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ABSTRACT

Estimation of frequency and symbol timing in Continu-
ous Phase Modulated (CPM) signals is investigated in
this paper. Several well-known statistical approaches,
classically applied to the sensor array problem, are used
to derive Non-Data-Aided (NDA) algorithms under a
unifying general framework (estimation-directed). A
new cost function is proposed which is shown to pro-
vide a good compromise between additive and pattern
noise cancellation, when the additive noise power is un-
known.

1. INTRODUCTION

CPM schemes are attractive due to their high spectral effi-
ciency and constant envelope. However, synchronization of
these signals is a crucial issue (see [1] and references therein
for an exhaustive review). The application of the maximum
likelihood principle is mathematically difficult in the case of
CPM signals. To circumvent this problem, some algorithms
are derived through approximations or employing heuristic
arguments.

Frequency and timing synchronization algorithms are
typically categorized in Decision-Directed (DD), Data-Aided
(DA) and Non-Data-Aided (NDA) methods. While DD and
DA schemes offer better tracking and acquisition perfor-
mance respectively, NDA methods are preferred when the
decisions are not available or not reliable, and the data is
not known. NDA algorithms offer the additional advantage
of being phase-independent, thus avoiding spurious locks
and prolonged acquisitions caused by complex iteractions
between phase and frequency and/or phase and timing cor-
rection algorithms. Additionally, simple symbol-by-symbol
decisions cannot be obtained from CPM waveforms, for
which the DD schemes becomes more complicated.

In this paper we formulate the problem of synchroniza-
tion of CPM signals in the same manner as several im-
portant problems in the field of signal processing, as the
problem of direction finding with narrow-band sensor ar-
rays. This leads naturally to the definition of a unifying
general framework for the problem at hand, referred to as
Estimation-Directed (ED) approach. As a case study, we
focus on Gaussian Minimum Shift Keying (GMSK) modu-
lation, which is the modulation adopted in the GSM Euro-
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pean cellular mobile digital system. A recent work by the
authors on this topic can be found in the book [2].

2. BACKGROUND

Several important problems in the signal processing field
can be reduced to estimating the parameters in the follow-
ing model:

r=AMN)x+w (1)
where, A is the parameter of interest, A()\) is the trans-
fer matrix dependent on A and w is the white noise vector
(E [wwH = 0?1, 0% = 2NoF,). As shown in [3], using
the Laurent expansion (see [1] and references therein), the
parameter estimation of binary CPM signals can be formu-
lated in terms of the above model, where A = f (frequency)
or A\ = 7 (timing), depending on the problem considered.
The transfer matrix is given by:

AQ) = [A), AN, o AN ] @)
Am(A) = [amo(A),am1(A), ., am L-1(N)]

where the column vectors are:
am,z()\) ejQWf(iT—TU)
[ (=T = 7), g (—iT + Ty — 7)™ ">
G (—4T + (M — 1)T, — 1)l 1=01=D]"
In this model, g,,(t) (m = 0,1,...,J — 1), where J = 2L71,
are the so-called pseudo-pulses, whose number and shape is
specific of the kind of modulation, and T}, is a constant that
reflects the arbitrary time origin of the problem. The ob-

servation interval (the length of r) is limited to M samples,
being M arbitrarily fixed by the synchronizer designer’:

re=[rt),r(t+Ts),...,r(t+(M—-1)TH*  (3)

where r(t) is the received low pass equivalent signal. The
vector x of signals is:

. T
X = [Xg X{ X?Iﬂfl ]
- T
Xm - [:L'm,07 T, 1y eeny CBrrb,Lfl]
- Jo
Tmi = Cmi€"® 4)

where ¢, » are the pseudo-symbols, which verify that:

r=F[xx"] =L (5)

1The dependence of r on t, will be explicited only when
necessary.



and 6, is the carrier phase error. We are assuming that the
number of samples per symbol Nss = T'/Ts is integer.

All the estimators presented in this paper are based on
the sample covaria/{lce matrix of the received signal wave-
form, denoted by R. As we are dealing with over sampled
(iigital communications signals, which are cyclostationary,
R is computed by means of a synchronized time average as

follows:
No—1

R= Z TRITRE (6)
k=0
where N, is the number of actual symbols of the signal from
which to compute a single estimate of A.

