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ABSTRACT

In this paperwe proposethe peakof the polynomialWignerVille
distribution as an instantaneou$requeny estimatorfor polyno-
mial frequeny modulatedsignalsin thepresencef multiplicative
andadditive complex GaussiarprocessesWe shav thatthis esti-
matoris unbiasedandwe derive ananalyticexpressiorof its
asymptoticvariance. Simulationresults,basedon Monte-Carlo
realisationsarepresentedn orderto shav thevalidity of thethe-
oreticalderivations.

1. INTRODUCTION

In mary engineeringpplicationssuchasradar sonay telecommu-
nicationsandenginediagnosisthesignalsunderconsideratiorare
known to be non-stationaryi.e., their spectralcontentsvary with
time. Time-frequeng analysis,amongother methods,was pro-
posedto dealwith suchsignals[1]. Time-frequeng distributions
(TFDs)arenaturalextensionf the Fouriertransform.They map
a onedimensionakignal, function of time only, to a two dimen-
sionalquantity functionof time andfrequeng.

A concepintimatelyrelatedto time-frequeng distributionsis
thatof instantaneouBequeny (IF) [2]. In mary situationsthelF
characterisesnportantphysicalparametersf thesignal.For this,
it is of greatimportanceto have effective techniquedo estimate
theinstantaneoufequeng of agivensignal.

DiverselF estimationmethodshave beendevelopedfor con-
stant, or slowly varying, amplitudesfrequeng modulated(FM)
signalsembeddedn additive noise. Someof thesemethodsare
parametricand someare non-parametric.In general,parametric
methodsusea signalmodelandthe goal, in this case,is to esti-
mate someparametersn orderto obtainthe IF [3, 4, 5]. Non-
parametricmethods,on the otherhand, usemethodsthat do not
requirefull knowledgeof the signal. A well-known classof non-
parametrianethodsfor IF estimationjs basedntime-frequeng
distributionsof the signal[6, 7].

In practice,in additionto the additive noise,the signalunder
consideratiommaybesubjectedo arandomamplitudemodulation
which beharesasmultiplicative noise[8]. Thus,it is importantto
have suitablelF estimationmethodsfor suchsignals. In [9], we
proposedhepeakof the WignerVille asanlF estimatoifor linear
FM signalscorruptedby multiplicative andadditive noise. In this
paper we extendthis resultto the caseof higherorderpolynomial

FM signals.Theestimatorconsideredhereis basednthe peakof
the polynomialWignerVille distributions(PWVD) [10]. Theuse
of this particularclassof time-frequeng distributionsstemsfrom
the fact that the PWVD yields maximumenegy concentration,
aboutthe signallF, for polynomialFM signals.

In particular we derive analyticalexpressiongor the biasand
asymptoticvarianceof the IF estimatorin the caseof polynomial
FM signalscorruptedby multiplicative andadditive comple cir-
cular Gaussiamoise. We presentsomeexamples,using Monte-
Carlo simulations,to shav the validity of the derived theoretical
results.

The paperis organisedasfollows. In Sections2 and 3, we
definethe problemmathematicallyand give a brief review of the
PWVD. In Section4, we derive the analyticalexpressionof the
biasandvariancefor the estimator Someexamplesarepresented
in Section5; whereasSection6 concludeghe paper

2. PROBLEM STATEMENT

Let theobseredsignal,y(t), begivenby
y(t) = m(t) - 2(t) + w(?) @)

wherethe stationaryprocessesn(t) and w(t) are assumectir-
cular complex Gaussianand independenwith meansand vari-
ancesgiven by (um,c2) and(0,c2) respectiely. The noise-
less polynomial FM signal z(t) is given by z(t) = e/¢® =
exp {j 31, ait'} wherea; arerealcoeficientsandP is theor-
der of the polynomialphase.Note thatthe derivation belov does
not requirethe knawledgeof the coeficientsa;; it only assumes
thesignalto be apolynomialFM one.

