VSIPL: AN OBJECT-BASED OPEN STANDARD API FOR VECTOR, SIGNAL, AND IMAGE

PROCESSING
Randall Janka Randall Judd James Lebak Mark Richards
Dan Campbell
Cadence U.S. Navy MIT Lincoln Georgia Tech
Design Systems SPAWAR Systems Center Laboratory Research Institute
Atlanta, GA San Diego, CA Lexington, MA Atlanta, GA
ABSTRACT 2. THE VSIPL FORUM

VSIPL, the Vector, Signal, and Image Processing Library, is yS|pL began under sponsorship from the U.S. Defense Ad-
an open standard application programmer’s interface (API)yanced Research Projects Agency’s Information Technol-
for signal and image processing. Defined by a consortium of gy Office. David Schwartz of Hughes Research Labora-
industry, government, and academic representatives, VSIPLtory (now HRL, LLC) was the initial principal investigator

is gaining widespread acceptance atedfactostandard in and Chair of the VSIPL Forum. The Navy’s Tactical Ad-
the embedded signal processing world. The primary goal ofyanced Signal Processor (TASP) Common Operating En-
the API is to increase the portablllty of vector Signal Pro- vironment (COE) program then joined the effort and has
cessing, matrix signal processing, and image processing apcontinued as the sponsor in recent years. DARPA and the
plications. In this paper, we present an overview of the de- Nayy shared a common goal to develop computational and

sign, features, and availability of the VSIPL API. communication middleware that freed application software
from being “hard-wired” to a specific vendor.
1. INTRODUCTION Vendor neutrality was obtained by forming the VSIPL

Forum to bring in stakeholders from industry, universities,
laboratories, and user organizations to define the VSIPL
)API. The primary forum participants from the user commu-
nity were interested in radar and sonar applications. The pri-
mary vendors were high-end signal processing board ven-

In the application domain of real-time embedded signal pro-
cessing systems based on commercial off-the-shelf (COTS
hardware and software, an increasingly important goal is

portability and vendor-neutrality of application software. The 4 .
Vector, Signal, and Image Processing Library (VSIPL) Fo- dors, although both chip vendors and workstation vendors

rum is a consortium comprised of industry, government, also participated in the library design. The most notable

and academia that is developing the VSIPL API. The AP contributions to the APl were made by representatives from

is intended to serve as an open, vendor-neutral, industry—HRL‘ SPAWAR, Georgia Tech Research Institute, CSPI, Mer-

standard interface to vector arithmetic, signal and imagecury' SKY, SGI Cray, Lockheed Martin Naval Electronics

processing operations for users of COTS workstations andand Surveillance Systems, Mississippi State University, MIT
embedded signal processing products Lincoln Laboratory, and the Naval Air Warfare Center.

Since the release of the completed VSIPL 1.0 API spec-
ification in April 2000 [1], the standard is becoming more 3. DESCRIPTION OF THE VSIPL API
widely adopted by commercial vendors. In addition, exten-)]
sions to the standard are planned that correspond to current "€ Primary focus of the VSIPL effort was to provide porta-
growth areas in military embedded signal processing. In bility for signal processing appllcatlons' petween dlﬁerent
this paper, we will review the VSIPL API, paying special at- embedded computing vendors. Por_tablllty to workstations
tention to supported data types, functionality, and the logic and to other architectures s_uch as ﬂ_e_ld—programmab_le gate
behind the interface design. Commercial implementations@rrays was also sought. This portability has several impor-
and future extensions will also be discussed. tant benefits. It allows signal processing systems an easier
upgrade path to future hardware. Development cost is re-
The authors were sponsored by the U.S. Navy under a series of U.S.duced as code is developed and debugged on a workstation

Air Forcg and Genere_ll Services Admlnlstrathn contracts. Opinions, in- and expensive embedded hardware is only necessary for the
terpretations, conclusions, and recommendations are those of the author

and are not necessarily endorsed by the Unites States Air Force, Navy, ojinal phas_es of applic_ation development. Training C_OStS are
General Services Administration. reduced since there is no need to learn a new environment

for each product. A more familiar debugging environment = =P @@ ablock (oser L gt 4. ez
will reduce application development time. [1]2]3]4]5]6]7]8]9] [1]2]3]4]5]6]7[8]9]
(a) View of entire block as a vector (c) View of block as 3 by 3 matrix
.. (offset 0, length 9, stride 1) (offset 0, row length 3, row stride 1,
31 General CharaCtenSUCS column length 3, column stride 3)
: [2[2[3]4]s]e]7]e]e] o
Memory management was seen by the forum as a primary []2]3]] 5] [SIE i85

