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ABSTRACT

The performance of widely-used adaptive noise canceling(ANC)
deteriorates much when the desired signal is leaked into the
reference channel or when there are uncorrelated noises present in
the reference channel. This paper proposes a dual-microphone
scheme, named Iterative Noise Canceling (INC), to overcome the
drawbacks mentioned above. The proposed INC system, in which a
codebook-based speech quality measure is employed to control a
modified iterative Wiener filter (MIWF), can automatically reduce
noises in the primary input until convergence occurs. In comparison
with traditional ANC algorithm, the evaluation using real noises and
voices recorded in a car shows the noise reduction performance is
dramatically improved, even in cases that the reference SNR is
close to 0 dB.

1. INTRODUCTION
In real environments, the presence of interfering noises always

greatly degrades the performance of speech communication systems.

Some techniques have been developed to solve the problem over the
past decades, including spectral subtraction, all-pole modeling
/noncausal wiener filtering[1], MMSE estimation etc.. Most of them
are mainly under the assumption that the interfering signal is
stationary, additive and nonspeechlike. Since the needed statistics of
noises only can be estimated during speech pauses, those
single-channel approaches present a poor performance when
interference is time-varying. Whereas, in a conventional structure of
ANC [2]-[4], there are two microphones: the primary microphone to
obtain the noise-corrupted speech and the reference one to obtain a
correlated component of the noise present in the primary input. The
reference input is processed by an adaptive Wiener filter to generate
a replica of the noise component in the primary input. Hence, it can
automatically grasp the property of time-varying noises and lead to
significant improvement to noise suppression, without making any
strict hypotheses on the character of noise in advance.

In real acoustic environments, it is always inevitable that the
target speech is also sampled by the reference microphone. Such a
“leakage” makes the adaptive filter partially suppress the speech in
the primary channel, resulting in notable distortion. Therefore, the
signal-to-noise ratio (SNR) of reference signal is required to be very
low. Particularly, according to the principle of noise minimizing
method, any level of reference SNR above 0 dB will lead to a great
distortion.

On the other hand, a diffuse background noise field lies in many
environments, such as crowds, automobiles and flight jets. The
perturbations can be characterized by a correlated component and
an uncorrelated component. The uncorrelated noise in the primary
input cannot be canceled by ANC. Moreover, the uncorrelated noise
in reference channel not only is introduced into the output terminal
by the adaptive filter, but also serves as an interference for
adaptation of ANC.

An environment with a diffuse noise field like a car is
considered in this paper. In order to obtain a reference signal which
is correlated with the noise component in primary channel as much
as possible, the two microphones should be placed closely.
Unfortunately, this placement encounters a relatively high SNR of
reference signal. As a result, thus performance of the ANC is limited
[4].

We proposed a new structure, iterative noise canceling (INC).
The initial relevant research was reported in [5] by Y.Cao etc., in
which a modified iterative wiener filtering technique was briefly
described for speech separation. This paper gives a further
theoretical analysis of that approach in order to draw some
conclusions about its behavior in real environments and to give a
more regular MIWF. It is shown that the MIWF technique can
provide a better performance than conventional ANC techniques
when the reference noise is not very “clean”.

The interference component in primary channel is attenuated
consistently across iterations until optimal quality of output speech
occurs. Since any further iteration will lead to a great impairment,
there is clearly a need for a criterion of convergence based on some
objective quality measures for occasions requiring automatic
enhancement. Similar problems had also been encountered in [1] [6].
An obvious problem with those widely used measures is that outside
of simulation the clean speech is unavailable, and hence,
comparative evaluation is impossible[1][6]. A speaker classifier was
introduced to determine the convergence of MIWF in [5]. However,
the method cannot work well when the desired speaker is changed.
In this paper, we proposed a new objective measure, which derived
from some comparison between processed speech and a codebook,
so the problem has been well solved in a simple way.