Our primary interestis in estimatingthe instantaneougre-
queng of thesignalz(t) definedas

P
filt) = % %ﬁt) = exp {jzz’aiti—l}

By writing the non-zeromeanmultiplicative noisem(t) as
m(t) = pm + mo(t), with m,(t) beinga zero-mearcomple
circularGaussiamoiseprocesswith variances?2,, we canre-write
theexpressionn Equation(1) as

y(t) = pm - 2(t) + mo(t) - 2(t) +w(t)
= |pm| - €/ Cum T Ly (1) @)



Realum)
mo(t) - 2(t) + w(t) is a zero-mearcircular complex Gaussian
noisewith varianceequalto aﬁ,l = (02, + 02). Notethatthe
instantaneoufrequencie®f the signalse’ (®#m +¢(1) ande/¢(*)
areexactlythesamej.e.,
dg(t)

1 d(@m+¢(t))_ 1
MO=0 =& " @t

We obsere that, in this case,the problemof estimatingthe
IF of thepolynomialFM signalz(t) affectedby multiplicative and
additive noiseis equivalentto thatof estimatinghelF of aconstant
amplitudepolynomial FM signal, z1 (t) = |pm| - €/ (Crm T¢(t)
(having the samelF law as z(t)), but affectedby additive noise
only.

In Equation(2), ©,,,, = tan ' [lm—a@@] andwi (t) =

3. PROPOSED ESTIMATOR

The polynomial WignerVille distribution wasdesignedo repre-
sent,in thetime-frequeng plane,polynomialFM signalsasarow
of deltafunctionsaboutthe signallF. This classof time-frequeng
distributionsis definedas[10]

o /2

Wz(q)(taf) = Hz(t+CiT)Z*(t+C—1j7')6_j27rf‘rd7'(3)
T =1

= / Kz(q)(t, T) . e—j27rf7—d7_ (4)

whereg is anevenintegerwhichindicategheorderof non-linearity
of thePWVD. Thecoeficientsc; ande—; (i = 1,2,...,9/2) are
calculatedsothatthe PWVD is realandequalto

WD (n, f) = A%(f - fi(t)),

for signalsgivenby z(t) = exp {j >1_ a:t'} (i.e., polynomial
FM signals).Therealnessf the PWVD impliesthate; = —c—;.
Notethatthe WignerVille distribution (WVD) is amemberof the
PWVDsclasswith parameterg = 2 andci = —c—1 = 0.5. Full
detailsof the designproceduranaybefoundin [10].

Thekernelof aparticularPWVD, referredto asthesixth order
PWVD, is givenby [10]

KO, f) = [2(t+0.627) 2" (t — 0.627)]
X [z(t+0.757) 2" (t — 0.757)]
X [2(t—0877) 2" (t +0.877).  (5)

This distribution is optimal, in the senseof maximumsignal
enepgy concentratiormaroundthesignallF, for linear, quadraticand
cubic FM signalsz(t) = exp {j Y"1 ,ait'} with P < 4. In
Figurel, we displaythis time-frequeng for a noiselesgjuadratic
FM signal. Obsenre thatthe peaksof the distribution reveal the
IF law of thesignal.In the presenc®f comple circular Gaussian
multiplicative andadditive noisesasin Equation(1), the sixth or-
der PWVD distribution canstill revealthe IF of the signal,but its
performancds degraded. Figure 2 illustratesthis point. In this
lastfigure, we chose(|um| = 3,02, = 1) for the Gaussiarmul-
tiplicative noiseand (0,2 = 1) for the Gaussiaradditive one.

In the next section,we will consideran arbitraryorderpoly-
nomial FM signal corruptedby multiplicative and additve com-
plex Gaussiamoisesand usethe peakof the appropriateorder
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Fig. 2. Thesixth orderPWVD of aquadraticcM signalcorrupted
by multiplicative andadditive noises.

PWVD to estimatethe signallF. We, then, evaluatethe statistical
performanceof the estimator Preciselywe will derive analytical
expression®f the biasandvarianceof suchanestimator

4. BIASAND VARIANCE OF THE IF ESTIMATOR

ConsidetthelF estimatiorof thesignalz(¢) in Equation(1). From
the resultsin Section2, we know that this problemis equivalent
to the estimationof the IF of z1(t) = |um| - €/ (Crm 41 jn
Equation(2) (recallthatz(t) andz: (t) have thesamdF, asshavn
in Section2). We can,thus, statethe discrete-timeversionof the
problemasfollows.

