TURBO EQUALIZATION FOR GMSK SIGNALING OVER MULTIPATH CHANNELS

Xiaodong Wang and Zigang Yang

Texas A&M University, Department of Electrical Engineering,
College Station, TX 77843.

ABSTRACT

A novel receiver isderivedfor Gaussianminimum shift keying (GM-
SK) signal sthrough amultipath channel. A nonlinear signal model
is derived which avoids the linear approximation in the conven-
tional finite impulse response(FIR) system model. A Bayesian e-
qualizer based on the Gibbs sampler, aMarkov chain Monte Carlo
(MCMC) procedure, is developedfor joint channel estimation and
symbol detection, and finally, a Turbo equalizer structure is pro-
posed for a coded GMSK system, in which the Bayesian equalizer
successively refinesits processing based on the information from
the decoding stage, and vice versa.

1. INTRODUCTION

Gaussianminimum shift keying(GM SK) modul ationiswidely used
in wireless communication systems due to its low side-lobe and

constant modulus properties. A large variety of receiver structures
have been proposed for GMSK systems. The conventional method

is the Maximum Likelihood Sequence Estimation [1], which em-

ploys a finite impul se response(FIR) approximation(linearization)

of the system, followed by the Viterbi algorithm. Such anapproach
issuboptimal dueto the following reasons: first, the linear approx-
imation incurs performanceloss; second, the separation of channel

estimation and datadetection(asopposedto joint estimation of both

channel and data) also resultsin performanceloss.

In this paper, we propose a Bayesian approach to the problem
of joint symbol detection and channel estimation for GMSK sys-
temswithout linearization. At the transmitter, a precoding method
is proposed to transform the system memory to afinite length. By
usingthe band-limited property of the GM SK signal, atapped-delay
model is derived for the channel. The received signal is sampled
at twice the symbol rate. With this oversampled nonlinear signal
model, we consider the Bayesian inference of all unknown quanti-
ties (e. g. , channel and noise parameter, symbol values) from the
nonlinearly distorted and noisy observation. A Markov Chain Monte
Carlo procedure, called the Gibbs sampler, isemployedto calculate
theBayesianestimation. Theperformanceof theproposed Bayesian
equalizer isdemonstrated viasimulationsin anear blindway, i. e. ,
sometraining symbolsare used to resolvethe phaseand timing am-
biguity. Another salient feature of the proposed methodsisthat be-
ing asoft-input soft-output demodul ation algorithms, it can beused
in conjunctionwith soft channel decodingalgorithm, toaccomplish
iterative joint equalization and decoding - so-called Turbo equal-
ization.
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2. SYSTEM DESCRIPTION

Assumethat the GMSK signal s(¢) istransmitted through a multi-
path channel. The received signal can be written as

y(t) =Y as(t—m) + o(t), @

=1

wherep isthenumber of path, «; isthefading coefficient for the ith
path; 7 isthe propagation delay of thelth path, and v(¢t) isadditive
white Gaussian noise. The GMSK signal s(¢) can be represented
as

6J9(t)’

where j = =1 2
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s(t) =
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where b; € {—1,1} are transmitted data bits; 7" is symbol du-
ration; the phase pulse-shaping function ¢(t) is given by ¢(¢) =
Z fioo f(u)du, and f(t) isthe GMSK frequency pulse which is
characterized by BT'(in GSM system, BT ischosento be0.3) and
defined as

t—T/2 t4+T/2

o= — e ), @

where § = 27 BT/{/1n(2).

2.1. Tapped-delay Model

Noticing that the path delaysin (1) are difficult to estimate, we next
derive atapped-delay line model for (1). Assumingthat signal s(t)
with band-width W, istransmitted through achannel A (t), thenthe
output of the channel can be written in the form of atapped-delay
line model [2] with tap interval 1/2W.

As mentioned before, the GMSK signal has asmall side-lobe,
and thus provides good frequency efficiency. It has been shownin
[3] that 99% of the energy of a GMSK signal with BT < 0.5 lies
within +1/T of the center frequency. Thus, the received signal
model becomes

y(t) ~ i hus <t _ g) +ot), ®)

where po, p1 denote the proper truncation from below and above.
(The multipath channel will cause infinite number of nonzero tap
coefficients, however, we can alwaystruncatethem into finite num-
ber of items with little loss of energy.)