2. BACKGROUND OF INC

In a real dual-channel speech acquisition system, each
microphone acquires not only the target speech, but also the
interfering signals from the other sources. For simplicity, our
theoretic analysis is limited to the two-source case. But later we will
present experimental results demonstrating that our proposed
system can actually work well in a diffuse noisy background in a car.
Let spand ng be the target speech and interfering noise obtained by
the main microphone, micl. Using the linear filters A and B to
model the difference caused by spacial transfer channels between
the signals received by main microphone and reference microphone,
mic2. Fig.1 illustrated the dual-microphone system, which can be
described in the time domain as

y,(t) = s, (t)+ n, (1)
Y, (t) = s, (t)Da(t) + n, (t)*b(t) @

where a(t) and b(t) represent the impulse responses of filters A and
B respectively.
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Fig.1. Block diag§am o% the dual-microphone acquisition system

Assume the signal and the noise are independent, and the
noise is additive. Our problem of noise reduction could be solved if
we could build a noncausal filter as follows,

(@) P @) @

P, (w)+ Py, (@)
where P, w(} and P (@) denote the power spectral densities
(PSD) of e desired signal ‘and the interfering noise, respectively.
According to the theory of Wiener filtering, Eq(2) provides the
optimum estimator of target speech sy(t) in a sense of minimum
mean-squared error. But obviously, the Wiener filter of Eq.(2) can
not be applied directly since the spectrums P (4))h and
P, () cannot be known. Consider the following filfer which is
defived from Eq.(2),

o Pu(@) k<1 (3
Psu ((/.))+ P"u ((IJ)
Eq.(3) provides an explanation to noncausal Wiener filter in a
different way when k equals to 1. The optimal estimate of target
speech can also be obtained by subtracting the optimal estimate of
noise component from the noisy signal. Based on this view, we can
construct a sub-optimal solution to iteratively approach the ideal
filter described as Eq.(2). Consider if k<1 (for example k=0.1), then

Eq.(3) means to partially subtract the noise component. Thus a

scheme of iterative noise cancellation (INC) can be formed by

running the filter again and again, as a result, it reduces the noise

component little by little while maintaining the target speech s, at a

certain level of magnitude until a critical situation occurs. Here we

are facing two problems which should be resolved:

1. How to construct such a iterative wiener filter based on the
signals acquired by our current two-microphone system?

2. Since any further iterations will lead to a great distortion of
target speech after an optimal output has been obtained, how to
detect the presence of such a “critical situation” across
iterations?

H(w)=1-k

3. MODEFIED ITERATIVE WIENER FILTER
The modified iterative Wiener filter (MIWF) technology was
formally proposed to suppress the competing speech in [5]. Here we
will further study it and present a more regular formulation of

MIWF:
_ (1+ai)Py](‘)(w) i=12,- (4)
)= 5 Y B, @)
where
) ‘R (a))z i1 |H ( )|2 (5)
a,; = Tz (W
B (w l:lo
(6)
Bi=k ——r (@)f
6 (@ )\
YO (@)=Y, D (0)H, (@) )

where Y, () () is the output signal of Wiener filter at the (i-1)th
iteration. At the beglnnlng, y @ ) is replaced by the primary
input vy (t) and |H (guals to 1. K denotes the step
factor whith’can be varylng across iterations. And it is required that

k << 1 (forexample k = 0.1).
A. How does it work

Now let’s put an insight into the process of the iterative
filtering — how does the proposed system work? Considering the
first step of it, the modified wiener filter at first iteration can be
transformed into

-2 L) P, (@) ®
H,(w)=1- 8 ()
T Bl e, (@)
B(w)f °
if A(w)= A(w) ad B (0) =B (w) ©

If the following conditions are satisfied,

Mk <<1, @ IA(w)I

< WD A
"o @)l

B (@)

(10)
then Eq.(8) can be approximately transformed into
P, (@) (11)

P, (w)+P, (w)

which is quite similar to Eq.(2). As indicated before, Eq.(11) means
to subtract some noise component from the input noisy signal. In
fact, it can be proved, if the first step of approximation is acceptable,
similar transformation can be performed again and again as
iterations are going on. So the following wiener filters can all be the
similar forms

H,(w)=1-k, B

H (@) =1~k Bt (@) 12)

P, (@) Py, (@)
Note that the noise components vary in every step while the PSD of
signal remains the same. Thus the process can be described as the
continuous reduction of the noise component presented in the
primary channel. In fact, the prerequisites described in Eq.(10)
indicates that the performance of MIWF doesn’t depend on the SNR
of reference input but the difference of SNR between the two input
noisy signals. This is a rather big merit of MIWF for it is
comparatively easier to obtain a large difference between the two
input noisy signals in practical use while in a traditional ANC, the
prerequisite of a very low SNR in reference channel is hard to
satisfied.

