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ABSTRACT

A novel receiver is derived for Gaussianminimum shift keying (GM-
SK) signals through a multipath channel. A nonlinear signal model
is derived which avoids the linear approximation in the conven-
tional finite impulse response(FIR) system model. A Bayesian e-
qualizer based on the Gibbs sampler, a Markov chain Monte Carlo
(MCMC) procedure, is developed for joint channel estimation and
symbol detection, and finally, a Turbo equalizer structure is pro-
posed for a coded GMSK system, in which the Bayesian equalizer
successively refines its processing based on the information from
the decoding stage, and vice versa.

1. INTRODUCTION

Gaussianminimum shift keying(GMSK) modulation is widely used
in wireless communication systems due to its low side-lobe and
constant modulus properties. A large variety of receiver structures
have been proposed for GMSK systems. The conventional method
is the Maximum Likelihood Sequence Estimation [1], which em-
ploys a finite impulse response(FIR) approximation(linearization)
of the system, followed by the Viterbi algorithm. Such an approach
is suboptimal due to the following reasons: first, the linear approx-
imation incurs performance loss; second, the separation of channel
estimation and data detection(as opposedto joint estimation of both
channel and data) also results in performance loss.

In this paper, we propose a Bayesian approach to the problem
of joint symbol detection and channel estimation for GMSK sys-
tems without linearization. At the transmitter, a precoding method
is proposed to transform the system memory to a finite length. By
using the band-limited property of the GMSK signal, a tapped-delay
model is derived for the channel. The received signal is sampled
at twice the symbol rate. With this oversampled nonlinear signal
model, we consider the Bayesian inference of all unknown quanti-
ties (e. g. , channel and noise parameter, symbol values) from the
nonlinearly distorted and noisy observation. A Markov Chain Monte
Carlo procedure, called the Gibbs sampler, is employed to calculate
the Bayesianestimation. The performance of the proposedBayesian
equalizer is demonstrated via simulations in a near blind way, i. e. ,
some training symbols are used to resolve the phase and timing am-
biguity. Another salient feature of the proposed methods is that be-
ing a soft-input soft-output demodulation algorithms, it can be used
in conjunction with soft channel decodingalgorithm, to accomplish
iterative joint equalization and decoding - so-called Turbo equal-
ization.
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2. SYSTEM DESCRIPTION

Assume that the GMSK signal s(t) is transmitted through a multi-
path channel. The received signal can be written as

y(t) =

pX
l=1

als(t� �l) + v(t); (1)

where p is the number of path, al is the fading coefficient for the lth
path; �l is the propagation delay of the lth path, and v(t) is additive
white Gaussian noise. The GMSK signal s(t) can be represented
as

s(t) = e|�(t); where | =
p�1 (2)

with �(t) =
X
i

bi�(t� iT ); (3)

where bi 2 f�1; 1g are transmitted data bits; T is symbol du-
ration; the phase pulse-shaping function �(t) is given by �(t) =
�
2

R t
�1 f(u)du, and f(t) is the GMSK frequency pulse which is

characterized by BT (in GSM system, BT is chosen to be 0.3) and
defined as

f(t) = Q(�( t� T=2

T
))�Q(�( t+ T=2

T
)); (4)

where � = 2�BT=
p
ln(2).

2.1. Tapped-delay Model

Noticing that the path delays in (1) are difficult to estimate, we next
derive a tapped-delay line model for (1). Assuming that signal s(t)
with band-widthW , is transmitted through a channelh(t), then the
output of the channel can be written in the form of a tapped-delay
line model [2] with tap interval 1=2W .

As mentioned before, the GMSK signal has a small side-lobe,
and thus provides good frequency efficiency. It has been shown in
[3] that 99% of the energy of a GMSK signal with BT � 0:5 lies
within �1=T of the center frequency. Thus, the received signal
model becomes

y(t) '
p1X
l=p0

hls

�
t� lT

2

�
+ v(t); (5)

where p0; p1 denote the proper truncation from below and above.
(The multipath channel will cause infinite number of nonzero tap
coefficients, however, we can always truncate them into finite num-
ber of items with little loss of energy.)



