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ABSTRACT

In this paper, a comparison is made between the spectral regrowth
of quadrature phase shift keyed (QPSK) and offset QPSK (OQPSK)
signals as they go through non-linear amplifications. Contrary to
existing approaches that assume the power amplifier input is Gaus-
sian, our analysis is carried out without the Gaussian assumption,
by using higher-order statistics. We show that it is possible to as-
sess quantitatively, whether and how much OQPSK is beneficial
in reducing spectral regrowth. Simple closed form formulas are
obtained when the pulse shape filter is time-limited. A particular
measure of spectral broadening is also provided.

1. INTRODUCTION

QPSK is a popular modulation format that is used in many appli-
cations (e.g., IS-95 CDMA). Let us denote a QPSK symbol by sm
where sm = [�1 � j] with probability 0.25 each. A significant
drawback of QPSK is the �180-degree phase change at the 1 + j
$ �1 � j and the 1 � j $ �1 + j transitions. Such transitions
are undesirable if the waveform is to be filtered and subsequently
processed by a nonlinear power amplifier (PA).

Nonlinear PAs are used in communication systems for im-
proved efficiency because generally, there is an inverse relation-
ship between linearity and efficiency [1]. Higher efficiency means
that a larger percentage of the dc (e.g., battery) power is delivered
to the load, thus increasing battery life and minimizing heat dissi-
pation.

Figure 1 shows in solid line, the AM/AM (amplitude to am-
plitude) conversion of a nonlinear PA. The dashed line shows in
comparison, a linear AM/AM response. Although jsmj =

p
2 is

constant modulus, the envelope of a filtered QPSK signal could
fluctuate, thus leading to nonlinear distortions. In Figure 1, this
means that a filtered QPSK signal could traverse the A-C region of
the PA response. In addition to the PA compression at the larger
amplitudes, the filtered QPSK signal also experiences cut-off when
the input amplitude is close to zero.

A remedy is to employ offset QPSK (OQPSK) modulation. In
OQPSK, the I- and Q- symbol streams are offset in time by half
the symbol period, thus avoiding the �180-degree phase change.
For illustration purpose, we can imagine that in Figure 1, instead
of the A-C region, the filtered OQPSK signal traverses through the
B-C region of the PA, thus avoiding cut-off.

Despite of this merit of OQPSK, some concerns were raised
about the overall effectiveness of employing OQPSK. First of all,
it does not lend itself to differential encoding [2]. Furthermore, ar-
gument has been made that although the QPSK signal experiences
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Fig. 1. AM/AM characteristic of a nonlinear PA (solid line).

the cut-off effect, it spends a very small percentage of time in the
cut-off region. On the other hand, the region that the OQPSK sig-
nal spends its time with (e.g., the B-C region in Figure 1) is more
compressed and hence more nonlinear than the A-B region that the
QPSK signal frequently visits.

This paper attempts to offer a means of quantitatively analyz-
ing spectral regrowth of a communication signal passing through
a nonlinear device. Specifically, we compare the power spectra
of filtered QPSK and OQPSK signals after their nonlinear ampli-
fication. Although spectral analysis is routinely carried out for
communications signals, the nonlinearity present in the PA com-
plicates the problem. In [3], the authors analyzed the spectral re-
growth pattern when the input signal is Gaussian, but their results
have limited applicability since many communication signals are
non-Gaussian. In [4], a Volterra system approach was adopted. We
address here spectral regrowth of a memoryless nonlinear device.

2. PROBLEM FORMULATION

A linearly modulated signal is expressed in the baseband as

x(t) =
Ap
2

1X
m=�1

sm h (t�mT ) ; (1)

where sm = am + jbm is the mth symbol transmitted, h(t) is the
baseband pulse shape filter, A is a real-valued input scale factor,
and T is the symbol period. We assume that am and bm are i.i.d.
and are mutually independent. We refer to the resulting sm as
circular complex symmetric.

When sm is QPSK, we have am 2 f1;�1g with equal proba-
bility 0.5, and similarly for bm.



A filtered OQPSK signal may be written as:

x(t) =
Ap
2

1X
m=�1

amh (t�mT )

+j
Ap
2

1X
m=�1

bmh

�
t�mT � T

2

�
; (2)

where am, bm, h(t),A, and T are the same as in the filtered QPSK
case. The only difference is that the imaginary part of (2) has a
T=2 delay relative to that of (1).

Next, x(t) is input to a PA to yield output y(t). Ideally, we
would like y(t) = � x(t), where � is a constant with j�j > 1. But
in reality, all PAs are inherently nonlinear. In the case of a memo-
ryless nonlinear PA, we can approximate its baseband input/output
relationship by [5, p. 735]:

y(t) = x(t)

1X
n=0

a2n+1 jx(t)j2n; (3)

from which we infer that the complex gain is

y(t)

x(t)
=

1X
n=0

a2n+1 jx(t)j2n: (4)

It is seen that the complex gain is a function of the input ampli-
tude jx(t)j only. This is consistent with the fact that a memoryless
nonlinear PA is often characterized by its AM/AM (i.e., jy(t)j vs.
jx(t)j) and AM/PM (i.e., \y(t) � \x(t) vs. jx(t)j) characteris-
tics. If jx(t)j is constant such as the case of (1) with a rectangular
shaped h(t) (see also Section 3), then x(t) will not experience any
nonlinear distortion since the gain in (4) is constant. Our objective
here is to analyze the power spectral density (PSD) of y(t) and
its dependence on the PA parameters fa2n+1g, the baseband filter
h(t), and the input scale factor A.

