
   
 CODEBOOK CONSTRAINED ITERATIVE NOISE CANCELLATION 

WITH APPLICATIONS TO SPEECH ENHANCEMENT*  
 

Yan Gao,   Jing Lu,   Kai Yu,   and  Bo-Ling Xu 
    

The Institute of Acoustics, National Key Laboratory of Modern Acoustics, 

 Department of Electrical Science and Engineering , Nanjing University, 210093 Nanjing,  P.R. China 

Fax: ++86-25-3315557  E-mail: assp@nju.edu.cn 
 

                                                        
* This paper is supported by National Science Foundation of China (69872014) 

ABSTRACT 
The performance of widely-used adaptive noise canceling(ANC) 
deteriorates much when the desired signal is leaked into the 
reference channel or when there are uncorrelated noises present in 
the reference channel. This paper proposes a dual-microphone 
scheme, named Iterative Noise Canceling (INC), to overcome the 
drawbacks mentioned above. The proposed INC system, in which a 
codebook-based speech quality measure is employed to control a 
modified iterative Wiener filter (MIWF), can automatically reduce 
noises in the primary input until convergence occurs. In comparison 
with traditional ANC algorithm, the evaluation using real noises and 
voices recorded in a car shows the noise reduction performance is 
dramatically improved, even in cases that the reference SNR is 
close to 0 dB. 
 

1. INTRODUCTION 
In real environments, the presence of interfering noises always 

greatly degrades the performance of speech communication systems. 
Some techniques have been developed to solve the problem over the 
past decades, including spectral subtraction, all-pole modeling 
/noncausal wiener filtering[1], MMSE estimation etc.. Most of them 
are mainly under the assumption that the interfering signal is 
stationary, additive and nonspeechlike. Since the needed statistics of 
noises only can be estimated during speech pauses, those 
single-channel approaches present a poor performance when 
interference is time-varying. Whereas, in a conventional structure of 
ANC [2]-[4], there are two microphones: the primary microphone to 
obtain the noise-corrupted speech and the reference one to obtain a 
correlated component of the noise present in the primary input. The 
reference input is processed by an adaptive Wiener filter to generate 
a replica of the noise component in the primary input. Hence, it can 
automatically grasp the property of time-varying noises and lead to 
significant improvement to noise suppression, without making any 
strict hypotheses on the character of noise in advance.  

In real acoustic environments, it is always inevitable that the 
target speech is also sampled by the reference microphone. Such a 
“leakage” makes the adaptive filter partially suppress the speech in 
the primary channel, resulting in notable distortion. Therefore, the 
signal-to-noise ratio (SNR) of reference signal is required to be very 
low. Particularly, according to the principle of noise minimizing 
method, any level of reference SNR above 0 dB will lead to a great 
distortion.     

On the other hand, a diffuse background noise field lies in many 
environments, such as crowds, automobiles and flight jets. The 
perturbations can be characterized by a correlated component and 
an uncorrelated component. The uncorrelated noise in the primary 
input cannot be canceled by ANC. Moreover, the uncorrelated noise 
in reference channel not only is introduced into the output terminal 
by the adaptive filter, but also serves as an interference for 
adaptation of ANC.  

 An environment with a diffuse noise field like a car is 
considered in this paper. In order to obtain a reference signal which 
is correlated with the noise component in primary channel as much 
as possible, the two microphones should be placed closely. 
Unfortunately, this placement encounters a relatively high SNR of 
reference signal. As a result, thus performance of the ANC is limited 
[4]. 

We proposed a new structure, iterative noise canceling (INC). 
The initial relevant research was reported in [5] by Y.Cao etc., in 
which a modified iterative wiener filtering technique was briefly 
described for speech separation. This paper gives a further 
theoretical analysis of that approach in order to draw some 
conclusions about its behavior in real environments and to give a 
more regular MIWF. It is shown that the MIWF technique can 
provide a better performance than conventional ANC techniques 
when the reference noise is not very “clean”.  

The interference component in primary channel is attenuated 
consistently across iterations until optimal quality of output speech 
occurs. Since any further iteration will lead to a great impairment, 
there is clearly a need for a criterion of convergence based on some 
objective quality measures for occasions requiring automatic 
enhancement. Similar problems had also been encountered in [1] [6]. 
An obvious problem with those widely used measures is that outside 
of simulation the clean speech is unavailable, and hence, 
comparative evaluation is impossible[1][6]. A speaker classifier was 
introduced to determine the convergence of MIWF in [5]. However, 
the method cannot work well when the desired speaker is changed. 
In this paper, we proposed a new objective measure, which derived 
from some comparison between processed speech and a codebook, 
so the problem has been well solved in a simple way.  