The receivedsignal is lowpass filtered with bandwidth1=T and
then sampled at the Nyquist rate W = 2=T . Assuming that the

sampling time instants are tk;j
4
= kT + j T2 , then (5) becomes

y2k+j =

p1X
l=p0

hlS
(l)
2k+j + v2k+j ; (6)

where y2k+j
4
= y(tk;j), v2k+j

4
= v(tk;j), S

(l)
2k+j

4
= s(tk;j � lT

2 ).
With the ideal lowpass filter, the noise samples v2k+j are indepen-
dent with each other. On the other hand, since over 99% of the
GMSK signal energy will pass through the above lowpass filter,
the sampled received signal is nearly the sufficient statistic for the
transmitted data, and the maximum a posteriori probability (MAP)
detector based on these sampled signals is a near-optimal receiver.

2.2. Sampled GMSK Signal and Precoding

Assume the duration of the frequency pulse of a GMSK signal is
LT , then the phase pulse shape �(t) will be 0 when t � �LT ,
and �=2 at t � LT . Thus,

S
(l)
2k+j = e|�(kT+

jT
2
� lT

2
)

= expf|�
2
h
q�LX
i=0

bi; 4ig
L�1Y
i=�L

expf|bq�i�(�T
2
+ iT )g (7)

where h�; �i denote the modulo operation and integer q and � 2
f0; 1g is chosen to satisfy kT + jT

2 � lT
2 = qT + �T

2 .
To get finite memory to the receive model, we employ a pre-

coding procedure to encode the information bit bi into Ii as�
I2k+1 = �b2kb2k+1
I2k = b2k�1b2k

: (8)

At the transmitter, information bits bi is encoded into Ii and then
modulated and transmitted. By introducing the precoding (8), the
sampled GMSK signal S(l)

2k+j becomes the function of bq�L; : : : ,
bq+L�1; bq+L as

S
(l)
2k+j = |hq�L+1; 2ibq�L

L�1Y
i=�L

expf|(�1)q�ibq�i

bq�i�1�(�
T

2
+ iT )g: (9)

With the above precoding scheme, given fb ig, S(l)2k+j can be ob-
tained as follows: First, compute (q; �) from (k; j; l); Then choose
one of the four state tables according to the parameters (q�L) and
�; Finally, look up in this table the state value indexed by fbq�L ,
: : : ; bq+Lg. This procedure is later used in computing the condi-
tional a posteriori distributions (16)-(18).

2.3. Approximation of the phase pulse

In [4], an approximation of phase pulse shapeof GMSK signal with
BT = 0:3 is given. Fig. 1 shows that after this non-significant
approximation, L is reduced from 3 to 2, consequently, the state
number of the sampled GMSK signal is reduced by a factor of 2.
Similar, we can always do this kind of nonlinear approximation,
which is non-significant and always better than a linear approxi-
mation, to reduce the complexity of the receiver.
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Fig. 1. An approximation for the phase pulse shape (BT = 0:3).

2.4. Problem Setup

Now consider the system model (6), in fact channel hl is assumed
constant within a time block. Assuming there areM symbols with-

in a time block. For compactness, defineB
4
= fb0; : : : ; bM�1g;

Y
4
= fy0; y1; : : : yNg, where N = 2M + dmax(�k=T2 )e is the

total number of samples at the receiver within a time block. Let’s

further define h
4
= (hp0 ; : : : ; hp1 )

H , St
4
= (S(p0)t ; : : : ; S

(p1)
t )T ,

the system model becomes:

yt = h
H
St + vt; t = 0; 1; : : : ;N � 1: (10)

In section 3, we consider the problem of estimating the a pos-
teriori probabilities of the transmitted symbols

P (bk = �1jY ); k = 0; 1; : : : ;M � 1: (11)

based on the received signals Y and the prior information of B,
without knowing the channel h, and the noise parameters. Notice
thatSt in (10) can be computed under the knowledge ofB accord-
ing to the previous discussion.

3. BAYESIAN EQUALIZER

In this section, we consider the problem of computing a posteriori
symbol probability in (11), under the assumption that the ambient
noise distribution is complex Gaussian. That is,

vt � Nc(0; �
2): (12)

The problem will be solved under a Bayesian framework: First,
the unknown quantities � = fh; �2;Bg are regarded as indepen-
dent random variables with some prior distributions. The Gibbs
sampler, a Monte Carlo method, is then employed to calculate the
maximum a posteriori (MAP) estimation of these unknowns.

