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ABSTRACT The problem of representing (2) [or (1)] in a finite man-

The design of a finite impulse response filter often involves a spec-ner is more challenging. One approach is to approximate the
tral ‘mask’ which the magnitude spectrum must satisfy. This con- constraints by discretizing them uniformly in frequency and en-
straint can be awkward because it yields an infinite number of force: L(d®)2 +& < R(é®) < U(d®)2 —¢ for wy = 2ri/N,
inequality constraints (two for each frequency point). In current 1 =0,1,...,N—1, wheree andN are chosen heuristically. Unfor-
practice, spectral masks are often approximated by discretization tunately, aN is increased so thatcan be reduced, the resulting
but in this paper we will show that piecewise constant masks canformulation can become prone to numerical difficulties. (Other
be precisely enforced in a finite and convex manner via linear ma- discretization techniques are also available [8].) Algorithms of
trix inequalities. This facilitates the formulation of a diverse class the exchange type [1, 3, 4] employ a non-uniform discretization
of filter and beamformer design problems as semidefinite pro- of (2) at each stage of the algorithm, where the sample points
grammes. These optimization problems can be efficiently solved are determined by the stationary points of the current estimate
using recently developed interior point methods. Our results can Of the optimalR(€/®). At each stage, an optimization problem is
be considered as extensions to the well-known Positive-Real andsolved subject to appropriate equality constraints derived from (2)
Bounded-Real Lemmas from the systems and control literature. ~ at those sample points. Although exchange methods often work
well for the design of low-pass filters, substantial effort is required
1. INTRODUCTION to guarantee the algorithm’s convergence [4]. Furthermore, the
algorithms may require significant ‘re-tailoring’ in order to incor-

In the design of finite impulse response (FIR) filters, one often Porate additional constraints on the filter coefficients (e.qg., [9]).
encounters a spectral mask constraint on the magnitude of the fre-  The main result of this paper is that piecewise constant masks

quency response of the filter (e.g., [1-4]). That s, for gikés®) can be precisely represented in a convex and finite manner via a set
andU (%), constrain the filter coefficientk so that of linear matrix inequalities (LMIs). (The reader is referred to [10]
: ) ) for the derivation and further references.) As a result, these masks
L(€¥) <[G(E¥)| <U(e®) forall0<w<2m (1) can be efficiently incorporated, without discretization, into the di-

whereG(&%) = 5 gke 1, or determine that the constraint can- Verse class of filter [6, 11, 12] and beamformer design algorithms
not be satisfied. A spectral mask constraint can be rather awkwardP@sed on convex optimization, and in particular semidefinite pro-
to accommodate into general optimization-based filter design tech-9ramming [13]. We will provide examples of effective design al-
niques because: (i) it is semi-infinite—there are two inequality 9orithms for standard linear-phase and nonlinear-phase FIR filters,
constraints for every € [0,2m); and (i) the set of feasible fil- and for narrow-band beamformers for linear antenna arrays.
ter coefficients is in general non-convex due to the lower bound on ~ When specialized to the case of a constant lower mask con-
|G(d®)]. In order to efficiently solve filter design problems em- straint, our results imply a new LMI formulation of the Positive
ploying such constraints, we must find a way in which (1) can be Real Lemma [14] for FIR systems. This new formulation states
represented in a finite and convex manner. that forrm, —M+1<m<M-—1, withr_m=rpn RE®) >0
There are two established approaches to deal with the non-for all w € [0,2r] if and only if there exists atM x M posi-
convexity of (1). The first is to enforce additional constraints tive semidefinite Hermitian matri¥X such that tX') = ro and
on the parametergy so thatG(€®) has ‘linear phase’. In that z?";f[x}u_mf =rIm for L<m<M-—1. The more general re-
case|G(e®)| becomes a linear function of approximately half the ~ sults in this paper are LMI formulations of constraints of the form
gk's, and (1) can be reduced to two semi-infinite linear (and hence R(€%) > L? for all w € [a, B], and therefore they can be considered
convex) constraints. The second is to reformulate (1) in terms as generalizations of the Positive Real Lemma. Simple manipula-
of the autocorrelation of the filtet, = Y gkOk—m. [5, 6]. Since tion of those results generates LMI formulations of constraints of
R(6%®) =|G(®)|2, Eq. (1) is equivalent to the formR(€%) < U2 for all w € [a,B], which can be considered
L(ei‘*’)z < R(ei‘*’) gU(ei“’)z forall0<w<2m  (2) as generglizations of the Bounded. Real L.emma.

