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ABSTRACT
The design of a finite impulse response filter often involves a spec-
tral ‘mask’ which the magnitude spectrum must satisfy. This con-
straint can be awkward because it yields an infinite number of
inequality constraints (two for each frequency point). In current
practice, spectral masks are often approximated by discretization,
but in this paper we will show that piecewise constant masks can
be precisely enforced in a finite and convex manner via linear ma-
trix inequalities. This facilitates the formulation of a diverse class
of filter and beamformer design problems as semidefinite pro-
grammes. These optimization problems can be efficiently solved
using recently developed interior point methods. Our results can
be considered as extensions to the well-known Positive-Real and
Bounded-Real Lemmas from the systems and control literature.

1. INTRODUCTION

In the design of finite impulse response (FIR) filters, one often
encounters a spectral mask constraint on the magnitude of the fre-
quency response of the filter (e.g., [1–4]). That is, for givenL(ejω)
andU(ejω), constrain the filter coefficientsgk so that

L(ejω) ≤ |G(ejω)| ≤U(ejω) for all 0≤ ω < 2π, (1)

whereG(ejω) = ∑k gke−jωk, or determine that the constraint can-
not be satisfied. A spectral mask constraint can be rather awkward
to accommodate into general optimization-based filter design tech-
niques because: (i) it is semi-infinite—there are two inequality
constraints for everyω ∈ [0,2π); and (ii) the set of feasible fil-
ter coefficients is in general non-convex due to the lower bound on
|G(ejω)|. In order to efficiently solve filter design problems em-
ploying such constraints, we must find a way in which (1) can be
represented in a finite and convex manner.

There are two established approaches to deal with the non-
convexity of (1). The first is to enforce additional constraints
on the parametersgk so thatG(ejω) has ‘linear phase’. In that
case|G(ejω)| becomes a linear function of approximately half the
gk’s, and (1) can be reduced to two semi-infinite linear (and hence
convex) constraints. The second is to reformulate (1) in terms
of the autocorrelation of the filterrm = ∑k gkgk−m, [5, 6]. Since
R(ejω) = |G(ejω)|2, Eq. (1) is equivalent to

L(ejω)2 ≤ R(ejω) ≤U(ejω)2 for all 0≤ ω < 2π, (2)

which amounts to two semi-infinite linear constraints onrm. Note
that the constraint thatR(ejω) ≥ L(ejω)2 ≥ 0 is sufficient to en-
sure that a filtergk can be extracted (though not uniquely) from a
designed autocorrelationrm via spectral factorization [6,7].
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The problem of representing (2) [or (1)] in a finite man-
ner is more challenging. One approach is to approximate the
constraints by discretizing them uniformly in frequency and en-
force: L(ejωi )2 + ε ≤ R(ejωi ) ≤ U(ejωi )2 − ε for ωi = 2πi/N,
i = 0,1, . . . ,N−1, whereε andN are chosen heuristically. Unfor-
tunately, asN is increased so thatε can be reduced, the resulting
formulation can become prone to numerical difficulties. (Other
discretization techniques are also available [8].) Algorithms of
the exchange type [1, 3, 4] employ a non-uniform discretization
of (2) at each stage of the algorithm, where the sample points
are determined by the stationary points of the current estimate
of the optimalR(ejω). At each stage, an optimization problem is
solved subject to appropriate equality constraints derived from (2)
at those sample points. Although exchange methods often work
well for the design of low-pass filters, substantial effort is required
to guarantee the algorithm’s convergence [4]. Furthermore, the
algorithms may require significant ‘re-tailoring’ in order to incor-
porate additional constraints on the filter coefficients (e.g., [9]).

The main result of this paper is that piecewise constant masks
can be precisely represented in a convex and finite manner via a set
of linear matrix inequalities (LMIs). (The reader is referred to [10]
for the derivation and further references.) As a result, these masks
can be efficiently incorporated, without discretization, into the di-
verse class of filter [6, 11, 12] and beamformer design algorithms
based on convex optimization, and in particular semidefinite pro-
gramming [13]. We will provide examples of effective design al-
gorithms for standard linear-phase and nonlinear-phase FIR filters,
and for narrow-band beamformers for linear antenna arrays.