B. Impact of SNR Difference

As indicated above, the performance of noise cancellation
depends on the SNR difference between the two input channels in a
large sense. This difference can be described as following:

M (w)_ SNRZ(w - |A(w)|2 (13)
Pswry (@) |B(0~’)|2
Since K <<1, Eq.(8) can be approximately changed into
P P
H, (@) =1-k——2 "4 @ ™, () (14)

P, (@) +P, (&) ACEXP
The third term on the right side of Eq.(14) indicates that a distortion
is introduced into the noise component, besides some part of the
noise has been suppressed. The more significant the SNR difference
is, the lower such distortion is. It is also shown that the level of SNR
difference does not influence the distortion of the target speech,
while the same case in ANC inevitably impacts the distortion level
of the target speech. A further quantitative analysis suggests that if



the primary SNR is 6dB greater than the reference SNR, ANC using
LMS algorithm presents the output with 25% distortion of target
speech, but the MIWF produces output with about 3.3% distortion
of noise at the first stepwhen k = 0.1.

C. Impact of Channel-Estimate Error

The analysis above is under an assumption that the channels A and
B could be accurately estimated. Since error cannot be avoided, it is
necessary to study the influence of channel-estimate error on the
behavior of MIWF. In such a case, the Wiener filter at the first step
can be written as

LI ESC AR ICINC]
el B (@) B () B (o) (15)
()= P (@) A, ()

From eq.(15), we can find the Wiener filter leads to not only the
distortion of noise component but also that of target component. The
following conclusions are drawn from our study:

1. MIWF is not sensitive to the error of A (), when the SNR
difference is notable, i.e. not less than 6dB. But MIWF is
somewhat sensitive to the error of E (w)

2. Error of A () mainly causes the distortion of target signal,
while error of B (¢ ) influences the noise reguction.

3. The impairment is comparativ%ly small if A(w) tends to be
lower than A(w) , or if B(w) tends to be higher than
B(w) -

Details about our analysis will be presented in another paper. One

interesting point regarding the above conclusions is that, although

the performance is more sensitive to the error of B (@), it is
easier to estimate B () in practice—We can get it during speech
pauses. I_Dater, our experiments will show that a simple setting of

A and B can get a good performance.

4. CODEBOOK-BASED CRITERION FOR

CONVERGENCE DETECTION

With INC going on, it has been observed that the quality of
filtering output speech is getting better and better. After an optimal
step happens, however, the speech quality is significantly decreased.
The phenomenon indicates that an objective speech quality measure
can be employed to serve as the criterion for convergence detection.
As far as we know, nearly all the widely used objective quality
measures are some comparison between processed noisy speech and
original clean speech [7]. But in real speech enhancement
applications, the clean speech is inevitably unknown. As the
behavior of mankind, machine’s ability of evaluating how greatly a
signal sounds like a speech should be built on a broad knowledge of
speech features. So we use unsupervised learning techniques to
derive the requisite knowledge of voice. A simple approach to this is
through pattern clustering of clean speech spectra. In the present
work, a codebook-based objective speech quality measure has been
firstly proposed and applied to form the criterion for convergence
detection.

Let {a} be a set of LPC vectors derived from clean speech
data of a set of selected speakers. The perceptual difference between
two LPC vectors is well correlated to the IS (ltadura-Satio)
distortion measure. A close approximation to the IS measure has be
widely used in vector quantization [8],

d(ax,ay):(ax—ay)T R, (a, -a,) (16)

where_a, and @, are any two LPC vectors of the same order,
and RX is the normalized autocorrelation matrix corresponding to
the LPC vector @, . Using the IS distortion measure, the problem
of pattern clustering can be solved applying the iterative K-means
algorithm [8], where K is the order of 1024 (since such a codebook

size has been found sufficient in speech coding applications).