3. MAXIMUM LIKELIHOOD (ML)
APPROACHES

3.1. Exact stochastic ML (ESML)

The ESML derivation of NDA algorithms involves two steps:
i) computation of the joint ML function of the parame-
ter of interest and the nuisance parameters, which include
the pseudo-symbols; and ii) average of the joint ML func-
tion with respect to the (complete) statistics of the pseudo-
symbols. Unfortunately the second step is difficult, and we
are compelled to make approximations. A usual approxi-
mation is to assume that the SNR is low. The resulting
algorithms are highly inefficient at moderate F,/N,, espe-
cially for non-linear modulation formats.

3.2. Gaussian stochastic ML (GSML)

If we assume that the vector x of pseudo-symbols in (1) is
Gaussian, the GSML estimate is given my the minimizer of
[4]:

Losa (r/A) = tr (R;lﬁ) ™

where Ry = A\A% + 0?1 is (under the assumption of (5))
the expected covariance matrix of the received vector r that
depends on the parameter \. It is noted that the cost func-
tion (7) requires knowledge of the noise power, 0. In prin-
ciple, the GSML function can be concentrated with respect
to o2, by replacing o2 by its ML estimate: 2 = rHPﬂgkr/d,
where

Px, =I- A, (AYA)AY (8)
is the projector onto the orthogonal signal subspace spanned
of dimension d. However, in that case, the resulting cost

function becomes non-linear with respect to R (see [4], Eq.
4.43).

Remark 1 The application of the GSML approach, usu-
ally adopted in the array signal processing field, is ques-
tionable in the digital communication context, as the sig-
nals in x are discrete random variables (very far from being
Gaussian). Anyway, Lagswmr (r/A) is a reasonable cost func-
tion as it measures how well R fits into the signal subspace,
giving more importance to the highest eigenvalues of the
signal covariance matrix. Moreover, it can be proven ([4],
corollary 4.1) that the Weighted Subspace Fitting (WSF)
technique, which performs the best weighted least-squares fit
between the estimated subspace and the model subspace,

results in estimators which are large sample realizations of
the GSML method. This is also in favor of the Gaussian
assumption, even in the digital communications field.

3.3. Deterministic ML (DML)

Under the deterministic assumption, vector x is considered
a parameter of the model that has to be estimated from r.
The joint ML function of A and x is (to within irrelevant
factors)

A(r/)x) = (r— Axx) (r — Ayx) 9)

To avoid the joint search on A and x, we first solve for the
minimum with respect to x:

Ros (r,A) = (A¥AL) T Al (10)

Note that in the previous minimization, we are not assum-
ing any constraint on the structure of x given in (4) (in
particular that the pseudo-symbols ¢, are discrete). For
that reason, Xrs (r, A) is, in fact, the least-squares estimate
of x. Substituting (10) into (9) yields that the DML esti-
mate is the minimizer of:

Lo (r/A) = tr (Pfhﬁ) (11)

Remark 2 It is noted in [4] that the DML estimator is not
efficient. In particular, its performance degrades rapidly
in the lower to medium range of SNR. This is especially
true in the case of high eigenvalue spread of the covariance
matrix. In the problem of parameter estimation of CPM
signals, high eigenvalue spreads occur for highly spectral
efficient modulation formats, as a great number of pseudo-
pulses with very dissimilar energies are obtained via Lau-
rent expansion. Note that Lpwmr, (r/\) (like Lasmr (r/)))

measures how well R fits into the signal subspace, so the
degradation in performance is due to the fact that those
subspace signal components associated to small eigenval-
ues are very noisy. It should also be noted that the DML
method requires that matrix A be rank-deficient. The im-
plication of this fact is that a lower bound exists in choosing
the observation interval M, and this lower bound increases
as the number of significant pseudo-pulses increases.

4. ESTIMATION-DIRECTED (ED)
APPROACHES

We present a new approach to the problem which tries to
solve the limitations of the ML methods explained above.
The method is inspired on the philosophy of the DML, but
introducing different statistical criteria. Starting from (9),
we now assume that a general estimator of x, X (r, ), is
available, resulting in the following compressed cost func-
tion:

L(r/)) = (r— A X (r, )7 (r — Ay (r,)) (12)

Clearly, the complexity-performance trade-off of the estima-
tor of A based on minimizing L (r/)), depends on the com-
plexity and performance of the selected estimator X (r, \).
This estimator can be designed by using different criteria,
as presented in the sequel.