When specialized to the case of a constant lower mask con-
straint, our results imply a new LMI formulation of the Positive
Real Lemma [14] for FIR systems. This new formulation states
that for rm, −M + 1 ≤ m≤ M − 1, with r−m = r̄m, R(ejω) ≥ 0
for all ω ∈ [0,2π] if and only if there exists anM × M posi-
tive semidefinite Hermitian matrixX such that tr(X) = r0 and

∑M−`
`=1 [X]`+m,` = rm, for 1≤ m≤ M − 1. The more general re-

sults in this paper are LMI formulations of constraints of the form
R(ejω)≥ L2 for all ω∈ [α,β], and therefore they can be considered
as generalizations of the Positive Real Lemma. Simple manipula-
tion of those results generates LMI formulations of constraints of
the formR(ejω) ≤U2 for all ω ∈ [α,β], which can be considered
as generalizations of the Bounded Real Lemma.

Notation: Vectors and matrices will be represented by
bold lowercase and uppercase letters, respectively, and their el-
ements by medium weight lower case letters with appropriate
subscripts; e.g.,gk = [g]k, xi j = [X]i j . We definev(θ;n) :=[
1,ejθ,ej2θ, . . . ,ejnθ]T

, where “T” denotes the transpose, which is
a basis for the (complex coefficient) trigonometric polynomials of



degreen. If the sequencegk denotes the impulse response of a
causal FIR filter, and if[g]k = gk, then the frequency response
G(ejθ) = ∑n

k=0gke−jkθ = v(θ;n)Hg, where the superscript “H” de-
notes the conjugate transpose. We denote byH

n×n
+ the set ofn×n

positive semidefinite Hermitian matrices, and byS n×n
+ ⊂H n×n

+
the subset of real symmetric positive semidefinite matrices.

2. LINEAR MATRIX INEQUALITY FORMULATION

Given 0≤ α < β < 2π, we define the sets

K (α,β) := {p ∈ R×C
n | Rev(θ;n)Hp≥ 0, ∀θ ∈ [α,β]},

¯K (α,β) := {p ∈ R×C
n | Rev(θ;n)Hp≥ 0,∀θ ∈ [0,2π)\(α,β)}.

These sets consist of the coefficients of the trigonometric polyno-
mials whose real part is non-negative over a segment of the unit
circle, or its complement, respectively. In this section we provide
linear matrix inequality (LMI) descriptions of these sets—a result
which may be of independent interest. Since the frequency re-
sponse of a linear phase filter (or the autocorrelation of a general
filter) can be written in terms of the real part of a trigonometric
polynomial, these LMI descriptions ofK (α,β) and ¯K (α,β) gen-
erate a finite, convex formulation of piecewise constant spectral
mask constraints, as will be shown in Section 3. For complete-
ness, we let

K (0,2π) := {p ∈ R×C
n | Rev(θ;n)Hp≥ 0, ∀θ ∈ [0,2π)},

describe the trigonometric polynomials that are nonnegative on the
entire unit circle.

In order to provide a concise LMI description of these cones,
we define the unit lower triangular(n+1)× (n+1) Toeplitz ma-
tricesT0,n, T1,n, . . . , Tn,n as

[Tk,n]i j =
{

1, if i = k+ j ,
0, otherwise,

with i, j ∈ {0,1, . . . ,n}.

Thus, T0,n = I and the matrix inner productTk,n •X :=
tr(T T

k,nX) = ∑n+1−k
`=1 X`+k,`, for all X ∈ C

(n+1)×(n+1) . That is,
Tk,n •X is the sum of the elements on thekth off-diagonal ofX.
We define the linear operatorL̆(·) by q = L̆(X) ∈ C

n+1, where

q0 = T0,n •X, qi = 2(Ti,n •X), for i = 1,2, . . . ,n.

Given 0≤ α < β < 2π, we define the vectord(α,β) ∈ R×C as:

d(α,β) :=




[
cosα+cosβ−cos(β−α)−1

(1−ejα)(ejβ −1)

]
if α > 0[ −sinβ

j(1−ejβ)

]
if α = 0.

Using d(α,β), we define the linear operator̆Λ(·), by q =
Λ̆(X;α,β) ∈ C

n , where

q0 = d0(α,β)(T0,n−1 •X)+d1(α,β)(T1,n−1 •X),
qk = 2d0(α,β)(Tk,n−1 •X)+d1(α,β)(Tk−1,n−1 •X)

+d1(α,β)(Tk+1,n−1 •X), for k = 1,2, ...,n−2,

qn−1 = 2d0(α,β)(Tn−1,n−1 •X)+d1(α,β)(Tn−2,n−1 •X),
qn = d1(α,β)(Tn−1,n−1 •X).