Based on the formed codebook, a new speech quality
measure, codebook-based distortion, has been introduced as
following,

G (X):10124 Zld Ccve) o

Codebook-based distortion is the mean distance between feature
vector X and all the vectors in the codebook. It is quite different
from VQ algorithm, in which the nearest distance between a test
vector and each cluster is always desired. Since the codebook
represents a special class of data (speech feature vectors) in the
sound feature space, due to interclass fuzzy border and intraclass
dispersed distribution, the measure that how exactly a LPC vector is
speechlike should be derived through the mean distance to the
whole speech class.

5. EXPERIMENTS

Experiments were conducted under a simulated environment
based on the signals sampled in a real car acoustic conditions. The
data acquisition system consists of two microphones set vertically in
a car with a distance of 30 cm. The noise signals were accumulated
when the car was running in a highway while the speech signals
were sampled in a quiet circumstance when the car was held still.
Thus by adjusting the magnitude of speeches in two channels before
the mixture is made, various SNR can be obtained. As far as the
codebook is concerned, LPC parameters extracted from recorded
speech sentences of four male and four female speakers were used
as the training vectors. Some of the parameters concerning the
preprocessing are sampling frequency 8kHz, LPC model order 12,
frame window width 32ms and successive frame overlap 8ms. Since
the primary microphone should be placed more closely to speaker’s
mouth than the reference one in practice, we simulate the situation
where the car noises obtained by two microphones have the same
SPL level while the SPL levels of speeches are different due to the
different distances from speaker’s mouth to microphones. In such a
case, the parameters k, A and B are fixed to 0.05, 0.1 and 1,
respectively. As indicated before, the performance of MIWF is not
sensitive to the error of A . Our experimental results also support
this point.

To demonstrate the efficiency of the codebook-based criterion
for convergence detection, two objective speech quality measures
were introduced for comparison, one is the LPCC linear distance
between the processed speech and the original clean speech and the
other is IS distortion measure. Figure 2 shows the variation of three
measures across iterations. (1), (2) and (3) comes from the test
results of three inner speakers whose data are within the training set
which forms the codebook while (4) is the test results of an outer
speaker whose data is out of the training set. It is obvious that the
proposed distortion holds well consistency with two objective
measures in inner-speaker tests. So we expect that if a general
codebook is derived from a large set of speakers’ data, it could be
suitable for any speaker that convergence of MIWF can be easily
detected by checking whether the proposed distortion is increased.
In the present experiments, totally 20 inner-speaker tests have been
done and the rate of correct detection is 100%.

A comparison of performance between the proposed INC and
the traditional ANC using LMS algorithm (order is 200) under
various SNR differences is given in Fig.3 and Fig.4, with SNR 0dB
and 5dB in the main channel respectively. It has been shown that
INC’s performance is dramatically better than ANC’s. From the
evaluation of Itakura Distortion, we can learned that the proposed
system is less sensitive to the reference SNR than ANC, especially
when SNR difference is between 8dB to 20dB

Figure 5 illustrates the difference between the processed
waveforms of INC and ANC algorithm. Compared with the original
noisy signal (the first waveform), although the result of ANC (the
second waveform) partially suppresses the noise component, the
desired speech is also attenuated. However, INC holds the desired



cancellation methods such as ANC. Furthermore, because of the
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speech well while greatly suppresses the noise component. As
shown in Fig.5, due to the diffuse noise field in a car, ANC cannot
reduce the uncorrelated noise. Whereas, since INC is a sub-optimal
solution to the noncausal Wiener filter, it can significantly suppress
the incoherent noise in the domain of PSD.

6. CONCLUSION

In this paper, we propose an iterative noise canceling scheme:
a modified iterative Wiener filter controlled by a codebook- based
speech quality measure. It is shown that the proposed INC structure
results in dramatically improved speech enhancement, even when
the reference signal is not “clean”. Experimental results demonstrate
that in a real diffuse noise field such as a running car, INC gives
much better speech enhancement result than the traditional noise

Figure 5. Comparison of result waveforms between INC and ANC
(SNR difference between two inputs is 10 dB)