Notation: Vectors and matrices will be represented by
which amounts to two semi-infinite linear constraintsrgn Note bold lowercase and uppercase letters, respectively, and their el-
that the constraint theR(€®) > L(€*)* > 0 is sufficient to en-  ements by medium weight lower case letters with appropriate
sure that a filtegy can be extracted (though not uniquely) from a  subscripts; e.g.gx = [g]k, Xij = [XJij. We definev(6;n) :=
designed autocorrelatiom, via spectral factorization [6, 7]. [1’6976129"“7@9]1 where 4" denotes the transpose, which is

*Email: davidson@ece.mcmaster.ca a basis for the (complex coefficient) trigonometric polynomials of




degreen. If the sequencey denotes the impulse response of a H(a,B)
causal FIR filter, and ifg]x = gk, then the frequency response
G(%) = R_,ake*® = v(8;n)"g, where the superscript™ de-

notes the conjugate transpose. We denoteZf}" the set ohx n

Theorem 1 For 0 < a < B < 2m, the cones¥ (a, ),
and.# (0,2m) admit the following LMI descriptions:

A (a,B) = {p| p+E&eo = L(X)+A(Z;a,B), for someE € R,

positive semidefinite Hermitian matrices, _amd_ﬁyfxn C Jffxn X e inwl)X(nH)’ Z e ™M,
the subset of real symmetric positive semidefinite matrices. — ] . .
K (a,B)={p|p+&eo=L(X)—A(Z;a,B), for somef € R,
2. LINEAR MATRIX INEQUALITY FORMULATION X e "V g ey,

©)

X (a,B):={peRxC"|Rev(8;n)"p >0, VO € [a,B]}, Equation (3) is the new formulation of the Positive Real

= . . Lemma [14] for FIR systems stated in the Introduction. Thus,

= n Hp > . . ”

H(0,B):={p e RxC"[Rev(8;n)"p > 0,78 € (0,210 \ (o, B)} Theorem 1 can be seen as an extension of the Positive Real Lemma
These sets consist of the coefficients of the trigonometric polyno- forg FIR systems. For real trigonometric polynomials of the form
mials whose real part is non-negative over a segment of the unitk—o PkCoSkb), the results in Theorem 1 may be simplified:
circle, or its complement, respectively. In this section we provide
linear matrix inequality (LMI) descriptions of these sets—a result
which may be of independent interest. Since the frequency re-
sponse of a linear phase filter (or the autocorrelation of a general

- (41 1
Given 0< a < B < 2m, we define the sets H(0,2m) = {L(X)| X ¢ Jﬁ(w P )}-

Sreal®.B) = {p < BY*L| 5 pecosk®) > 0.v0 < .5}
k=0

filter) can be written in terms of the real part of a trigopnometric
polynomial, these LMI descriptions of (a, 3) and-# (a, B) gen-

erate a finite, convex formulation of piecewise constant spectral
mask constraints, as will be shown in Section 3. For complete-

ness, we let

X(0,2m) = {p e Rx C" | Rev(8;n)"p >0, VB € [0,2m)},

- {p ’p: L(X)+A(Z;a,p), for some

X e (MY Zegrnl @)

and similarly for ;e (0, 3). Notice thatX andZ in (4) are real
symmetric, rather than complex Hermitian. Further (internal) sim-
plifications of (4) are possible if the segméat f] is of the form
[or, 7, [10].

describe the trigonometric polynomials that are nonnegative on the

entire unit circle.