  
2. BACKGROUND OF INC 

In a real dual-channel speech acquisition system, each 
microphone acquires not only the target speech, but also the 
interfering signals from the other sources. For simplicity, our 
theoretic analysis is limited to the two-source case. But later we will 
present experimental results demonstrating that our proposed 
system can actually work well in a diffuse noisy background in a car. 
Let s0 and n0 be the target speech and interfering noise obtained by 
the main microphone, mic1. Using the linear filters A and B to 
model the difference caused by spacial transfer channels between 
the signals received by main microphone and reference microphone, 
mic2. Fig.1 illustrated the dual-microphone system, which can be 
described in the time domain as  

( ) ( ) ( )tntsty 001 +=  

      ( ) ( ) ( ) ( ) ( )tbtntatsty *002 +∗=          (1) 
where a(t) and b(t) represent the impulse responses of filters A and 
B respectively.  

 



Fig.1. Block diagram of the dual-microphone acquisition system 
 
Assume the signal and the noise are independent, and the 

noise is additive. Our problem of noise reduction could be solved if 
we could build a noncausal filter as follows,  
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where ( )
0sP ω and ( )

0nP ω  denote the power spectral densities 
(PSD) of the desired signal and the interfering noise, respectively. 
According to the theory of Wiener filtering, Eq(2) provides the 
optimum estimator of target speech s0(t) in a sense of minimum 
mean-squared error. But obviously, the Wiener filter of Eq.(2) can 
not be applied directly since the spectrums ( )

0sP ω  and 
( )

0nP ω cannot be known. Consider the following filter which is 
derived from Eq.(2),  
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Eq.(3) provides an explanation to noncausal Wiener filter in a 
different way when k equals to 1. The optimal estimate of target 
speech can also be obtained by subtracting the optimal estimate of 
noise component from the noisy signal. Based on this view, we can 
construct a sub-optimal solution to iteratively approach the ideal 
filter described as Eq.(2). Consider if k<1 (for example k=0.1), then 
Eq.(3) means to partially subtract the noise component. Thus a 
scheme of iterative noise cancellation (INC) can be formed by 
running the filter again and again, as a result, it reduces the noise 
component little by little while maintaining the target speech s0 at a 
certain level of magnitude until a critical situation occurs. Here we 
are facing two problems which should be resolved: 
1. How to construct such a iterative wiener filter based on the 

signals acquired by our current two-microphone system? 
2. Since any further iterations will lead to a great distortion of 

target speech after an optimal output has been obtained, how to 
detect the presence of such a “critical situation” across 
iterations?   

 
3. MODEFIED ITERATIVE WIENER FILTER 

 The modified iterative Wiener filter (MIWF) technology was 
formally proposed to suppress the competing speech in [5]. Here we 
will further study it and present a more regular formulation of 
MIWF: 
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where ( ) ( )1
iY ω  is the output signal of Wiener filter at the (i-1)th 

iteration. At the beginning, ( ) ( )1
1Y ω  is replaced by the primary 

input ( )1Y t  and ( )0H ω  equals to 1. k denotes the step 
factor which can be varying across iterations. And it is required that 

1k < < (for example 0 .1k = ).  
 
A. How does it work 
 
 Now let’s put an insight into the process of the iterative 
filtering – how does the proposed system work? Considering the 
first step of it, the modified wiener filter at first iteration can be 
transformed into 
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then Eq.(8) can be approximately transformed into 

   ( ) ( )
( ) ( )

0

0 0

1 11 n

s n

P
H k

P P
ω

ω
ω ω

≈ − ⋅
+

          (11) 

which is quite similar to Eq.(2). As indicated before, Eq.(11) means 
to subtract some noise component from the input noisy signal. In 
fact, it can be proved, if the first step of approximation is acceptable, 
similar transformation can be performed again and again as 
iterations are going on. So the following wiener filters can all be the 
similar forms  
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Note that the noise components vary in every step while the PSD of 
signal remains the same. Thus the process can be described as the 
continuous reduction of the noise component presented in the 
primary channel. In fact, the prerequisites described in Eq.(10) 
indicates that the performance of MIWF doesn’t depend on the SNR 
of reference input but the difference of SNR between the two input 
noisy signals. This is a rather big merit of MIWF for it is 
comparatively easier to obtain a large difference between the two 
input noisy signals in practical use while in a traditional ANC, the 
prerequisite of a very low SNR in reference channel is hard to 
satisfied. 
 