Thereceivedsignal islowpassfiltered with bandwidth1/7 and
then sampled at the Nyquist rate W = 2/T. Assuming that the

samplingtime instantsare ¢.; = k7' + jZ, then (5) becomes

p1
Y2k+5 = Z hngQﬂ + v2k45, 6
l=po

where yois; = y(th ;) vaktj = o(tr;), Sepy; = s(te; — L),
With theideal lowpassfilter, the noise samples vy 4 ; areindepen-
dent with each other. On the other hand, since over 99% of the
GMSK signal energy will pass through the above lowpass filter,
the sampled received signal is nearly the sufficient statistic for the
transmitted data, and the maximum a posteriori probability (MAP)
detector based on these sampled signalsis a near-optimal receiver.

2.2. Sampled GM SK Signal and Precoding

Assume the duration of the frequency pulse of a GMSK signdl is
LT, then the phase pulse shape ¢(t) will be 0 when¢ < —LT,
andrx/2at> LT. Thus,

S, = o
x g—L L—-1 T
= exp{]g(zbi,‘l)} 11 exp{sbg—id(p= +11)} (7)
1=0 i=—1L

where (-, -} denote the modulo operation and integer ¢ and p €
{0,1} ischosento satisfy kT + & — L = ¢T + £-.

To get finite memory to the receive model, we employ a pre-
coding procedure to encodethe information bit b; into 7; as
Dory1 = —borbopya
{ Iog = bog—1b2g ‘ ®

At the transmitter, information bits &; is encoded into /; and then
modulated and transmitted. By introducing the precoding (8), the
sampled GMSK signal S3;), ; becomesthe function of by_z, ...,
bgtr-1,bq41 8

L—-1

Sglk)+] = ](q_L+172)bq—L H eXP{](_l)q_ibq—i
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i1 (o +iT)). ©
With the above precoding scheme, given {b;}, Sglk) +, Can beob-
tained asfollows: First, compute (g, p) from (%, 5, {); Thenchoose
oneof thefour state tablesaccordingto the parameters (¢ — L) and
p; Finally, look up in this table the state value indexed by {b,_1,,
...ybgt1}. Thisprocedureis later used in computing the condi-
tional a posteriori distributions (16)-(18).

2.3. Approximation of the phasepulse

In[4], an approximation of phase pul se shapeof GMSK signal with
BT = 0.3 isgiven. Fig. 1 showsthat after this non-significant
approximation, I is reduced from 3 to 2, consequently, the state
number of the sampled GMSK signal is reduced by a factor of 2.
Similar, we can always do this kind of nonlinear approximation,
which is non-significant and always better than a linear approxi-
mation, to reduce the complexity of the receiver.
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Fig. 1. An approximation for the phase pulse shape (BT = 0.3).

2.4. Problem Setup

Now consider the system model (6), in fact channel %; is assumed
constantwithin atime block. Assumingthereare A/ symbolswith-

in atime block. For compactness, define B 2 {bo,...,by—1};

y &2 {yo,¥1,...yn},Wwhere N = 2M + fmax(rk/%ﬂ isthe
total number of samplesat the receiver within atime block. Let's
further defineh 2 (hp,, ..., hp, ), S¢ 2 (579, SPNT
the system model becomes:

ye = BTS¢ + v, t=0,1,...,N—1. (10)

In section 3, we consider the problem of estimating the a pos-

teriori probabilities of the transmitted symbols

P(br = £1|Y), k=0,1,..., M —1. (11)
based on the received signals Y and the prior information of B,
without knowing the channel 7, and the noise parameters. Notice
that .S in (10) can be computed under the knowledgeof B accord-
ing to the previous discussion.

3. BAYESIAN EQUALIZER

In this section, we consider the problem of computing a posteriori
symbol probability in (11), under the assumption that the ambient
noise distribution is complex Gaussian. That is,

vy ~N5(0,02). (12)

The problem will be solved under a Bayesian framework: First,
the unknown quantities§ = {h, o*, B} areregarded as indepen-
dent random variables with some prior distributions. The Gibbs
sampler, aMonte Carlo method, is then employed to calculate the
maximum a posteriori (MAP) estimation of these unknowns.