4.1. Optimum-Detection ED

We can chose X (r, A) = Xop (r, A) as the optimum detector
(OD) of x associated to the specific modulation format.
The criterion coincides with the classical Decision-Directed
(DD) approach: Lop—gp (r/A) = Lpp (/).

Remark 3 The ability of closed-loop DD schemes to con-
verge depends on whether reliable decisions can be obtained
even in the presence of (moderate) errors in the parameter
A, at the beginning of the convergence, which is usually
not the case. Additionally, unless differential modulation
schemes are used, phase recovery is a prerequisite to data
recovery. Finally, DD methods usually introduce a decoding
delay (especially in non-linear formats) that causes insta-
bilities to the closed loop.

4.2. Least-Squares ED

We can chose X (r,\) = Xrs (r,\) as the least-squares es-
timate of x, as given in (10). This leads to the classi-
cal Deterministic ML (DML) approach explained above:
Lis—ep (r/A) = Lpwmw (r/A).

4.3. Linear-Minimum-Mean-Squared-Error ED

With the motivation of avoiding very noisy estimates of the
pseudo-symbols associated to low-energy pseudo-pulses, we
can chose X (r,\) = XrmmsE (r, A) as the minimum-mean-
squared-error estimate of x, which is the well-known Wiener
filter:

1

Xemmse (v, ) = A (AAAf[ + 021)_ r (13)
Substituting (13) in (12) yields:
L(r/)) =r"By{Byr (14)

where By = I—AA¥ (ALA¥ +0%1) ", Adding and
substracting oI to the first outer product AyAZ yields
Bi = 0’R; ', and then from (14) we obtain:

Lyvsep-ep (r/A) = tr ((RfRA) -t f{) (15)

Remark 4 The new cost function Lyuvsep-ep (r/A) (like
Leswmr (r/A) and Lpwmr, (r/A)) measures how well R fits into
the signal subspace, giving more importance to the highest
eigenvalues of the signal covariance matrix, in proportion
to its squared magnitude. It is worth mentioning that this
is the underlying philosophy of the Weighted Subspace Fit-
ting (WSF) criterion [4]. However, in the new cost func-
tion this weighting is performed without a explicit eigen-
decomposition of the sample covariance matrix.

5. RELATIONSHIP AMONG GSML, DML AND
LMMSE-ED

To understand the relation among the different approaches,
we resort to the matrix inversion lema, R;l = o721 —

-1 . .
ocT2A, (AfAA +021) Af, and examine the following
limiting cases.

Case 1: very large or very small 02, We obtain the follow-
ing limiting values:
o’R;" — Pa,
o<—0

0'4R;1 — —(AAAg)*—HﬂI

02 —oc0

ot (RERA) PR,
o (R§1R>‘)71 = —20? (AAAf[)* +o'1

As the terms ¢2I and 0*I do not depend on ), the
DML, GSML and LLMSE-ED cost functions become
equivalent (to within irrelevant scale factors). Note
that in the case of very large o2, the estimate be-

comes the maximizer of tr <R§R , which is a inner

product between the estimated and expected second
order statistics.

Case 2: orthonormal pulse shaping, A¥ A, = E,I. Tt is
not difficult to see that all three cost functions be-
come equivalent at any SNR. This condition holds in
the case of linear modulations (J = 1), as then go(t)
is usually designated such that go * go(kT) = 0 for
k # 0 (ISI-free condition).

Case 3: the eigenvalues of A A%, are all equal to 2.
Then, the LMMSE-ED and GSML are equivalent.
This can be seen by noting that the GSML solution
for an assumed noise power o2 depends only on the
ratio (72 +0‘%) /o?, while the LLMSE-ED solution
for an assumed noise power o2 depends only on the
ratio [(72 —+ U%) /0%]2. Choosing o3 = o3/ (72/03 + 2)
leads to identical ratios and, then, identical solutions.

Remark 5 From the above comments we conclude that it
is worth exploring the possible advantages of the LMMSE-
ED approach over the GSML only in the case of high eigen-
value spreads, and in the medium range of SNR. This is
precisely the situation in the case of binary CPM signal of
highly spectral efficiency.

