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ABSTRACT

We present constrained Cramér-Rao bounds for multi-input
multi-output (MIMO) channel and source estimation. We
find the MIMO Fisher information matrix (FIM) and con-
sider its properties, including the maximum rank of the
unconstrained FIM, and develop necessary conditions for
the FIM to achieve full rank. Equality constraints provide
a means to study the potential value of side information,
such as training (semi-blind case), constant modulus (CM)
sources, or source non-Gaussianity. Nonredundant con-
straints may be combined in an arbitrary fashion, so that
side information may be different for different sources. The
bounds are useful for evaluating various MIMO source and
channel estimation algorithms. We present an example us-
ing the constant modulus blind equalization algorithm.

1. INTRODUCTION

Side information, such as the constant modulus property,
non-Gaussianity, or training (the semi-blind case), is highly
informative and often exploited in signal processing. This
is especially true for multi-channel wireless communica-
tions, e.g., see [1]. In this paper we develop Cramér-Rao
bounds (CRBs) for channel and source estimation in convo-
lutive multi-input multi-output (MIMO) scenarios, when
side information is available. We employ the constrained
CRB formulation of Gorman / Hero [2] and Stoica / Ng
[3, 4]. This approach provides a general framework that
yields CRBs in a large variety of cases, and allows com-
bination of different side information for different sources.
We use a deterministic model for the sources and chan-
nels; a random Gaussian source model does not model
the source attributes, such as CM and non-Gaussianity,
that are commonly exploited in channel and source estima-
tion algorithms. The constrained CRB approach may also
be applied for narrowband instantaneous mixing (uncali-
brated arrays [5] and calibrated arrays [6, 7]), and space-
time coding [5].

2. SOURCE AND CHANNEL MODEL

We write the SIMO model as follows; e.g., see [1, 8]. The
complex baseband representation of the M-channel FIR
system is given by y;(k) = ZzL:o s(k — Dhi(l) + wi(k), for
1 <4 < M channels, and 0 < k < N — 1 output samples.
The maximum channel order is denoted L, and is assumed
known; there are N + L input samples and N output sam-

ples. The noise wi(k) is assumed to be circular Gaussian
and white with variance o°.

The model may be expressed as an M N X 1 vector y,
given by

y = Hus+w, (1)

with input s = [s(—L),---,s(0),---,s(N — 1)]7, output

Yy = [y’{7 e 7y§l]T7 Yi = [yz(0)7 e 7y1(N71)]T7 and chan-
nel matrix
Haq
H]M = E 9 (2)
Han MNx(N+L)

where H(;) is the ith channel (convolution) matrix given
by

hi(L) - hi(0)
H(i) = . . (3)
hi(L) -+ hi(0) Nx(N+L)

Based on the noise assumptions it follows that E[ww'] =
2
o°L

The K-user MIMO model may be written

yi(k) = s (k) % RV (k) + - + 850 (k) % B (k) + wi(k),
(4)

where, for example, s (k) denotes the Kth user and

hgm(k) denotes the ith sub-channel of the Kth user. We
extend (1) to obtain

K
y= ZH](J;)s(k) + w. (5)

k=1

Here, for example, H ](J;)s(k) denotes the contribution of the

kth user where
H®
k .
HY =| |, (6)

HY

and s is the kth user input. (The remaining notational
extensions are straightforward.)



3. THE FISHER INFORMATION MATRIX

Next we derive the Fisher information matrix (FIM) for
the model in (1). This has been derived by Hua [8]; we
give a brief derivation using the complex form of the FIM
and then extend these results to the multi-user case. Define
the complex vector of unknown parameters as

0 — [hT7sT]T7 (7)

h=[h{, - ,hi]" and h; = [R:(0),--- ,hi(L)]". (8)

Writing 6 in terms of its real and imaginary parts as § =
0 + j0, define the real parameter vector as

1 e T
€= [9 ,éT] . (9)
For (1), the FIM has the general block form

B _F]. (10)

wo=2| § 3

The complex FIM may be defined as J.() = E + jF. Note
that the vector y in (1) has complex normal distribution
with mean vector p(0) = Hass and covariance matrix 1.
We can show that the complex FIM for (1) may be written

_ 2 0u"(0) op(0)

c ij — y 11
where 6; denotes the complex conjugate of 6;.
Now, it is straightforward to show that
ou(o A
(;L@(T) =[Iu®S, Hul=Q, (12)

where Ins is the M X M identity matrix, ® denotes Kro-
necker product, and

s(0) s(=1) s(=L)
B s(1) s(0) s(—L+1)
s(N—1) s(N—-2) s(N—L—1)
(13)
Using (11), the complex FIM for (1) is given by
Je= 2Q"Q. (14)

The real-valued FIM is obtained by letting F = Re(J.),
and # = Im(J.) in (10).