In order to provide a concise LMI description of these cones,

we define the unit lower trianguld@n+ 1) x (n+ 1) Toeplitz ma-

tricesTon, Tin, ---, Thnas
1, ifi=k+j, .
[Ticnlij = { 0. otherwisé, withi,j € {0,1,...,n}.

Thus, Ton = I and the matrix inner producy, e X =
tr(Ty , X) = YK Xy, for all X e Cm x4 That is,
Ty ne X is the sum of the elements on tki off-diagonal ofX.
We define the linear operatbr-) by ¢ = L(X) € C"*1, where

Go=Tone X, G=2(TpeX), fori=12..,n

Given 0< a < B < 2m, we define the vectad(a,3) e Rx C as:
cosa +cosp—cogB—a)—1
(1-&%) (P -1)
—sinB
j(1-¢P)

ifa>0
d(G,B)::
} ifa=0.

Using d(a,B), we define the linear operatok(-), by g =
A(X;a,B) € C", where

Go = do(a,B)(Ton-10X) +di(a,B)(Tn-10X),
Ok = 2do (@, B)(Tkn-10 X ) +d1 (. B)(Tk-1n-10 X)
+0d1(0,B)(Tkp1n-10 X), fork=1,2,....n—2,
On-1 = 20do(0t, B)(Th-1,n-10 X ) +d1 (0, B)(Th-2n-10 X),

On = d1(0,B)(Th-1n-10 X).

With this notation, we can now state our main result:

3. APPLICATIONS TO FIR FILTER DESIGN

In this section we use the results of Section 2 to precisely trans-
form the piecewise constant portions of the masks in‘gl) or (2)
into pairs of LMIs. The first step is to write(€®) or R(d®) in
the form Rev(8;-)"p. To do so, we defindZ € RM-1)xM gnd
I ¢ RM*M gych that

|11 o0

T|lo 21

0
M =|1
0

where I is the (M — 1) x (M — 1) identity matrix andJ is the
(M —1) x (M —1) matrix with ones on the anti-diagonal and ze-
ros elsewhere. For a filter of lengM, if we definer”e RM such
that [#]m = rm, 0 <M< M — 1, thenR(&®) = &M~18(6;2M —
1" M7 = Rewv(6;M — 1) I7. Similarly, for a filter of odd length
2M — 1 which is symmetric and centered at the origin, if we de-
fine § € RM such thatglx = gk, 0 < k < M — 1 then,G(&®) =
Rew(8;M — 1)"Ig. (Other linear phase filters can be handled in
similar ways.)

We will focus on the design of a simple low-pass filter with a
relative spectral masi_(6®) < |G(€®)| < ZU (&®). The extension
to band-pass and multi-band filter is immediate and is implicit in
the design in Section 4. For a simple low-pass filter, the relative
spectral mask has

E(ée): |:p OSGSZT[fp
Ls 2mfp<@<m’

J ~
0 and I (5)
I

_ . 7. <
U(e'e): U_p 0_9<2T[f57
Us 2mfs<B<m
(6)
with fp and fs denoting the normalized frequencies of the pass-
band and stop-band edges, respectively, €, < fs < 1/2, and



Us <Up, Lp <Up andLs < Lp. In the case of linear phase filters  nonlinear phase filter is shown in Fig. 1(b). The linear-phase case
we setlLs = —Us and for autocorrelation designs we $at= 0. was solved (usin§eDuMi [15]) in 3.5 seconds on a 400 MHZER-

By observing the common form @&(e®) andR(e®) above, and TIuM Il workstation, whilst the nonlinear phase case required 24
thatLs < Lp andUs < Up, the spectral mask constraint can be re- seconds. The sharper cut off and improved high-frequency decay

written in a generic form as of the nonlinear phase filter are clear from these figures. Although
- _ _ - these filters minimize the stop-band energy, they do not minimize
I% -1 3eo € Heal2nifp, 1), %Udeq — IE € Hiea(0,M), the proportion of the total energy of the filter in the stop band. A
1% -9 %q Hreal(0,T0), {903y — I c Hreal(2TtEs, T, nonlinear phase filter which does so can be founo! by removing the
@) constraint¢ =1 fro_m P_rob_lem 1 (and hence aI_Iowmg _the mask to
whereq = 1 and2"= § when we design an odd-length symmetric float), and replacing it withro = 1. The resulting optimal auto-
filter, andq = 2 anda’ = # for autocorrelation designs. correlation was obtained in 25 seconds and the power spectrum of