3.1. GibbsSampler

To the problem of joint sequencedetection and channel estimation,
recent paper [5] hasshownthat Gibbs sampler, aBayesianapproach,
isavery powerful Bayesiansolution. Let@ = [61, 62, ...,04]7 be
avector of unknown parameters, Y betheobserveddata. Algorith-
mically, we can describe the Gibbs sampler as follows:

e Fori=1,...,d, wedraw 6!'"") from the conditional dis-
tribution
p(6 gt et gl e Y.



Under regularity conditions,the distribution of 8™ converges geo-
metrically to p(8|Y"), asn — oo, whichisthe posteriori marginal
distribution. Therefore, themaximum aposteriori estimatesof each
unknown parameter will berelatively easy to compute.

3.2. Prior Distributions

Wefirst specify the prior distributions.
1. For the unknown channel ., acomplex Gaussian prior dis-
tribution is assumed,
plh] ~ Ne(ho, o). (13)
Notethat large value of 3, correspondsto lessinformative
prior.

2. Forthenoisevariances?, aninverse chi-squareprior distri-
bution is assumed,

plo’] ~ X7 (210, Xo). (14
Small valueof 2y, correspondsto thelessinformative pri-
ors.

3. TheLLR of symbol {;} can be expressed as
e PlEi =41)

pi = log Plb = 11) (15)
When there are no prior information for these symbols, p;
are set to zero.

3.3. Conditional Posterior Distributions

The following conditional posterior distributions are required by
the Bayesian multiuser detector.

1. Theconditional distribution of the channel responseh given

o?,B,andY is
p(h|B,0”,Y) ~ Ne(hy, Z4), (16)
. Al 1 "
with ;' =55+ = tz_; 5.(B)S{(B),
A 1 1= N
he 2%, (20 ho + — ; St(B)yt> .

2. Theconditional distribution of theinverse of noisevariance
o? givenh, B,andY is

2
p(?h,B)Y) ~ <2[VO+N],%>,
(17)
N-1 2
with 2 2 yi — h'S,(B)
t=0

3. The conditional distribution of the data bit b; given h, o,
B;, and Y can be obtained from [where B; 2 B\ b,. ]
P(b; = +1|h, %, B;, Y)
P(bi = —1|h, o2, B, Y)

t1

1 i
= exp{pi — = > _(lye — BSVHP
a

t=tgo

—lye — RSP, (18)

where S0t 2 S,(b; = +1,B;) and Si™ 2 S,(b; =
—1, Bz), to = 2(l — L) + po andt1 = 2(Z+L) +1 + p1.

3.4. TheGibbsEqualizer

Using the aboveconditional posterior distributions, the Gibbssam-
pling implementation of the Bayesian equalizer proceedsiterative-
ly as follows. Given theinitial values of the unknown quantities
{n(® 520 B(®)} drawn from their prior distributions, and for
n=12,...

1. Draw (™ from p[h |o*"~Y B("~1) Y] given by (16);

2. Draw o> from p[o? |h{™), B~ Y] given by (17);

3. For:=0,1,..., M —1

Draw b{™ from P[b;|(™, 0> B{"~Y) Y] givenby (18).

To ensure convergence, the above procedureis usualy carried
out for (ko + K) iterations and samplesfrom the last X iterations
are used to cal culate the Bayesian estimates of the unknown quan-
tities. In particular, the marginal posterior bit probabilitiesin (11)
are calculated as

ko+ I

1
Phi=+1Y)= = 3 %), (19)

k=ko+1

where 5%/ isan indicator such that 6% = 1, if 8"/ = +1 and
8% =0, if o*) = —1.

4. TURBO EQUALIZATION

We consider employing iterative equalization and decoding to im-
prove the performance of the Bayesian equalizer in a coded sys-
tem. Becauseit utilizes the a priori symbol probabilities, and it
producessymbol a posteriori probabilities, the Bayesian equalizer
developedin this paper is well suited for iterative (Turbo) process-
ing. TheTurbo receiver consistsof two stages: the Bayesianequal-
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Fig. 2. Turbo equalization.

izer followed by a soft-input soft-output channel decoder [6]. The
two stages are separated by deinterleavers and interleavers. As-
sumethat {b; } ismappedinto {b,;,} after deinterleaving. An it-
erative (Turbo) receiver can be implemented as shown in Fig. 2,
where {A;(b:)} and {A2(br;))} are the posterior distribution in
termsof LLR at the output of the Bayesian equalizer and the chan-
nel decoder. A1 (b;) and Az (bx(;)) arerespectively the extrinsicin-
formation, which are act asprior information to exchangebetween
the Bayesian equalizer and channel decoder. Note that at the first
iteration, the extrinsic information {1 (b;)} and {X2(b;)} are sta-
tistically independent. But subsequently since they use the same
information indirectly, they will becomemore and more correlated
and finally the improvement through the iterations will diminish.