B. Impact of SNR Difference 
 As indicated above, the performance of noise cancellation 
depends on the SNR difference between the two input channels in a 
large sense. This difference can be described as following:  
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Since 1k << , Eq.(8) can be approximately changed into 
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The third term on the right side of Eq.(14) indicates that a distortion 
is introduced into the noise component, besides some part of the 
noise has been suppressed. The more significant the SNR difference 
is, the lower such distortion is. It is also shown that the level of SNR 
difference does not influence the distortion of the target speech, 
while the same case in ANC inevitably impacts the distortion level 
of the target speech. A further quantitative analysis suggests that if 



the primary SNR is 6dB greater than the reference SNR, ANC using 
LMS algorithm presents the output with 25% distortion of target 
speech, but the MIWF produces output with about 3.3% distortion 
of noise at the first step when 0 .1k = .  
 
C. Impact of Channel-Estimate Error  
The analysis above is under an assumption that the channels A and 
B could be accurately estimated. Since error cannot be avoided, it is 
necessary to study the influence of channel-estimate error on the 
behavior of MIWF. In such a case, the Wiener filter at the first step 
can be written as 
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From eq.(15), we can find the Wiener filter leads to not only the 
distortion of noise component but also that of target component. The 
following conclusions are drawn from our study: 
1. MIWF is not sensitive to the error of ( )A ω

∧ , when the SNR 
difference is notable, i.e. not less than 6dB. But MIWF is 
somewhat sensitive to the error of ( )B ω

∧ . 
2. Error of ( )A ω

∧ mainly causes the distortion of target signal, 
while error of ( )B ω

∧ influences the noise reduction. 
3. The impairment is comparatively small if ( )A ω

∧
 tends to be 

lower than ( )A ω , or if ( )B ω
∧

tends to be higher than 
( )B ω .  

Details about our analysis will be presented in another paper. One 
interesting point regarding the above conclusions is that, although 
the performance is more sensitive to the error of ( )B ω

∧ , it is 
easier to estimate ( )B ω  in practice—We can get it during speech 
pauses. Later, our experiments will show that a simple setting of 
A
∧

and B
∧

can get a good performance.  
 

4444. CODEBOOK-BASED CRITERION FOR 
CONVERGENCE DETECTION 

 With INC going on, it has been observed that the quality of 
filtering output speech is getting better and better. After an optimal 
step happens, however, the speech quality is significantly decreased. 
The phenomenon indicates that an objective speech quality measure 
can be employed to serve as the criterion for convergence detection. 
As far as we know, nearly all the widely used objective quality 
measures are some comparison between processed noisy speech and 
original clean speech [7]. But in real speech enhancement 
applications, the clean speech is inevitably unknown. As the 
behavior of mankind, machine’s ability of evaluating how greatly a 
signal sounds like a speech should be built on a broad knowledge of 
speech features. So we use unsupervised learning techniques to 
derive the requisite knowledge of voice. A simple approach to this is 
through pattern clustering of clean speech spectra. In the present 
work, a codebook-based objective speech quality measure has been 
firstly proposed and applied to form the criterion for convergence 
detection.  
 Let {a} be a set of LPC vectors derived from clean speech 
data of a set of selected speakers. The perceptual difference between 
two LPC vectors is well correlated to the IS (Itadura-Satio) 
distortion measure. A close approximation to the IS measure has be 
widely used in vector quantization [8], 

( ) ( ) ( ),x y x y x x yd a a a a R a a
Τ

= − −       (16) 

where xa  and ya  are any two LPC vectors of the same order, 
and xR is the normalized autocorrelation matrix corresponding to 
the LPC vector xa . Using the IS distortion measure, the problem 
of pattern clustering can be solved applying the iterative K-means 
algorithm [8], where K is the order of 1024 (since such a codebook 

size has been found sufficient in speech coding applications). 
  Based on the formed codebook, a new speech quality 
measure, codebook-based distortion, has been introduced as 
following, 

         ( ) ( )
1 0 2 4

1

1 ,
1 0 2 4c b k i

i
d x d x y

=

= ∑
          (17) 

Codebook-based distortion is the mean distance between feature 
vector x  and all the vectors in the codebook. It is quite different 
from VQ algorithm, in which the nearest distance between a test 
vector and each cluster is always desired. Since the codebook 
represents a special class of data (speech feature vectors) in the 
sound feature space, due to interclass fuzzy border and intraclass 
dispersed distribution, the measure that how exactly a LPC vector is 
speechlike should be derived through the mean distance to the 
whole speech class.    
 

