
VSIPL: AN OBJECT-BASED OPEN STANDARD API FOR VECTOR, SIGNAL, AND IMAGE
PROCESSING

Randall Janka

Cadence
Design Systems

Atlanta, GA

Randall Judd

U.S. Navy
SPAWAR Systems Center

San Diego, CA

James Lebak

MIT Lincoln
Laboratory

Lexington, MA

Mark Richards
Dan Campbell
Georgia Tech

Research Institute
Atlanta, GA

ABSTRACT

VSIPL, the Vector, Signal, and Image Processing Library, is
an open standard application programmer’s interface (API)
for signal and image processing. Defined by a consortium of
industry, government, and academic representatives, VSIPL
is gaining widespread acceptance as ade factostandard in
the embedded signal processing world. The primary goal of
the API is to increase the portability of vector signal pro-
cessing, matrix signal processing, and image processing ap-
plications. In this paper, we present an overview of the de-
sign, features, and availability of the VSIPL API.

1. INTRODUCTION

In the application domain of real-time embedded signal pro-
cessing systems based on commercial off-the-shelf (COTS)
hardware and software, an increasingly important goal is
portability and vendor-neutrality of application software. The
Vector, Signal, and Image Processing Library (VSIPL) Fo-
rum is a consortium comprised of industry, government,
and academia that is developing the VSIPL API. The API
is intended to serve as an open, vendor-neutral, industry-
standard interface to vector arithmetic, signal and image
processing operations for users of COTS workstations and
embedded signal processing products.

Since the release of the completed VSIPL 1.0 API spec-
ification in April 2000 [1], the standard is becoming more
widely adopted by commercial vendors. In addition, exten-
sions to the standard are planned that correspond to current
growth areas in military embedded signal processing. In
this paper, we will review the VSIPL API, paying special at-
tention to supported data types, functionality, and the logic
behind the interface design. Commercial implementations
and future extensions will also be discussed.

The authors were sponsored by the U.S. Navy under a series of U.S.
Air Force and General Services Administration contracts. Opinions, in-
terpretations, conclusions, and recommendations are those of the authors
and are not necessarily endorsed by the Unites States Air Force, Navy, or
General Services Administration.

2. THE VSIPL FORUM

VSIPL began under sponsorship from the U.S. Defense Ad-
vanced Research Projects Agency’s Information Technol-
ogy Office. David Schwartz of Hughes Research Labora-
tory (now HRL, LLC) was the initial principal investigator
and Chair of the VSIPL Forum. The Navy’s Tactical Ad-
vanced Signal Processor (TASP) Common Operating En-
vironment (COE) program then joined the effort and has
continued as the sponsor in recent years. DARPA and the
Navy shared a common goal to develop computational and
communication middleware that freed application software
from being “hard-wired” to a specific vendor.

Vendor neutrality was obtained by forming the VSIPL
Forum to bring in stakeholders from industry, universities,
laboratories, and user organizations to define the VSIPL
API. The primary forum participants from the user commu-
nity were interested in radar and sonar applications. The pri-
mary vendors were high-end signal processing board ven-
dors, although both chip vendors and workstation vendors
also participated in the library design. The most notable
contributions to the API were made by representatives from
HRL, SPAWAR, Georgia Tech Research Institute, CSPI, Mer-
cury, SKY, SGI Cray, Lockheed Martin Naval Electronics
and Surveillance Systems, Mississippi State University, MIT
Lincoln Laboratory, and the Naval Air Warfare Center.

3. DESCRIPTION OF THE VSIPL API

The primary focus of the VSIPL effort was to provide porta-
bility for signal processing applications between different
embedded computing vendors. Portability to workstations
and to other architectures such as field-programmable gate
arrays was also sought. This portability has several impor-
tant benefits. It allows signal processing systems an easier
upgrade path to future hardware. Development cost is re-
duced as code is developed and debugged on a workstation
and expensive embedded hardware is only necessary for the
final phases of application development. Training costs are
reduced since there is no need to learn a new environment

for each product. A more familiar debugging environment
will reduce application development time.

3.1. General characteristics

Memory management was seen by the forum as a primary
obstacle to portability. To solve this problem, the forum de-
cided to use anobject-basedAPI. The object-based nature
of the API provides two important benefits. First, the user
is freed from details of managing the memory alignment is-
sues for a particular architecture, resulting in more portable
code. Second, vendors are able to optimize the implemen-
tation of VSIPL objects and the algorithms used for their
particular systems. Such optimizations may include data
alignment or the use of special memory areas such as on-
chip data memory in digital signal processing chips. Over-
all, the decision to use an object-based API greatly reduces
the burden on the application programmer.

Although VSIPL supports many data types, including
many integer types, it is primarily a floating-point library.
No fixed-point functionality is currently included, and inte-
ger support is limited to elementwise functions.

The VSIPL specification defines two modes of opera-
tion. In development mode, extensive error checking is re-
quired on VSIPL objects. Inproduction mode, error check-
ing is not required. This bimodal development model allows
the vendor to provide maximum aid to application develop-
ers without sacrificing performance in deployed systems.