3.1. Gibbs Sampler

To the problem of joint sequence detection and channel estimation,
recent paper [5] has shown that Gibbs sampler, a Bayesianapproach,
is a very powerful Bayesian solution. Let � = [�1; �2, : : : ; �d]T be
a vector of unknown parameters,Y be the observed data. Algorith-
mically, we can describe the Gibbs sampler as follows:

� For i = 1; : : : ; d, we draw �
(t+1)
i from the conditional dis-

tribution

p(�(n+1)i j�(n+1)1 ; : : : ; �
(n+1)
i�1 ; �

(n)
i+1; : : : ; �

(n)
d ;Y ):



Under regularity conditions,the distribution of �n converges geo-
metrically to p(�jY ), as n!1, which is the posteriori marginal
distribution. Therefore, the maximum a posteriori estimates of each
unknown parameter will be relatively easy to compute.

3.2. Prior Distributions

We first specify the prior distributions.

1. For the unknown channel h, a complex Gaussian prior dis-
tribution is assumed,

p[h] � Nc(h0;�0): (13)

Note that large value of�0 corresponds to less informative
prior.

2. For the noise variance�2 , an inverse chi-square prior distri-
bution is assumed,

p[�2] � ��2(2�0; �0): (14)

Small value of 2�0 corresponds to the less informative pri-
ors.

3. The LLR of symbol fbig can be expressed as

�i = log
P (bi = +1)

P (bi = +1)
: (15)

When there are no prior information for these symbols, �i
are set to zero.

3.3. Conditional Posterior Distributions

The following conditional posterior distributions are required by
the Bayesian multiuser detector.

1. The conditional distribution of the channel responseh given
�2, B, and Y is

p(hjB; �2;Y ) � Nc(h?;�?); (16)

with �
�1
?

4
= ��10 +

1

�2

N�1X
t=0

St(B)SH
t (B);

h?
4
= �?

 
�
�1
0 h0 +

1

�2

N�1X
t=0

St(B)y�t

!
:

2. The conditional distribution of the inverse of noise variance
�2 given h,B, and Y is

p(�2jh;B;Y ) � ��2
�
2[�0 +N ];

�0�0 + s2

�0 +N

�
;

(17)

with s2
4
=

N�1X
t=0

���yt � hHSt(B)
���2 :

3. The conditional distribution of the data bit bi given h, �2 ,

Bi, and Y can be obtained from [whereB i
4
= B n bi . ]

P (bi = +1jh; �2;Bi;Y )

P (bi = �1jh; �2;Bi;Y )

= expf�i � 1

�2

t1X
t=t0

(jyt � hHSi;+
t j2

�jyt � hHSi;�
t j2)g; (18)

where Si;+
t

4
= St(bi = +1;Bi) and Si;�

t

4
= St(bi =

�1;Bi); t0 = 2(i�L) + p0 and t1 = 2(i+L) + 1+ p1 .

3.4. The Gibbs Equalizer

Using the above conditional posterior distributions, the Gibbs sam-
pling implementation of the Bayesian equalizer proceeds iterative-
ly as follows. Given the initial values of the unknown quantities
fh(0); �2(0);B(0)g drawn from their prior distributions, and for
n = 1; 2; : : :

1. Draw h
(n) from p[h j�2(n�1);B(n�1);Y ] given by (16);

2. Draw �2(n) from p[�2 jh(n);B(n�1);Y ] given by (17);

3. For i = 0; 1; : : : ;M � 1

Draw b
(n)
i fromP [bijh(n); �2(n);B(n�1)

i ;Y ] given by (18).

To ensure convergence, the above procedure is usually carried
out for (k0 +K) iterations and samples from the last K iterations
are used to calculate the Bayesian estimates of the unknown quan-
tities. In particular, the marginal posterior bit probabilities in (11)
are calculated as

P (bi = +1jY ) �= 1

K

k0+KX
k=k0+1

�
(k)
i ; (19)

where �(k)i is an indicator such that �(k)i = 1, if b(k)i = +1 and
�
(k)
i = 0, if b(k)i = �1.