With this notation, we can now state our main result:

Theorem 1 For 0 ≤ α < β < 2π, the conesK (α,β), ¯K (α,β)
andK (0,2π) admit the following LMI descriptions:

K (α,β) = {p | p+ξje0 = L̆(X)+ Λ̆(Z;α,β), for someξ ∈ R,

X ∈H (n+1)×(n+1)
+ ,Z ∈H n×n

+ },
¯K (α,β) = {p | p+ξje0 = L̆(X)− Λ̆(Z;α,β), for someξ ∈ R,

X ∈H (n+1)×(n+1)
+ ,Z ∈H n×n

+ },
K (0,2π) = {L̆(X) |X ∈H (n+1)×(n+1)

+ }. (3)

Equation (3) is the new formulation of the Positive Real
Lemma [14] for FIR systems stated in the Introduction. Thus,
Theorem 1 can be seen as an extension of the Positive Real Lemma
for FIR systems. For real trigonometric polynomials of the form
∑n

k=0 pk cos(kθ), the results in Theorem 1 may be simplified:

Kreal(α,β) =
{
p ∈ R

n+1
∣∣∣ n

∑
k=0

pk cos(kθ) ≥ 0,∀θ ∈ [α,β]
}

=
{
p

∣∣∣ p= L̆(X)+ Λ̆(Z;α,β), for some

X ∈S (n+1)×(n+1)
+ ,Z ∈S n×n

+

}
, (4)

and similarly for ¯Kreal(α,β). Notice thatX andZ in (4) are real
symmetric, rather than complex Hermitian. Further (internal) sim-
plifications of (4) are possible if the segment[α,β] is of the form
[α,π], [10].

3. APPLICATIONS TO FIR FILTER DESIGN

In this section we use the results of Section 2 to precisely trans-
form the piecewise constant portions of the masks in (1) or (2)
into pairs of LMIs. The first step is to writeG(ejθ) or R(ejθ) in
the form Rev(θ; ·)Hp. To do so, we defineM ∈ R

(2M−1)×M and
Ĩ ∈ R

M×M such that

M :=


0 J

1 0
0 I


 and Ĩ :=

[
1 0
0 2I

]
, (5)

whereI is the (M − 1)× (M − 1) identity matrix andJ is the
(M −1)× (M −1) matrix with ones on the anti-diagonal and ze-
ros elsewhere. For a filter of lengthM, if we define ˜r ∈ R

M such
that [r̃]m = rm, 0≤ m≤ M−1, thenR(ejθ) = ej(M−1)θv(θ;2M−
1)HMr̃ = Rev(θ;M−1)HĨr̃. Similarly, for a filter of odd length
2M −1 which is symmetric and centered at the origin, if we de-
fine g̃ ∈ R

M such that[g̃]k = gk, 0≤ k ≤ M − 1 then,G(ejθ) =
Rev(θ;M − 1)HĨg̃. (Other linear phase filters can be handled in
similar ways.)

We will focus on the design of a simple low-pass filter with a
relative spectral maskζL̄(ejθ)≤ |G(ejθ)| ≤ ζŪ(ejθ). The extension
to band-pass and multi-band filter is immediate and is implicit in
the design in Section 4. For a simple low-pass filter, the relative
spectral mask has

L̄(ejθ) =

{
L̄p 0≤ θ ≤ 2π fp

L̄s 2π fp < θ ≤ π
, Ū(ejθ) =

{
Ūp 0≤ θ < 2π fs
Ūs 2π fs ≤ θ ≤ π

,

(6)
with fp and fs denoting the normalized frequencies of the pass-
band and stop-band edges, respectively, 0≤ fp < fs ≤ 1/2, and



Ūs ≤ Ūp, L̄p ≤ Ūp andL̄s ≤ L̄p. In the case of linear phase filters
we setL̄s = −Ūs and for autocorrelation designs we setL̄s = 0.
By observing the common form ofG(ejθ) andR(ejθ) above, and
that L̄s ≤ L̄p andŪs ≤ Ūp, the spectral mask constraint can be re-
written in a generic form as

Ĩx̃−ζqL̄q
pe0 ∈ ¯Kreal(2π fp,π),

Ĩx̃−ζqL̄q
se0 ∈Kreal(0,π),

ζqŪq
pe0− Ĩx̃ ∈Kreal(0,π),

ζqŪq
s e0− Ĩx̃ ∈Kreal(2π fs,π),

(7)
whereq = 1 andx̃= g̃ when we design an odd-length symmetric
filter, andq = 2 andx̃= r̃ for autocorrelation designs.