Next we develop the FIM for the multi-user model in
(5). Now, with K users, the complex parameter vector is

Ox = [(h(l))T7 (S(1>)T7 ... 7(h(K))T7 (S(K))T}T7 (15)

and the mean of y is now

K
pc(0) = > HPs™. (16)

k=1

Using (12),

OelO%) _ 10, .. Qr2 0, (17)
90T

where
Or — [IM ® " Hg'p] L 1<k<K. (18
Now using (14), the complex multi-user FIM is
) ) QTQ1 QQ: QT Qx
QxQx
(19)

QLG QEQs

The real-valued FIM is obtained by letting E = Re(JX),
and F = Im(JX) in (10), with corresponding real parame-
ter vector

e = [T, 0F] (20)

Next we explore the properties of the MIMO FIM. The-
orem proofs may be found in [9)].

Theorem 1: nullity(JX) > K?

Theorem 1 provides the maximum rank of JX; this maxi-
mum will not be surpassed by increasing N, M, or L. As
noted, the real parameter case FIM (denoted J*) may be
obtained from (10), and then nullity(J*) = 2-nullity(JX).
In the single user case nullity(J.) > 1, corresponding to
the multiplicative ambiguity in blind SIMO problems (see
Theorem 2 of [8]). Intuitively, under certain conditions
the K-user convolutional MIMO problem may be equal-
ized, yielding a memoryless MIMO problem that has a
K x K matrix ambiguity remaining (e.g., see the discus-
sion of MIMO MA model identifiability in section ITI.A. of
[10]).

The results of Theorem 1 may be related to the num-
ber of variables; notice that there are M N equations and
K(N+ L+ ML+ M) unknowns in the MIMO model. We
have the following.

Corollary 1: nullity(JX) > max{K* K(N + L + ML +
M) - MN}

Note that the Corollary implies that we must have M > K
in order for the FIM to achieve its maximum rank. More
precisely, K? < K(N+L+ML+M) - MN if M = K or
if

KL(M+1)

M<K and N>K-— M (21)

where the constraint on N in (21) is nontrivial (> 1) when

L < % I]{[ ﬁf . Corollary 1 leads to a necessary condition

for nullity(J.) = K, for in this case we must have

K*>K(N+L+ML+M)— MN. (22)

Rearranging (22) we have that the number of equations
must be greater than or equal to the number of unknowns
minus K. Solving (22) for N we obtain a necessary con-
dition on the data length,

KL(K +1)
M-—K

KL(M +1)

N>K(L+1)+ UK

=K+ . (23)



Condition (23) is not always sufficient. However, numerical
testing reveals that when (23) fails to be sufficient, it still
provides a good approximation for the minimum value of
N.

In the SIMO case (K = 1), equation (23) reduces to
N>L+1+ % Notice that for all M > 2, and for all L,
we have 1»?51 > 0. Therefore, in the SIMO case, N > L+2
is always necessary.

Tt is also of interest to specify when nullity(FX) = K2.
Generally, identifiability and regularity require the sources
to be persistently exciting of sufficient order. Alterna-
tively, for finite deterministic sequences, this idea can be
expressed in terms of the number of modes necessary to be
present in the source. The modes are independent basis
functions that may be used to describe any finite length
sequence. A sufficient condition for K = 1 is that the
number of modes be greater than or equal to 2L + 1; ad-
ditional conditions are that the SIMO sub-channels do not
have common zeros and that N > 3L + 1 [8]. However,
the situation is more complicated with K > 1, for now the
required value of N depends on M, K, and L. Equation
(23) provides a good approximation when the input has
sufficient modes; the resulting necessary values of N are
not large, being on the order of K L.

In the SISO case (K = 1, M = 1), there are N equa-
tions in L 4 1 channel plus N + L source unknowns. Thus
we always have 2L + 1 more unknowns than equations, and
we find that nullity(J.) > 2L+ 1 in this case, with equality
achieved when the input has sufficient modes.

When nullity(JX) = K? then it is of interest to specify
K? complex parameters in 6 so that the resulting row and
column-reduced FIM will have full rank. This can be seen
from the following Theorem for two users. The proof of
Theorem 2 utilizes the null space basis vectors found in
the proof of Theorem 1.

Theorem 2: Let K = 2 and assume nullity(JX) = 4. Let
J denote JX with four row-column pairs removed, i.e., by
specifying four complex parameters 0; € 0, ¢ = 1,2,3,4.
Then, nullity(J) = 0 if the 6; are chosen in any of the
following ways.

a) 61,02 € h' 05,04 € h?, with at least one of 01,6, #
0, and one of 03,604 £ 0.

b) 61,02 € s', 63,04 € %, with at least one of 81,60, # 0,
and one of 03,04 # 0;

¢) 0;,1=1,2,3, from each of any unique three in the
set {h' s', h? s}, and 04 in any element of the set.

Unlike the K = 1 case, we cannot arbitrarily specify four
parameters, e.g., we cannot specify four parameters in the
set {h',s'} and achieve a full rank FIM. Rather, some
parameters must be specified for both users. This idea
generalizes for K > 2, although the proof is cumbersome.
The lack of FIM regularity in blind single-user SIMO chan-
nel estimation problems is often circumvented by assum-
ing that one of the complex channel coeflicients is known,
resulting in a full rank FIM. Theorem 2 states that, for
K = 2, at least two parameters must be specified for one
of the users to obtain a full rank FIM.