4. TURBO EQUALIZATION

We consider employing iterative equalization and decoding to im-
prove the performance of the Bayesian equalizer in a coded sys-
tem. Because it utilizes the a priori symbol probabilities, and it
produces symbol a posteriori probabilities, the Bayesian equalizer
developed in this paper is well suited for iterative (Turbo) process-
ing. The Turbo receiver consists of two stages: the Bayesian equal-
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Fig. 2. Turbo equalization.

izer followed by a soft-input soft-output channel decoder [6]. The
two stages are separated by deinterleavers and interleavers. As-
sume that fbig is mapped into fb�(i)g after deinterleaving. An it-
erative (Turbo) receiver can be implemented as shown in Fig. 2,
where f�1(bi)g and f�2(b�(i))g are the posterior distribution in
terms of LLR at the output of the Bayesian equalizer and the chan-
nel decoder. �1(bi) and �2(b�(i)) are respectively the extrinsic in-
formation, which are act as prior information to exchange between
the Bayesian equalizer and channel decoder. Note that at the first
iteration, the extrinsic information f�1(bi)g and f�2(bi)g are sta-
tistically independent. But subsequently since they use the same
information indirectly, they will become more and more correlated
and finally the improvement through the iterations will diminish.



5. SIMULATION RESULTS

In this section, the GMSK signal with BT = 0:3 is chosen to
provide simulation examples to illustrate the performance of the
Turbo equalizer developed in this paper. We consider the multipath
channel shown in Fig. 3 A&B, where h(t) =

Pp

l=1 al�(t � �l),
with the number of the path p = 3. (Note that the channel is nor-
malized to have unit norm, i.e., ja1j2 + ja2j2 + ja3j2 = 1). p0 =
�3 and p1 = 6 is chosen to make the truncation for the tapped-
delay line model (5). The truncated tap coefficients are shown in
Fig. 3 C&D.
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Fig. 3. The simulated multipath channel: (A) The channel delay
profile (real part); (B) The channel delay profile (imaginary part);
(C) The coefficients of the tapped-delay line model (real part); (D)
The coefficients of the tapped-delay line model (imaginary part).

The approximation of the phase pulse-shaping (1) is employed
to reduce the number of the states of the sampled GMSK signal.
The channel code is a rate of 1

2 constraint length-5 convolutional
code (with generators 23, 35 in octal notation). The interleaver is
generated randomly and fixed for all simulations. The block size of
the information bits is set to be 128. In order to resolve the phase
and shift ambiguities, 25 training bits are added to the 256 inter-
leaved code bits. Finally, 2 tail bits are added to every data block
to close the memory of the GMSK signal. In computing the bit
probabilities, the Gibbs sampler is iterated 100 runs for each data
block, with the first 50 iterations as the “burning-in” period, i.e.,
k0 = K = 50 in (19).

Fig. 4 illustrates the performance of the Turbo equalizer dis-
cussed in Section 5. The code bit error rate at the output of the
Bayesian equalizer is plotted for the first three iterations. By con-
structing a trellis diagram [4] of the uncodedGMSK-modulated sig-
nal (the delay channel model (1) is used here), a MAP demodu-
lation algorithm is performed assuming perfect knowledge of the
channel, and the simulation result is included in Fig. 4. By combin-
ing the MAP decoder with the above MAP demodulator, a conven-
tional iterative (Turbo) equalizer assuming perfect channel knowl-
edge is also implemented, and the code bit error rate at the output
of the MAP demodulator at the third iteration is shown in Fig. 4 for
the purpose of comparison.

It is seen that in terms of bit error rate, the performance of the
proposed Bayesian equalizer is within about 1dB from the uncoded
MAP demodulation which assumes the perfect knowledge about
channel. It is also seen that by incorporating the extrinsic infor-
mation provided by the channel decoder, the proposed Bayesian e-
qualizer achieves significant performance improvement by the iter-
ative procedure. For the coded system, the simulation result shows
that the code bit error rate of our proposed Turbo equalizer is also
within about 1dB from the Turbo equalizer which assumes perfect
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Fig. 4. Performance of Turbo equalizer for the multipath distorted
GMSK system with BT = 0:3.

knowledge about channel.

6. CONCLUSION

We have considered the problem of signal recovery in GMSK sys-
tems with multipath distortions. A nonlinear model is derived for
the sampled signal at the receiver due to the nonlinear nature of
the GMSK modulation. A novel equalization scheme is developed
which is optimal in the sense that it is based on the Bayesian in-
ference of all unknown quantities, and such a Bayesian equalizer
can be efficiently implemented using the Gibbs sampler, a Markov
Chain Monte Carlo procedure for computing Bayesian estimates.
Because of its “soft-input soft output” feature, the Bayesian equal-
izer is designed to be a part of Turbo equalizer, which refines its
processing based on the information from the decoding stage. The
effectiveness of the proposed techniques is demonstrated by simu-
lation examples. In fact, this paper provides an example to use the
Bayesian equalizer for general nonlinear system.
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