obstacle to portability. To solve this problem, the forum de-
cided to use aobject-based\Pl. The object-based nature Fig. 1. Different views of data in a block. The data may
of the API provides two important benefits. First, the user be viewed as a single vector of length 9 (a), or the even
is freed from details of managing the memory alignmentis- elements can be viewed as a vector of length 4 (b), or the
sues for a particular architecture, resulting in more portabledata may be viewed as ax33 matrix (c).
code. Second, vendors are able to optimize the implemen-
tation of VSIPL objects and the algorithms used for their
particular systems. Such optimizations may include dataMinimum number of bits.
alignment or the use of special memory areas such as on-
chip data memory in digital signal processing chips. Over- 3 5 Memory model
all, the decision to use an object-based API greatly reduces
the burden on the application programmer. The basic objects in the VSIPL API abtocks which rep-
Although VSIPL supports many data types, including resent contiguous areas of memory where data is stored,
many integer types, it is primarily a floating-point library. andviews which represent different virtual arrangements
No fixed-point functionality is currently included, and inte- of data as one-, two-, or three-dimensional arrays. Views
ger support is limited to elementwise functions. do not, themselves, contain data, but refer to data stored
The VSIPL specification defines two modes of opera- in a block. Views contain the structural information neces-
tion. In development mogextensive error checking is re- sary to process data; afifsetin the block of the first view
quired on VSIPL objects. Iproduction modgerror check- element, and atride and alengthfor each dimension. Fig-
ing is not required. This bimodal development model allows ure 1 shows how data in a particular block can be viewed
the vendor to provide maximum aid to application develop- as a single vector of length 9 or a matrix of size 3 rows
ers without sacrificing performance in deployed systems. by 3 columns, and how the even-numbered elements can be
VSIPL is a large API including support for many dif- viewed as a single vector of length 4. Through proper selec-
ferent data types. VSIPL function names are strongly typedtion of lengths and strides, VSIPL supports matrices stored
and functionality tends to be specific. This allows small in both row-major and column-major order within a block.
code size for each function, but results in an API with many In order to allow for vendor optimizations while pre-
defined functions. To allow the vendor to match the library serving portability, VSIPL insists that data that it operates
memory footprint to system memory size, the APl is divided on not be accessed directly by the user or by other libraries.
into profilestargeted at different application areas. Vendors To allow data to be imported to and exported from VSIPL,
claiming compatibility with a given VSIPL profile mustim- the library supports the concept of two virtual spaceser
plement all the functions listed in that profile. spaceandVSIPL spaceVSIPL considers that it owns data
TheCore Liteprofile, targeted at vector signal process- that is in VSIPL space, and the user agrees to access the
ing applications, is a minimal implementation and includes data only through VSIPL functions. Conversely, the library
only a small subset of vector arithmetic and basic vector promises not to reference data while it is in user space. An
signal processing functions. The much lar@are profile area of memory may be associated with a block, and user
includes most linear algebra functionality, such as matrix data stored in the memory may move back and forth be-
products, decompositions and solvers, and a richer set otween the two spaces through use of the functadsit
signal processing functionality. In each profile, the ven- (which brings the data into VSIPL space) arelease
dor must provide at least one integer and one floating-point(which brings the data into user space). Depending on the
type. The precision that is provided is the choice of the ven- machine’s memory architecture and whether the user is in-

dor. terested in preserving the values in the block during the
To allow portability of code which needs specific data transfer, admit and release operations need not require a
precision, VSIPL provides severabrtable precisionypes. memaory copy.

These types allow the user to specify the minimum number Traditional processors operate on complex data stored
of decimal digits of accuracy for floating-point types. For in an interleaved format, where the real part of each com-
integer types, the user can specify the exact number of bitsplex data element is followed by the corresponding imag-
the minimum number of bits, or can allow the implemen- inary part. On processors with a vector unit, such as the
tation to choose thtastestarchitecture-specific type with a Motorola G4 with AltiVec, it is frequently more efficient

Complex input data layout examples
Split Interleaved B Real Part
[] Imaginary Part
(ITT] RSN

Fig. 2. VSIPL supports two formats for complex data, in-
terleaved and split.

to store data in aplit format, where all the real data for

a given vector is stored contiguously and all the imaginary
data is stored contiguously. These two formats are illus-
trated in Figure 2. VSIPL allows the implementor to choose
the appropriate format internally. Regardless of the internal

Initialize YSIPL library
Create blockis)
Create view(s) & bind wisw(s) to block(s)
Create object(s) for filter(s), FFT(s), sokver(s), etc.

Obtain data
Eind {or rebind) block(s) to data
Admit {or readmit) block to WSIFPL data space
Operate on data using view(s)
Felease block(s) to user data space

format, a complex block appears to the user as consecutive
complex elements. VSIPL can support import or export of
complex data in either format, allowing the user to make use
of non-VSIPL routines that require either format.

terate?

3.3. Functionalit
Y Destroy objectis) for filter{s), FFT(s), soler(s), etc.

Destroy view(s)
Release and destroy block(s)
Finalize WVSIPL library

The expected arithmetic operations on vector and matrix
views are supported, including unary, binary, and ternary
operations, and specialized operations such as inner and out
products and matrix multiply. Boolean and index types are
included to allow logical operations on vectors and special
operations such as determining the indices of all elements
that satisfy given criteria.