VSIPL is a large API including support for many dif-
ferent data types. VSIPL function names are strongly typed
and functionality tends to be specific. This allows small
code size for each function, but results in an API with many
defined functions. To allow the vendor to match the library
memory footprint to system memory size, the API is divided
into profilestargeted at different application areas. Vendors
claiming compatibility with a given VSIPL profile must im-
plement all the functions listed in that profile.

TheCore Liteprofile, targeted at vector signal process-
ing applications, is a minimal implementation and includes
only a small subset of vector arithmetic and basic vector
signal processing functions. The much largerCore profile
includes most linear algebra functionality, such as matrix
products, decompositions and solvers, and a richer set of
signal processing functionality. In each profile, the ven-
dor must provide at least one integer and one floating-point
type. The precision that is provided is the choice of the ven-
dor.

To allow portability of code which needs specific data
precision, VSIPL provides severalportable precisiontypes.
These types allow the user to specify the minimum number
of decimal digits of accuracy for floating-point types. For
integer types, the user can specify the exact number of bits,
the minimum number of bits, or can allow the implemen-
tation to choose thefastestarchitecture-specific type with a

1 2 3 4 5 6 7 8 9

Example data in a block

1 2 3 4 5 6 7 8 9

(a) View of entire block as a vector
 (offset 0, length 9, stride 1)

(b) View of even-numbered elements
(offset 1, length 4, stride 2)

(c) View of block as 3 by 3 matrix
 (offset 0, row length 3, row stride 1,
 column length 3, column stride 3)

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
1 2 3
4 5 6
7 8 9

Fig. 1. Different views of data in a block. The data may
be viewed as a single vector of length 9 (a), or the even
elements can be viewed as a vector of length 4 (b), or the
data may be viewed as a 3� 3 matrix (c).

minimum number of bits.

3.2. Memory model

The basic objects in the VSIPL API areblocks, which rep-
resent contiguous areas of memory where data is stored,
and views, which represent different virtual arrangements
of data as one-, two-, or three-dimensional arrays. Views
do not, themselves, contain data, but refer to data stored
in a block. Views contain the structural information neces-
sary to process data; anoffsetin the block of the first view
element, and astrideand alengthfor each dimension. Fig-
ure 1 shows how data in a particular block can be viewed
as a single vector of length 9 or a matrix of size 3 rows
by 3 columns, and how the even-numbered elements can be
viewed as a single vector of length 4. Through proper selec-
tion of lengths and strides, VSIPL supports matrices stored
in both row-major and column-major order within a block.

In order to allow for vendor optimizations while pre-
serving portability, VSIPL insists that data that it operates
on not be accessed directly by the user or by other libraries.
To allow data to be imported to and exported from VSIPL,
the library supports the concept of two virtual spaces,user
spaceandVSIPL space. VSIPL considers that it owns data
that is in VSIPL space, and the user agrees to access the
data only through VSIPL functions. Conversely, the library
promises not to reference data while it is in user space. An
area of memory may be associated with a block, and user
data stored in the memory may move back and forth be-
tween the two spaces through use of the functionsadmit
(which brings the data into VSIPL space) andrelease
(which brings the data into user space). Depending on the
machine’s memory architecture and whether the user is in-
terested in preserving the values in the block during the
transfer, admit and release operations need not require a
memory copy.

Traditional processors operate on complex data stored
in an interleaved format, where the real part of each com-
plex data element is followed by the corresponding imag-
inary part. On processors with a vector unit, such as the
Motorola G4 with AltiVec, it is frequently more efficient

Real Part
Imaginary Part

Split Interleaved

Complex input data layout examples

Fig. 2. VSIPL supports two formats for complex data, in-
terleaved and split.

to store data in asplit format, where all the real data for
a given vector is stored contiguously and all the imaginary
data is stored contiguously. These two formats are illus-
trated in Figure 2. VSIPL allows the implementor to choose
the appropriate format internally. Regardless of the internal
format, a complex block appears to the user as consecutive
complex elements. VSIPL can support import or export of
complex data in either format, allowing the user to make use
of non-VSIPL routines that require either format.

3.3. Functionality

The expected arithmetic operations on vector and matrix
views are supported, including unary, binary, and ternary
operations, and specialized operations such as inner and outer
products and matrix multiply. Boolean and index types are
included to allow logical operations on vectors and special
operations such as determining the indices of all elements
that satisfy given criteria.

VSIPL supports a wide variety of operations important
to signal and image processing. FFTs of one, two, and three
dimensions, along with convolutions and correlations of one
or two dimensions, are all supported. FIR and IIR filters
can be easily described and implemented. A random num-
ber generator is provided that is portable between different
implementations of VSIPL. Linear algebra functions that
are provided include Gaussian elimination, QR factoriza-
tion, Cholesky factorization, and singular value decompo-
sition. Special solver functions allow the solution of com-
mon problems such as the linear least squares or covariance
problems. Such solvers are provided to allow the implemen-
tation to optimize these problems in ways that may not be
supportable in the individual steps.