Considethediscrete-timeversionof themodelin Equation(2),
namely

y(nT) = z1(nT) + w1 (nT), n=0,...,N—1. (6)

wherez; (nT) is the polynomialFM signalwhoselF is to be es-
timated (and whoseamplitudeis equalto |um|) andw: (nT') is

a zero-mearcircular complex Gaussiamoisewith varianceequal
to o, = (om + 0o,); N is the numberof obserationsand T

the samplingperiod. Without loss of generality we will assume
T = 1. ThePWVD (in discrete-timeform) of the noisy signal

y(n) is givenby

a/2

W?fq)(n,f) = Z H[Zl(n+cim)+’w1(n+6im)]

m=—M i=1

X [25(n —cim) 4+ wi(n — cim)] e 2™ (7)



Thekernelof thenoisysignalexpresseds

q/2
KzSQ)(nv m) = H[zl(n +cim) + wi(n + ¢im)]
i=1
X [z1(n —eym) + wi(n — c;m))
caneasilybe shavn to be equalto [11]
K{P(n,m) = K (n,m) + Cr(n,m) +--- (8)
where
q/2
K(a) (n, m) H[z1 n +c;m)zi (n — ¢;m)]
i=1
and

Cr(n,m) = lnzf (n+ cim)z (1)(n—cim)‘|

{Zk 27 (n 4 cim)wi (n + ¢;m)

+2,Y (n — cim)wi (n — cim)] }

with n; beingthe numberof the different coeficients¢; in the
kernel,andk;, i = 1,...,n1, beingthemultiplicity of eachcoef-
ficiente;. Notethat) " ki = q/2, ande; # ¢; Vi # j [10].

The termsindicatedby dots, in Equation(8), correspondo
quantitieswhich involve productsof morethanonenoiseterm. If
we assumehe power in K% (n,m) andCr(n, m) muchlarger
thanthatin the discardederms,we canwrite

K;q)(n, m) & Kg‘f)(n, m) + Cr(n,m)

Using the linearity of the expectationoperatorand the i.i.d
property of the complex Gaussiannoise w (n), we can easily
shawv thatthe power in Cr(n, m), for afixed non-zerolag m, is
equalto

P E[Cr(n,m) - Cr(n, m)]

ni
2 2
Oyq ° E k‘l
i=1

The IF estimatefor eachtime instant,is obtainedat the fre-
queng at which the PWVD hasits peak. Thatis, The PWVD
basedestimateﬁ of thetrue IF f; is definedasthe frequeng at
which thereal-\/aluedfunction|Wy(‘1)(n, £)|? is maximumii.e.,

= 2 |pm|?@Y.

0
WD (n, f)|2] =0. 9
[af ! f=F

To determinef;, we considerthe expansionof |Wy(‘”(n, HI?
upto secondorderaround(f — f;), i.e.,
alw @ n, )2
WO A WP + (7 - g | AT
f=fi

1 Wi (n, f)I?
+ E(f_ fi)? [ylaﬁ] - (10)

Differentiating(10) with respecto f resultsin

AW (n, H)? _ [awéq)(n,f)ﬁ]
f=Ff

of of
2 Wy (n, f)|?
+ (f = fi) [%ﬁ

andusingequation(9) we obtain:

fimfim {[mw&q)(n, ] / [aﬂwé‘”(n, | }
of f=f 3]"2 f=f
(12)

Takingthe expectedvalueof (12), the expressiongor thebias
andvariancen theestimateof f; arefoundto be

[aw;”(n,f)P]
or f=1;

02 Wy (n.f)[2
af2

] 11)
f=fi

A

Bias(f3(n)) ~ —E
|

(13)

]f_fi

[6|W;q>(n,f)|2 2

o1 ] I=1;
22w (n,f) 2
of?

A~

var (fi(n)) ~ E [ (14)

]fZﬁ
Using similar derivationsasthosein [11] (AppendixA), the
previous expressionsesultin
Bias(fi(n)) = 0 (15)
N 6on, St k?
Var (fi(n) LDy
2m)"|pm|2M (M + 1)(2M +1)
6 (om +ou) Dot ki
2m)? [ [2M (M +1)(2M +1)

Q

Q

(16)

In the lastequation,we usedthe analysisresultof Section2,
namelyo,,, = (o7, + a5).