The constraints in (7) define the set of feasible filters. A large &0 optimal filter is shown in Fig. 1(c). Observe that the flatter pass-
class of filter design objectives can be cast as the minimization band response in this case is achieved without greatly affecting the
of a convex quadratic function of the parameters over the feasible StoP-band decay. =
set [3,4]. Filter design problems in this class take the following
form: Given a positive semidefinite matr@, a vectorl and an
integerq € {1,2}, find & achieving mig Z'Q& — 2I"& subject
to (7) and a linear normalization constraint on eitheor™¢, or
show that none exist. This generic design problem can be solved
by solving the following convex optimization problem:

We have also used a variant of Problem 1 to design ro-
bust ‘chip’ waveforms [10-12] for digital communication schemes
based on code division multiple access, and to design (signal-
independent and signal-adapted) filter banks and wavelets.

o 4. APPLICATIONS TO BEAMFORMER DESIGN
Problem1 Given Q = LL", I, q, fp, fs, Lp, Ls, Up,

Us, and M, find & € RM achieving minT — 20’4 over &, If x(n) denotes (the complex envelope of) the output ofkthe
>0 XU x0) x6) x(60 ¢ SMM gng Z(P) Z(sU ¢ antenna in an array, and is the vector of (conjugates of) the an-

(M—1)x(M—-1) . a2 + tenna weights, then the output of a narrow-band beamformer can
S » subject td| L& |5 < T, be written ag/(n) = wHx(n), [16]. It is well known [16], that the

(complex) ‘gain’ in a direction at an anglgto broadside of a lin-

I#-feo = L(X ) —A(ZP); 2nfp, 2m(1— ),  (8) ear equi-spaced array operating at Wavelehgﬂigh inter-element
s —79 %0 = L(x) 9 spacingh/2 isW(@) = eXW (&™) whereW(e") is the Fourier
w_ ¢ Sfo v( ) © Transform ofwy, andeX determines the ‘phase centre’ of the array.
{Ugeq— Iz = L(XPY), (10) In many applications, we would like to control the ‘beam pattern’
_ - o o ~ 2 . _ .
ungeo _fi— L(X(S“)) +/\(Z(S”);2m‘s,2n(lf fs)), (11) of the array/W(¢@)|<, but that results in non-convex constraints on

wi. Using the autocorrelation of the weightg, = 3 WiWk—m, we

and one of the normalizatios= 1 or '@ — 1, for a given vector ~ Nave thaR(g) = 5 mrme ™" = W(q)|? and therefore bound

¢, or show that none exist. constraints oM(m)|2 resultin linear constraints am,. For anM-
element arrayR(¢) = Rewv(msing;M — 1)" I, where[#]m = rm,

In Problem 1, Egs (8) and (9) enforce the lower bound con- 0 < m<M —1 andI was defined in Section 3. Therefore, piece-
straint of the spectral mask, and Eqgs (10) and (11) enforce theWwise constant constraints ¢ (¢)|? can be compactly enforced in
upper bound constraint. Problem 1 consists of a linear objective, an analogous way to that for the spectral masks in Section 3, as we
linear equality constraints [(8)—(11)], a linear inequality constraint Now demonstrate in a simple example derived from [16, Fig. 2.5].
on ¢, a ‘rotated’ second-order cone constrajdi’#|[3 < T, and
positive semi-definiteness constraints on the vari§uand Z ma-
trices. Hence, Problem 1 is a convex symmetric cone programme
(e.g., [15]), which can be efficiently solved using interior point
methods. Furthermore, infeasibility can be reliably detectea:. If ~
represents the autocorrelation sequence of the filter, then an opti
mal filter can be obtained (though not uniquely) from the solution
of Problem 1 by spectral factorization [6, 7].