One of the guiding principles in the design of the VSIPL
API was that the user should look at each function in terms
of its mathematical behavior rather than the details of its im-
plementation. Thus, for example, the particular algorithm
for an FFT is not specified; the standard specifies the re-
quired mathematical behavior of the FFT function. VSIPL
supports encapsulation of implementation-specific variables
such as twiddle tables inside an FFT object. Similarly, the
QR factorization may be performed internally by either a
Householder or Gram-Schmidt algorithm and the orthogo-
nal factor can be stored in any convenient format. The user
is given the resulting triangular factor and functions to mul-

Fig. 3. VSIPL Application Flow.

tiply the orthogonal factor by other matrices.

3.4. Developing a VSIPL Application

Development of embedded signal processing applications
using COTS multiprocessing hardware and software typ-
ically consists of partitioning the code into two portions.
One portion is the “outer loop” where the setup and cleanup
functions are executed, typically memory allocation and co-
efficient generation, such as FFT twiddle factors and win-
dow coefficients. The other portion is the “inner loop” where
the time-critical repetitive streaming data transformation func-
tions lie. An efficient VSIPL application will be built sim-
ilarly, with the outer loop executing heavyweight system
functions that allocate memory when creating blocks and
views. The inner loop contains the computation functions,
i.e., the scalar, elementwise, signal processing, and linear
algebra functions. Assuming the application does terminate
for a given mission, then the outer loop would conclude af-
ter the inner loop concludes, destroying views and blocks.
This is illustrated in Figure 3.

4. IMPLEMENTATIONS OF VSIPL

The complete VSIPL specification is available on the VSIPL
web site (http://www.vsipl.org). An implementation of the

VSIPL production mode, written by Randy Judd of SPAWAR,
is also available there. Versions of the library that support
the Core and Core Lite profiles can be downloaded. The
library can be compiled on any platform with an ANSI C
compiler.

VSIPL is also becoming widely available on worksta-
tions and military-class embedded computing hardware. Core
Lite implementations of VSIPL are available on VME-class
embedded COTS signal processors from Mercury Computer
Systems, SKY Computers, and CSPI. MPI Software Tech-
nology has produced implementations of VSIPL Core Lite
for use on commercial single-board VME computers and
personal computers. This implementation is licensed by Ix-
thos, Cetia, and DNAENT for their G3 and G4 boards, and
a version for Linux is in development. MPI Software Tech-
nology and SKY are implementing the full Core profile as
well. DARPA has funded Annapolis Microsystems to de-
velop a VSIPL API interface for use with its FPGA-based
adaptive computing technology. Teachey has reported some
preliminary experiments with VSIPL implementations which
show that the overhead for the library is minimal compared
with more traditional vendor-optimizedsignal processing li-
braries [2].

A test suite is provided to test compliance of an imple-
mentation with the Core Lite profile of the API. Developed
by the Georgia Tech Research Institute, the test suite is also
available from the VSIPL web site. While currently only
available to those participating in the Test Suite Working
Group, it will be openly available for download in the near
future.

5. FUTURE DEVELOPMENT OF VSIPL

Future activities of the VSIPL Forum will concentrate in
the near term on necessary revisions of the specification
based on user feedback. These revisions will constitute ver-
sion 1.01 of the API, for release early in 2001.

Areas under active development include the completion
of the draft image processing functions for the API. GTRI
has investigated the issues in creating an object-oriented
version of VSIPL and outlined a possible C++ binding in
a report available on the VSIPL web site [3]. Extensions
for better performance in a cluster environment and for en-
hanced error handling are also under development.

6. CONCLUSIONS

VSIPL is a portable API for vector, signal and image pro-
cessing defined by representatives of signal processing in-
dustry vendors, application developers, and research orga-
nizations. It provides embedded applications with an easier
upgrade path and the potential for easier system develop-
ment. Portability is achieved through the use of opaque ob-
jects, protecting the user from architecture-specific details
of memory management. Version 1.0 of the API is defined
and available from the VSIPL web site, http://www.vsipl.org,
along with an ANSI C implementation. Vendor-optimized
implementations are also available on many embedded plat-
forms.

7. REFERENCES

[1] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P.
Manley, “Vector, signal, and image processing library
(VSIPL) 1.0 application programmer’s interface,” tech.
rep., Georgia Tech Research Corporation, Mar. 2000.

[2] R. Teachey, A. Donadeo, E. Pancoast, G. Faix, and
B. Chin, “COTS software portability standards and
VSIPL benchmarks,” inProceedings of the Fourth An-
nual High-Performance Embedded Computing (HPEC)
Workshop, Sept. 2000.

[3] D. P. Campbell, “Prototype extension of VSIPL into
C++ and object oriented design,” tech. rep., Georgia
Tech Research Institute, Sept. 2000.