5. SIMULATION RESULTS

In this section, the GMSK signal with BT = 0.3 is chosen to
provide simulation examples to illustrate the performance of the
Turbo equalizer developedin thispaper. We consider the multipath
channel shownin Fig. 3 A& B, where h(t) = > 7_, ai6(t — 71),
with the number of the path p = 3. (Note that the channel is nor-
malized to have unit norm, i.e., |a1|* 4 |az|* + |as]®> = 1). po =
—3 and p; = 6 ischosen to make the truncation for the tapped-
delay line model (5). The truncated tap coefficients are shownin
Fig. 3C&D.

0.5

)

-0.5

0.5

™)
3

Q@

@ ' @

Fig. 3. The simulated multipath channel: (A) The channel delay
profile (rea part); (B) The channel delay profile (imaginary part);
(C) The coefficients of the tapped-delay line model (real part); (D)
The coefficients of the tapped-delay line model (imaginary part).

The approximation of the phase pul se-shaping (1) isemployed
to reduce the number of the states of the sampled GMSK signal.
The channel codeis arate of % constraint length-5 convolutional
code (with generators 23, 35 in octal notation). Theinterleaver is
generated randomly and fixed for all simulations. The block size of
the information bitsis set to be 128. In order to resolvethe phase
and shift ambiguities, 25 training bits are added to the 256 inter-
leaved code bits. Finally, 2 tail bits are added to every data block
to close the memory of the GMSK signal. In computing the bit
probabilities, the Gibbs sampler isiterated 100 runsfor each data
block, with the first 50 iterations as the “burning-in” period, i.e.,
ko = K = 50 in (19).

Fig. 4 illustrates the performance of the Turbo equalizer dis-
cussed in Section 5. The code bit error rate at the output of the
Bayesian equalizer is plotted for thefirst three iterations. By con-
structing atrellisdiagram [4] of theuncoded GM SK-modul ated sig-
nal (the delay channel model (1) is used here), a MAP demodu-
lation algorithm is performed assuming perfect knowledge of the
channel, andthesimulationresultisincludedin Fig. 4. By combin-
ing the MAP decoder with the above M AP demodul ator, aconven-
tional iterative (Turbo) equalizer assuming perfect channel knowl-
edgeis aso implemented, and the code bit error rate at the output
of the MAP demodulator at thethird iteration is shownin Fig. 4 for
the purpose of comparison.

It is seen that in terms of bit error rate, the performance of the
proposed Bayesian equalizer iswithin about 1dB from the uncoded
MAP demodulation which assumes the perfect knowledge about
channel. It is also seen that by incorporating the extrinsic infor-
mation provided by the channel decoder, the proposed Bayesian e-
qualizer achievessignificant performanceimprovement by theiter-
ative procedure. For the coded system, the simulation result shows
that the code bit error rate of our proposed Turbo equalizer is also
within about 1dB from the Turbo equalizer which assumes perfect

coded bit error rate

- MAP with known channel <

—&—  1stiteration ~

10| ——  2nd iteration >
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Fig. 4. Performance of Turbo equalizer for the multipath distorted
GMSK systemwith BT = 0.3.

knowledge about channel.

6. CONCLUSION

We have considered the problem of signal recovery in GMSK sys-
tems with multipath distortions. A nonlinear model is derived for
the sampled signal at the receiver due to the nonlinear nature of
the GM SK modulation. A novel equalization schemeis devel oped
which is optimal in the sense that it is based on the Bayesian in-
ference of all unknown quantities, and such a Bayesian equalizer
can be efficiently implemented using the Gibbs sampler, aMarkov
Chain Monte Carlo procedure for computing Bayesian estimates.
Becauseof its“ soft-input soft output” feature, the Bayesian equal -
izer is designed to be a part of Turbo equalizer, which refines its
processing based on the information from the decoding stage. The
effectiveness of the proposed techniquesis demonstrated by simu-
lation examples. In fact, this paper provides an exampleto usethe
Bayesian equalizer for general nonlinear system.
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