Example 2 Suppose that a desired signal impinges on a 16-
element array of the above form from an angleppf= —18° +6°,

and that interfering signals arrive from angles in the ragge
215° +6°. An interesting data independent [16] beamforming
problem is to minimize the response to (spatially) white noise (i.e.,
ww = rp), subject to the gain in the direction of the desired sig-
nal being within+Aq4 dB, and to the gain in the direction of the
interferers being less thaly dB. Furthermore, we would like to

. . . . keep the sidelobes belafss dB, and to constrain the main lobe to
E lel h fal h 49 FIR fil hich L
h;:lrtrr‘fsiwini(r:r?e:}sfls?g;)-tb:n?jejr:ger:g;si ??/th[) fzngf ‘G(ejg;(‘azr;g ¢ be _Wlthlr)—18°_i 130._ In short, our objective is to_ minimize the _
subject to the spectral mask in (6), with = 0.128001 fs = 0.15086, white noise gain, subject to a mask of the shape in Fig. 2(b). This

5 20015 112 . 4015 172 _ a4 i _ problem can be cast in a similar way to Problem 1 vath=7,
Lp =107 Uy = 1005, Ug = 107", For an odd-length sym (=1,Q =0, andl = —eg/2, except that the vectar and the

metric filter, Es = §'Qg, whereQ = IQI, [Qlij = 2(sind(i + various X and Z matrices may now be complex. The trade-offs
i) +sindi — j)) — 4fc(sing2fe(i + j)) + sing2fe(i — j))), for between the white noise gain and the level of interference suppres-
0<i,j <M-—1, and sin¢x) = sin(Tx) /(mx) for x # 0 and 1 for sion, for different values of the maximum sidelobe level and for
x=0. For a general filterEs = I"#, wherelp = 1/2 - fc and a 'look direction ripple’Ag = 0.1 dB can therefore be efficiently

Im = —2fcsing2fcm), for 1 <m< M — 1. Therefore, optimal fil- ~ found. Some examples are shown in Fig. 2(a), and an example of
ters can be designed using Problem 1 with the normalization con-the resulting beam patterns is shown in Fig. 2(b). (Each optimal ~
straint{ = 1. For fc = (fp+ fs)/2, the power spectrum of the op-  was computed in about seven seconds.) m|

timal linear phase filter is shown in Fig. 1(a) and that of an optimal



[

VTR

—

Iy

1 0.2 0.3
f, cycles-per-sample

(a) Linear-phase filter minimizing stop-
band energy.

(b) Nonlinear-phase
stop-band energy.

1 0.2 0.3
f, cycles-per-sample

filter

1 0.2 0.3
f, cycles-per-sample

(c) Nonlinear-phase filter minimizing pro-
portion of energy in stop band.

minimizing

Fig. 1. Power spectra of the filters from Ex. 1, along with the corresponding mask. K (s)the optimal value of from Prob. 1.
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Fig. 2. (a) Trade-off between white noise gain!w, and interfer-
ence suppressiof;|, for sidelobe levels)s = 0.1 dB (solid), -18

(5]
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dB (dotted), -20 dB (dashed), and -22 dB (dot-dashed), for Ex. 2.

Theo denotes the trade-off achieved by the beamformer in (b).

5. CONCLUDING REMARKS

9]

(10]

In this paper, we have provided a compact representation of piece-
wise constant spectral mask constraints via linear matrix inequali-
ties. This representation is precise and does not require discretiza-
tion of the mask. The representation is also convex, which allows

it to be incorporated into efficient design algorithms for a diverse [11] T. N. Davidson, Z.-Q. Luo, and K. M. Wong, “Design of

class of FIR filters and beamformers. In addition to the applica-
tions considered here, generalizations of our results to rational fil-
ters (i.e., infinite impulse response filters) and to multidimensional
filters are of interest in control theory, as well as signal and image

processing, and are currently being pursued.
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