The constraints in (7) define the set of feasible filters. A large
class of filter design objectives can be cast as the minimization
of a convex quadratic function of the parameters over the feasible
set [3, 4]. Filter design problems in this class take the following
form: Given a positive semidefinite matrixQ, a vectorl and an
integerq ∈ {1,2}, find x̃ achieving miñx x̃TQx̃− 2lTx̃ subject
to (7) and a linear normalization constraint on either ˜x or ζ, or
show that none exist. This generic design problem can be solved
by solving the following convex optimization problem:

Problem 1 Given Q = LLT, l, q, fp, fs, L̄p, L̄s, Ūp,
Ūs, and M, find x̃ ∈ R

M achieving min Γ − 2lTx̃ over x̃,
ζ > 0, X(pu),X(pl),X(sl),X(su) ∈ SM×M

+ and Z(pl),Z(su) ∈
S (M−1)×(M−1)

+ , subject to‖LTx̃‖2
2 ≤ Γ,

Ĩx̃−ζqL̄q
pe0 = L̆(X(pl))− Λ̆

(
Z(pl);2π fp,2π(1− fp)

)
, (8)

Ĩx̃−ζqL̄q
se0 = L̆(X(sl)), (9)

ζqŪq
pe0− Ĩx̃= L̆(X(pu)), (10)

ζqŪq
s e0− Ĩx̃= L̆(X(su))+ Λ̆

(
Z(su);2π fs,2π(1− fs)

)
, (11)

and one of the normalizationsζ = 1 or cTx̃= 1, for a given vector
c, or show that none exist.

In Problem 1, Eqs (8) and (9) enforce the lower bound con-
straint of the spectral mask, and Eqs (10) and (11) enforce the
upper bound constraint. Problem 1 consists of a linear objective,
linear equality constraints [(8)–(11)], a linear inequality constraint
on ζ, a ‘rotated’ second-order cone constraint‖LTx̃‖2

2 ≤ Γ, and
positive semi-definiteness constraints on the variousX andZ ma-
trices. Hence, Problem 1 is a convex symmetric cone programme
(e.g., [15]), which can be efficiently solved using interior point
methods. Furthermore, infeasibility can be reliably detected. If ˜x

represents the autocorrelation sequence of the filter, then an opti-
mal filter can be obtained (though not uniquely) from the solution
of Problem 1 by spectral factorization [6,7].

Example 1 Consider the design of a length 49 FIR filter which
has the minimal ‘stop-band energy’,Es = (1/π)

R π
2π fc |G(ejθ)|2 dθ,

subject to the spectral mask in (6), withfp = 0.1200, fs = 0.1506,
L̄2

p = 10−0.15, Ū2
p = 100.15, Ū2

s = 10−4. For an odd-length sym-

metric filter, Es = g̃TQg̃, whereQ = ĨQ̂Ĩ, [Q̂]i j = 2
(
sinc(i +

j) + sinc(i − j)
) − 4 fc

(
sinc(2 fc(i + j)) + sinc(2 fc(i − j))

)
, for

0≤ i, j ≤ M −1, and sinc(x) = sin(πx)/(πx) for x 6= 0 and 1 for
x = 0. For a general filter,Es = l̃Tr̃, where l̃0 = 1/2− fc and
l̃m = −2 fcsinc(2 fcm), for 1≤ m≤ M−1. Therefore, optimal fil-
ters can be designed using Problem 1 with the normalization con-
straintζ = 1. For fc = ( fp + fs)/2, the power spectrum of the op-
timal linear phase filter is shown in Fig. 1(a) and that of an optimal

nonlinear phase filter is shown in Fig. 1(b). The linear-phase case
was solved (usingSeDuMi [15]) in 3.5 seconds on a 400 MHz PEN-
TIUM II workstation, whilst the nonlinear phase case required 24
seconds. The sharper cut off and improved high-frequency decay
of the nonlinear phase filter are clear from these figures. Although
these filters minimize the stop-band energy, they do not minimize
the proportion of the total energy of the filter in the stop band. A
nonlinear phase filter which does so can be found by removing the
constraintζ = 1 from Problem 1 (and hence allowing the mask to
‘float’), and replacing it withr0 = 1. The resulting optimal auto-
correlation was obtained in 25 seconds and the power spectrum of
an optimal filter is shown in Fig. 1(c). Observe that the flatter pass-
band response in this case is achieved without greatly affecting the
stop-band decay. 2

We have also used a variant of Problem 1 to design ro-
bust ‘chip’ waveforms [10–12] for digital communication schemes
based on code division multiple access, and to design (signal-
independent and signal-adapted) filter banks and wavelets.