Note thatthe variancedecreasewith increasingvaluesof M
or increasingraluesof thewindow length(2M + 1) in the PWVD
(referto Equation(7)) . In themiddle of thetime interval (assum-
ing V odd) wherethewindow lengthcanbe chosenequalto the
signallength(i.e.,2M + 1 = N), thevarianceis minimum and
equalto

ar(f) = 24 (op +00) Dot kf

e um PNV — 1)

At othertime instantsn, the implementationof the PWVD ne-

cessitatesmallerwindow lengths(2M + 1 < N) resultingin a
decreasén the statisticalperformancef the estimator

For the particularcasewhere|u| = A (constantand
om = 0, i.e., the signal under considerationis just a constant
amplitudepolynomialFM signalembeddedn complex Gaussian
noise,thelF estimatonvarianceexpressiorbecomes

an k'2

(271)2A2M(M +1)(2M +1)

1

Var (f;) =

which is exactly theresultobtainedn [11], wherewe treatedcon-
stant amplitudepolynomialFM signalsonly.



5. EXAMPLE

Let us considerthe IF estimationof a quadraticFM signalat the
middle of the signalintenal. The peakof the sixth orderPWVD,

whosekernelis givenby (5), is usedhereasthe IF estimator The
noiselesssignal z(¢) is modulatedby a comple circular Gaus-
siannoisem(t) (um,oZ,) and,then, addedto a comple circu-

lar Gaussiamoise w(t) (0,¢2), assuggestedn Equation(1).

The noisy signal y(t) is sampledat 7 = 1 and the numberof

obserations N is chosenequalto 129. The additive and multi-

plicative noiseprocesseareassumedndependentln the simula-
tions,theoverall signal-to-noiseatio (SNR),definedasSNR,,, =

10log .o (|pem |?/ (02, + 02)), is variedin a1 dB stepfrom 0to 15

dB. Monte-Carlosimulationfor 1000realizationsarerunfor each
value of SNR,,;. The resultsof two differentexperiments,one
conductedor |um| = 0.01 andtheotherconductedor |pm | =1,

aredisplayedn Figure3. We obsenre that,above a certainthresh-
old, theestimatedvariancegepresentetty '+’ (for |um| = 0.01)

and'o’ (for |um| = 1) arein agreementvith thederivedtheoreti-
calonesgivenby Equation(16) andrepresentetly thecontinuous
lines (superimposed)In this example, we fixed 02, = o2 and
(2M +1 = N = 129). We usedothervaluesfor |u.| and
consideredhe cases?, # o2 andfound similar results,i.e., the
estimatedesultsconfirm the theoreticalones. For other polyno-
mial FM signals,the simulationsresultswerein agreementvith

thetheoreticabnes(seeFigure4 for thecaseof alinearFM signal
wherethe peakof the WVD is usedasan|F estimator).
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Fig. 3. Resultsof the experimentsfor a quadratic FM signal
corruptedby comple« Gaussiarmultiplicative andadditive noise
processesThe continuoudines (superimposedjepresenthethe-
oretical varianceswhile ‘+' and’o’ correspondo the estimated
variancedor |pum| = 0.01 and|um | = 1 respectiely.

6. CONCLUSION

In this paper we consideredhe IF estimationof polynomialFM
signalsaffected by multiplicative and additve comple circular
Gaussiamoisesandproposedhepeakof the PWVD asanestima-
tor. We derived analyticalexpression®of the biasandasymptotic
varianceof the estimator We shaved that this estimatoris un-
biasedandits statisticalperformancecandeterioratevhenusing
smallwindow lengthsin theimplementatiorof the PWVD distri-
bution. We presentedomeexamples pasedon Monte-Carlosim-
ulations, to illustrate and validatethe theoreticalderivationsand
analysis.

Variances [d8]
+

snr,, [dB]

Fig. 4. Resultsof the experimentsfor a linear FM signal cor
ruptedby complex Gaussiamultiplicative andadditive noisepro-
cesses. The continuouslines (superimposedjepresenthe the-
oretical varianceswhile ‘+' and’o’ correspondo the estimated

variancedor |y, | = 0.01 and|un| = 1 respectiely.
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