � �2���� �����$ ��� , is variedin a1 dB stepfrom 0 to 15
dB.Monte-Carlosimulationsfor 1000realizationsarerunfor each
value of SNR$�x . The resultsof two different experiments,one
conductedfor a ���§a9	z! { ! G andtheotherconductedfor a ���Qa9	 G ,
aredisplayedin Figure3. Weobserve that,above acertainthresh-
old, theestimatedvariancesrepresentedby ’+’ (for a ���§aO	w! { ! G )
and’o’ (for a ���Qa\	 G ) arein agreementwith thederivedtheoreti-
calonesgivenby Equation(16)andrepresentedby thecontinuous
lines (superimposed).In this example,we fixed ���� 	X���$ and� I 4 � G 	 6 	 G I@? � . We usedother valuesfor a � � a and
consideredthecase� �� ô	=���$ andfound similar results,i.e., the
estimatedresultsconfirm the theoreticalones. For otherpolyno-
mial FM signals,the simulationsresultswerein agreementwith
thetheoreticalones(seeFigure4 for thecaseof alinearFM signal
wherethepeakof theWVD is usedasanIF estimator).
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Fig. 3. Resultsof the experimentsfor a quadratic FM signal
corruptedby complex Gaussianmultiplicative andadditive noise
processes.Thecontinuouslines(superimposed)representthethe-
oretical varianceswhile ‘+’ and ’o’ correspondto the estimated
variancesfor ° ²�³§°\®�ÇOÈ ÇOÌ and ° ²�³Q°9®wÌ respectively.

6. CONCLUSION

In this paper, we consideredthe IF estimationof polynomialFM
signalsaffectedby multiplicative and additive complex circular
Gaussiannoisesandproposedthepeakof thePWVD asanestima-
tor. We derivedanalyticalexpressionsof thebiasandasymptotic
varianceof the estimator. We showed that this estimatoris un-
biasedandits statisticalperformancecandeterioratewhenusing
smallwindow lengthsin theimplementationof thePWVD distri-
bution. We presentedsomeexamples,basedonMonte-Carlosim-
ulations,to illustrateandvalidatethe theoreticalderivationsand
analysis.

−5 0 5 10
−90

−80

−70

−60

−50

−40

−30

−20

snr
w

1

 [dB]

Va
ria

nc
es

 [d
B]

Fig. 4. Resultsof the experimentsfor a linear FM signalcor-
ruptedby complex Gaussianmultiplicativeandadditivenoisepro-
cesses.The continuouslines (superimposed)representthe the-
oretical varianceswhile ‘+’ and ’o’ correspondto the estimated
variancesfor ° ²�³§°\®�Ç#È ÇOÌ and ° ²�³§°9®wÌ respectively.
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