4. CONSTRAINED CRBS

We work with the real-valued FIM J, and the correspond-
ing real-valued parameter vector £ in (9). Consider N.
equality constraints on elements of 8, where N, < Dy =
dim (6). The constraints have the form f;(#) = 0 for
i=1,...,N.. The constraints form a N. x 1 vector f(8),
and we define a N. X Dy gradient matrix F(0) = %ﬁl
with elements [F(0)];,m = 0f:i(0)/0[0]:m. F(0) is assumed
to have full row rank N, for any 0 satisfying the constraints
f1(0),..., fn.(0). Let U be a Dy x (Dg— N.) matrix whose
columns are an orthonormal basis for the null space of F,
so that FU = 0, and UTU = I Then, Stoica and Ng have
shown that as long as UT JU is invertible, the constrained
CRB is given by (Thrm. 1 of [3])

B [(é )T - 9)] >U@TIu)TUT. (24)

Notice that J in (24) is the unconstrained CRB, while U is
solely a function of the constraints. Properties of inverses
of partitioned matrices may be exploited to find closed
form expressions for the resulting constrained CRBs [7].
This requires specification of U for a particular constraint
set, which is typically not too difficult. Alternatively, given
F(0) and J, both U and (24) may be evaluated numeri-
cally. For examples, see [5, 6, 7, 9].

5. EXAMPLE AND DISCUSSION

To illustrate some of the ideas, we present a single-input
single-output (M = 1) example. We compare two blind
linear equalizers with a constrained CRB. The source is
QPSK with iid symbols and unit modulus, and we use
symbol synchronous sampling. The block length is N, and
SNR = hHh/O'2. The equalizer length is L. + 1 = 31. The
channel is given by h = [0.53+50.07, —0.24—50.23, —0.54—
§0.32;0.11 4+ j0.44, —0.036 — 50.099] . The equalizer yields

source estimates

Le/2

sk—dy= > weylk—0), (25)
t=—1L,/2
fork="Le ... N-1-Le de{-Le ... L} where we
and d are the equalizer weights and delay. Only N — L, of
the N + L signal values are estimated, eliminating block
edge eflects.

We compare performance of the constant modulus al-
gorithm (CMA) and the alphabet-matched algorithm (AMA)
[11, 12]. Both CMA and AMA employ a block-averaged
gradient method for smoother convergence, as in [11, 12].
The CRB incorporates the CM signal constraint with unit
modulus. The CM constraint alone does not provide a
full rank FIM, so we we additionally constrain one signal
sample to be known that is block centered at s(N/2 —1).
The CMA exploits the CM signal property directly, while
AMA exploits the discrete alphabet constraint in a soft
manner [12]. We note that applying the discrete alphabet
constraint does not yield a useful bound on variance [7].

Because the FIR SISO channel cannot be perfectly
equalized with an FIR filter, residual inter-symbol interfer-
ence (ISI) will remain. This residual ISI can be bounded
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Figure 1: Simulation results and bounds on symbol esti-
mation error versus SNR, with block length N = 400.

by designing a noise-free known-signal equalizer, and mea-
suring the ISI in this case. We refer to this value as the
minimum ISI (MIN ISI). Note that this value is a function
of the equalizer delay d.

Figure 1 shows AMA and CMA results for N = 400,
along with the constrained CRB. The AMA and CMA con-
verge to weight vectors with (non-optimal) delay d = 2,
primarily because the gradient descent was center tap ini-
tialized with weight vector wo = 1 and we = 0 for £ # 0.
The line labeled “MIN ISI (CMA/AMA DELAY)” is the
residual ISI of the noise-free, known-signal equalizer using
the same value of delay d = 2 as the CMA and AMA. The
line labeled “MIN ISI (OPTIMUM DELAY)” corresponds
to the minimum IST over all delays.

Figure 2 shows the effect of increasing the block length
for a high SNR case. Both CMA and AMA asymptoti-
cally (in N and SNR) achieve the minimum ISI bound for
the appropriate delay. They did not achieve the minimum
possible IST limit as they did not converge to the optimal
delay. The AMA algorithm displays some advantage over
CMA at lower block sizes, in the range of 200 < N < 400.
AMA also generally converges faster than CMA.

The constrained CRB provides a fundamental bound
on the potential improvement if a nonlinear equalizer is
employed (such as one employing decision feedback), over
that attainable with the linear equalizer in the SISO case.
Together, the constrained CRB and ISI bounds delineate
SNR regimes in which the linear equalizer is “noise lim-
ited” (when the CRB is larger than IST) and “residual ISI
limited” (when the ISI is larger than the CRB). The par-
ticular bound in this example incorporates the CM source
property. It is interesting to consider other constraints that
may lead to potentially lower bounds, and to determine if
appropriate algorithms might reach such bounds.
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