5. EXPERIMENTS 
 Experiments were conducted under a simulated environment  
based on the signals sampled in a real car acoustic conditions. The 
data acquisition system consists of two microphones set vertically in 
a car with a distance of 30 cm. The noise signals were accumulated 
when the car was running in a highway while the speech signals 
were sampled in a quiet circumstance when the car was held still. 
Thus by adjusting the magnitude of speeches in two channels before 
the mixture is made, various SNR can be obtained. As far as the 
codebook is concerned, LPC parameters extracted from recorded 
speech sentences of four male and four female speakers were used 
as the training vectors. Some of the parameters concerning the 
preprocessing are sampling frequency 8kHz, LPC model order 12, 
frame window width 32ms and successive frame overlap 8ms. Since 
the primary microphone should be placed more closely to speaker’s 
mouth than the reference one in practice, we simulate the situation 
where the car noises obtained by two microphones have the same 
SPL level while the SPL levels of speeches are different due to the 
different distances from speaker’s mouth to microphones. In such a 
case, the parameters k, A

∧
and B

∧
are fixed to 0.05, 0.1 and 1, 

respectively. As indicated before, the performance of MIWF is not 
sensitive to the error of A

∧ . Our experimental results also support 
this point. 

To demonstrate the efficiency of the codebook-based criterion 
for convergence detection, two objective speech quality measures 
were introduced for comparison, one is the LPCC linear distance 
between the processed speech and the original clean speech and the 
other is IS distortion measure. Figure 2 shows the variation of three 
measures across iterations. (1), (2) and (3) comes from the test 
results of three inner speakers whose data are within the training set 
which forms the codebook while (4) is the test results of an outer 
speaker whose data is out of the training set. It is obvious that the 
proposed distortion holds well consistency with two objective 
measures in inner-speaker tests. So we expect that if a general 
codebook is derived from a large set of speakers’ data, it could be 
suitable for any speaker that convergence of MIWF can be easily 
detected by checking whether the proposed distortion is increased. 
In the present experiments, totally 20 inner-speaker tests have been 
done and the rate of correct detection is 100%. 
 A comparison of performance between the proposed INC and 
the traditional ANC using LMS algorithm (order is 200) under 
various SNR differences is given in Fig.3 and Fig.4, with SNR 0dB 
and 5dB in the main channel respectively. It has been shown that 
INC’s performance is dramatically better than ANC’s. From the 
evaluation of Itakura Distortion, we can learned that the proposed 
system is less sensitive to the reference SNR than ANC, especially 
when SNR difference is between 8dB to 20dB  
   Figure 5 illustrates the difference between the processed 
waveforms of INC and ANC algorithm. Compared with the original 
noisy signal (the first waveform), although the result of ANC (the 
second waveform) partially suppresses the noise component, the 
desired speech is also attenuated. However, INC holds the desired 



speech well while greatly suppresses the noise component. As 
shown in Fig.5, due to the diffuse noise field in a car, ANC cannot 
reduce the uncorrelated noise. Whereas, since INC is a sub-optimal 
solution to the noncausal Wiener filter, it can significantly suppress 
the incoherent noise in the domain of PSD.  
 

6. CONCLUSION 
In this paper, we propose an iterative noise canceling scheme: 

a modified iterative Wiener filter controlled by a codebook- based 
speech quality measure. It is shown that the proposed INC structure 
results in dramatically improved speech enhancement, even when 
the reference signal is not “clean”. Experimental results demonstrate 
that in a real diffuse noise field such as a running car, INC gives 
much better speech enhancement result than the traditional noise 

cancellation methods such as ANC. Furthermore, because of the 
comparatively loose conditions required by it, INC system can be 
expected to have a wide use in automatic noise reduction. 
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Figure 2. Variations of codebook-based quality across iterations

Figure 3. Comparison of performance between INC and ANC
(Primary SNR is 0dB) 

 

Figure 4. Comparison of performance between INC and ANC
(Primary SNR is 5dB) Figure 5. Comparison of result waveforms between INC and ANC

(SNR difference between two inputs is 10 dB) 
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