VSIPL supports a wide variety of operations important tiply the orthogonal factor by other matrices.
to signal and image processing. FFTs of one, two, and three
dimensions, along with convolutions and correlations of one 3 4. Developing a VSIPL Application
or two dimensions, are all supported. FIR and IIR filters
can be easily described and implemented. A random num-Development of embedded signal processing applications
ber generator is provided that is portable between differentusing COTS multiprocessing hardware and software typ-
implementations of VSIPL. Linear algebra functions that ically consists of partitioning the code into two portions.
are provided include Gaussian elimination, QR factoriza- One portion is the “outer loop” where the setup and cleanup
tion, Cholesky factorization, and singular value decompo- functions are executed, typically memory allocation and co-
sition. Special solver functions allow the solution of com- €fficient generation, such as FFT twiddle factors and win-
mon problems such as the linear least squares or covarianc8oWw coefficients. The other portion s the “inner loop” where
problems. Such solvers are provided to allow the implemen-the time-critical repetitive streaming data transformation func-
tation to Optimize these pr0b|ems in Ways that may not be tiOI’]S ||e An effiCient VSIPL application W|" be bu|lt Sim'
supportable in the individual steps. ilarly, with the outer loop executing heavyweight system

One of the guiding principles in the design of the VSIPL functions that allocate memory when creating blocks and
APl was that the user should look at each function in terms Views. The inner loop contains the computation functions,
of its mathematical behavior rather than the details of its im- I-€., the scalar, elementwise, signal processing, and linear
plementation. Thus, for example, the particular algorithm algebra functions. Assuming the application does terminate
for an FFT is not specified; the standard specifies the re-for a given mission, then the outer loop would conclude af-
quired mathematical behavior of the FFT function. VSIPL ter the inner loop concludes, destroying views and blocks.
supports encapsulation of implementation-specific variables This is illustrated in Figure 3.
such as twiddle tables inside an FFT object. Similarly, the
QR factorization may be performed internally by either a 4. IMPLEMENTATIONS OF VSIPL
Householder or Gram-Schmidt algorithm and the orthogo-
nal factor can be stored in any convenient format. The userThe complete VSIPL specification is available on the VSIPL
is given the resulting triangular factor and functions to mul- web site (http://www.vsipl.org). An implementation of the

Fig. 3. VSIPL Application Flow.

VSIPL production mode, written by Randy Judd of SPAWAR, 6. CONCLUSIONS

is also available there. Versions of the library that support

the Core and Core Lite profiles can be downloaded. TheVSIPL is a portable API for vector, signal and image pro-

library can be compiled on any platform with an ANSI C cessing defined by representatives of signal processing in-

compiler. dustry vendors, application developers, and research orga-
VSIPL is also becoming widely available on worksta- hizations. It provides embedded applications with an easier

tions and military-class embedded computing hardware. Corépgrade path and the potential for easier system develop-

Lite implementations of VSIPL are available on VME-class ment. Portability is achieved through the use of opaque ob-

embedded COTS signal processors from Mercury Computer€cts, protecting the user from architecture-specific details

Systems, SKY Computers, and CSPI. MPI Software Tech- of memory management. Version 1.0 of the API is defined

nology has produced implementations of VSIPL Core Lite and available fromthe VSIPL web site, http://www.vsipl.org,

for use on commercial single-board VME computers and along with an ANSI C implementation. Vendor-optimized

personal computers. This implementation is licensed by Ix- implementations are also available on many embedded plat-

thos, Cetia, and DNAENT for their G3 and G4 boards, and forms.

a version for Linux is in development. MPI Software Tech-

nology and SKY are implementing the full Core profile as 7. REFERENCES

well. DARPA has funded Annapolis Microsystems to de-

velop a VSIPL API interface for use with its FPGA-based [1] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P.

adaptive computing technology. Teachey has reported some Manley, “Vector, signal, and image processing library

preliminary experiments with VSIPL implementations which (VSIPL) 1.0 application programmer’s interface,” tech.

show that the overhead for the library is minimal compared rep., Georgia Tech Research Corporation, Mar. 2000.

with more traditional vendor-optimized signal processing li-]
braries [2]. [2] R. Teachey, A. Donadeo, E. Pancoast, G. Faix, and

A test suite is provided to test compliance of an imple- ~ B- Chin, “COTS software portability standards and
mentation with the Core Lite profile of the API. Developed VSIPL benchmarks,” irProceedings of the Fourth An-
by the Georgia Tech Research Institute, the test suite is also ~ "u@l High-Performance Embedded Computing (HPEC)
available from the VSIPL web site. While currently only Workshop Sept. 2000.
available to those participating in the Test Suite Working 3]
Group, it will be openly available for download in the near
future.

D. P. Campbell, “Prototype extension of VSIPL into
C++ and object oriented design,” tech. rep., Georgia
Tech Research Institute, Sept. 2000.

5. FUTURE DEVELOPMENT OF VSIPL

Future activities of the VSIPL Forum will concentrate in
the near term on necessary revisions of the specification
based on user feedback. These revisions will constitute ver-
sion 1.01 of the API, for release early in 2001.

Areas under active development include the completion
of the draft image processing functions for the API. GTRI
has investigated the issues in creating an object-oriented
version of VSIPL and outlined a possible C++ binding in
a report available on the VSIPL web site [3]. Extensions
for better performance in a cluster environment and for en-
hanced error handling are also under development.