6. FREQUENCY ERROR DETECTOR
As a case study, we derive a practical Frequency FError
Detector (FED)?. Let us consider the general cost func-

tion L (r/f) =tr (Wff{), where the weighting matrix is
W; =R (for GSML) or Wy = (R} Rf)‘1 (for LLMSE-
ED). A measure of the frequency error frequency error, ¢,

can be obtained by computing the gradient of the cost func-
tion:

er=L (/) = tr (w}ﬁ)
For the problem of frequency estimation, the dependence
of Ry on f is very simple: Ry = Ro ® Ey, where [Ef] =
e/2™f(P—9)  After some manipulation, it is not difficult to
show that e; = Im tr (wo <X ORO® E;) ) where [X] =
2m(p — ¢) and ® denotes the Hadamard matrix product.

20ne can use a similar procedure to derive a practical Timing
Error Detector (TED). This is omited for space reasons.



Notice that f{ ® E} = f{s represents the sample covariance

matrix of the frequency shifted signal, s(t) = r (¢) e J2mft
T T

Then, expressing X as X = uv? —vu’, whereu =[1,1,...,1]%

and v =[0,1,..., M —1]7, and taking into account the syn-
chronized averaging expression (6), we obtain®:

Ns—1

e =2 Z Im (skHTWO (voe skT)) (16)

k=0

where W, = Ry? for GSML and W, = (R{Ro)™" for
LMMSE-ED. It is seen in (16) that the frequency error is
computed as the sum of N, terms, each one representing in-

stantaneous (symbol-by-symbol) frequency error estimates
obtained from a FED.

7. RESULTS
Figure 1 depicts the performance of the GSML (dotted) and
LMMSE-ED estimators (solid), for different scenarios: A)
assumed E. /N, of 10dB (GSML) and 5.2dB (LMMSE-ED);
B) assumed E. /N, of 20dB (GSML) and 13dB (LMMSE-

ED); C) assumed E. /N, of 30dB (GSML) and 21dB (LMMSE-

ED). The criterion for the selection of the assumed E;/N,
(which can be different for each method), has been that
both methods yield (approximately) the same performance
at low SNR. The following observations can be made:

e For a given assumed F,/N, for each method, the per-
formance of the LMMSE-ED method is slightly su-
perior at any (actual) Fs/No.

e When the assumed E,/N, is low (see scenario A),
both methods yield the same performance (see sec-
tion 5, Case 1).

e The assumed F;/N, determines the trade-off between
the impact of additive noise and the impact of the
self noise (or, equivalently, the floor jitter level of the
curves).

e GSML and LMMSE-ED for scenario C yield a per-
formance much better than the classical delay-and-
multiply method (see [1] and references therein). The
delay-and-multiply method was designed for MSK,
and its performance degrades significantly when the
input signal is GMSK, as it can be seen in the figure.
Moreover, it performs fourth-order operations on the
input signal while GSML and LMMSE-ED yield sim-
pler quadratic schemes.

e The performance of the proposed schemes is still far

from that predicted by the Modified Cramer-Rao Bound

(MCRB) (see [1]). This fact tells us that we can
expect an improvement on the performance by im-
proving the quality of the general pseudo-symbol ex-
tractor X (r,\), for example, by relaxing the linear
constraint (see [5]).

8. CONCLUSIONS AND FURTHER
RESEARCH

The proposed Estimation-Directed approach constitutes a
general framework for the derivation of simple algorithms

3s; is defined similarly as (3).
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Figure 1: Performance of the GSML and LMMSE-ED esti-

mators, for different assumed noise powers.

for timing and frequency estimation, and it can be applied
to any modulation format admitting a Laurent decomposi-
tion (linear and binary CPM). The simplest algorithms are
derived under the linear constraint of the general pseudo
symbol extractor, and the obtained performance is near the
same (indeed slightly better) as that obtained by assum-
ing that the pseudo symbols are Gaussian. In fact, both
assumption lead to quadratic schemes. Further research is
being performed for relaxing the linear constraint to a linear
plus third-order constrain, with the purpose to give a solid
derivation of some ad-hoc fourth-order schemes derived in
the literature for frequency and timing estimation.
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