4. APPLICATIONS TO BEAMFORMER DESIGN

If xk(n) denotes (the complex envelope of) the output of thekth
antenna in an array, andw is the vector of (conjugates of) the an-
tenna weights, then the output of a narrow-band beamformer can
be written asy(n) =wHx(n), [16]. It is well known [16], that the
(complex) ‘gain’ in a direction at an angleφ to broadside of a lin-
ear equi-spaced array operating at wavelengthλ with inter-element
spacingλ/2 isW̃(φ) = ejχW(ejπsinφ), whereW(ejθ) is the Fourier
Transform ofwk, andejχ determines the ‘phase centre’ of the array.
In many applications, we would like to control the ‘beam pattern’
of the array,|W̃(φ)|2, but that results in non-convex constraints on
wk. Using the autocorrelation of the weights,rm = ∑k wkw̄k−m, we
have thatR̃(φ) = ∑mrme−jmπsinφ = |W̃(φ)|2, and therefore bound
constraints on|W̃(φ)|2 result in linear constraints onrm. For anM-
element array,̃R(φ) = Rev(πsinφ;M−1)HĨr̃, where[r̃]m = rm,
0≤ m≤ M−1 andĨ was defined in Section 3. Therefore, piece-
wise constant constraints on|W̃(φ)|2 can be compactly enforced in
an analogous way to that for the spectral masks in Section 3, as we
now demonstrate in a simple example derived from [16, Fig. 2.5].

Example 2 Suppose that a desired signal impinges on a 16-
element array of the above form from an angle ofφd =−18◦ ±6◦,
and that interfering signals arrive from angles in the rangeφi =
21.5◦ ± 6◦. An interesting data independent [16] beamforming
problem is to minimize the response to (spatially) white noise (i.e.,
wHw = r0), subject to the gain in the direction of the desired sig-
nal being within±∆d dB, and to the gain in the direction of the
interferers being less than∆i dB. Furthermore, we would like to
keep the sidelobes below∆s dB, and to constrain the main lobe to
be within−18◦ ±13◦. In short, our objective is to minimize the
white noise gain, subject to a mask of the shape in Fig. 2(b). This
problem can be cast in a similar way to Problem 1 with ˜x = r̃,
ζ = 1, Q = 0, andl = −e0/2, except that the vector ˜r and the
variousX andZ matrices may now be complex. The trade-offs
between the white noise gain and the level of interference suppres-
sion, for different values of the maximum sidelobe level and for
a ‘look direction ripple’∆d = 0.1 dB can therefore be efficiently
found. Some examples are shown in Fig. 2(a), and an example of
the resulting beam patterns is shown in Fig. 2(b). (Each optimal ˜r

was computed in about seven seconds.) 2
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Fig. 1. Power spectra of the filters from Ex. 1, along with the corresponding mask. In (c),ζ∗ is the optimal value ofζ from Prob. 1.
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Fig. 2. (a) Trade-off between white noise gain,wHw, and interfer-
ence suppression,|∆i |, for sidelobe levels,∆s = 0.1 dB (solid), -18
dB (dotted), -20 dB (dashed), and -22 dB (dot-dashed), for Ex. 2.
The◦ denotes the trade-off achieved by the beamformer in (b).

5. CONCLUDING REMARKS

In this paper, we have provided a compact representation of piece-
wise constant spectral mask constraints via linear matrix inequali-
ties. This representation is precise and does not require discretiza-
tion of the mask. The representation is also convex, which allows
it to be incorporated into efficient design algorithms for a diverse
class of FIR filters and beamformers. In addition to the applica-
tions considered here, generalizations of our results to rational fil-
ters (i.e., infinite impulse response filters) and to multidimensional
filters are of interest in control theory, as well as signal and image
processing, and are currently being pursued.
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