3. ANALYSIS

Although our analysis on spectral regrowth can be generalized to
accommodate higher-order nonlinearities, for simplicity, we illus-
trate our approach using a 3rd-order nonlinear model:

y(t) = a1x(t) + a3 jx(t)j2x(t)
= a1x(t) + a3 x

2(t)x�(t): (5)

Since sm has a symmetric distribution, y(t) has zero-mean.
Therefore, the auto-correlation and auto-covariance functions of
y(t) coincide. We define the auto-correlation function of y(t) at
time t and lag � as follows:

c2y(t; �
�) = E[y(t) y�(t+ �)]: (6)

In (6), �� indicates that conjugation is applied to the lagged copy,
y(t+ �). Note that � itself is always a real number.

Since y(t) is cyclostationary, its time-averaged auto-correlation
function is

�c2y(�) =
1

T

Z T

0

c2y(t; �
�) dt: (7)

The power spectrum of y(t) is the Fourier transform of �c2y(�):

S2y(f) = F�!f f�c2y(�)g
=

Z
1

�1

�c2y(�) e
�j2��f d�: (8)

We would like to examine S2y(f) for the PA model in (5) and
the input as in (1) or (2). Substituting (5) into (6), we obtain

c2y(t; �) = E [y(t)y�(t+ �)] (9)

= ja1j2E [x(t)x�(t+ � )]

+a1a
�

3E
�
x(t)jx(t+ �)j2x�(t+ �)

�
+a3a

�

1E
�
x�(t+ �)jx(t)j2x(t)�

+ja3j2E
�jx(t)j2x(t)jx(t+ �)j2x�(t+ �)

�
:

Alternatively, we write

c2y(t; �) = ja1j2 �11(t; �) + a1a
�

3 �13(t; � ) (10)

+a3a
�

1 �31(t; �) + ja3j2 �33(t; �)
where

�11(t; �) = cov fx(t); x�(t+ � )g
�13(t; �) = cov

�
x(t)jx(t+ � )j2; x�(t+ � )

	
�31(t; �) = cov

�
x�(t+ �); jx(t)j2x(t)	

�33(t; �) = cov
�jx(t)j2x(t); jx(t+ � )j2x�(t+ �)

	
:(11)

Our next step is to expand the above covariance terms using
the Leonov-Shiryaev formula [6]. Under the circular symmetry
assumption of sm, we infer that x(t) of (1) is circular symmetric
as well. Therefore, we find for filtered QPSK,

�11(t; �) = c2x(t; �
�)

�13(t; �) = c4x(t; �
�; �; ��) + 2c2x(t; �

�)c2x(t+ ��; 0)

�31(t; �) = c4x(t; 0
�; 0; ��) + 2c2x(t; �

�)c2x(t; 0
�)

�33(t; �) = c6x(t; 0
�; 0; ��; �; ��)

+4c4x(t; 0
�; �; ��)c2x(t; �

�)

+2c4x(t; �
�; �; ��)c2x(t; 0

�)

+2c4x(t; 0
�; 0; ��)c2x(t+ � ; 0�)

+c4x(t; 0; �
�; ��)c2x(t

�; � )

+4c2x(t; �
�)c2x(t; 0

�)c2x(t+ � ; 0�)

+2c2x(t; �
�)c2x(t; �

�)c2x(t
�; �):

Note that the OQPSK signal (2) is no longer circular symmet-
ric and hence the corresponding �13, �31, and �33 expressions
contain additional terms.

The kth-order cumulant of x(t) at time t and lags (�1; : : : ;
�k�1) is defined as

ckx(t; �1; : : : ; �`�1; �
�

` ; : : : ; �
�

k�1)

, cumfx(t); x(t+ �1); : : : ; x(t+ �`�1);

x�(t+ �`); : : : ; x
�(t+ �k�1)g:

Note that a conjugated lag in the argument of ckx(�); e.g., � �` , im-
plies that the corresponding term in the cumulant; e.g., x�(t+ �`),
has conjugation. For the x(t) in (1), we have

ckx(t; �1; : : : ; �
�

` ; : : : ; �
�

k�1)

= 
ks

�
Ap
2

�kX
m

h(t�mT )h(t�mT + �1) : : :

h(t�mT + �`�1)h
�(t�mT + �`) : : : h

�(t�mT + �k�1);

and

ks = cumfs(t); s(t+ �1); : : : ; s(t+ �`�1);



s�(t+ �`); : : : ; s
�(t+ �k�1)g :

Next, let us analyze Sk`(f), which is the Fourier transform of
��k`(�), the time-average of �k`(t; �).

Interestingly, when h(t) = 0, 8 jtj > T=2, the �k`(t; �) ex-
pressions can be simplified considerably. As a result, we obtain

S11(f) =
A2

T
jH(�f)j2 (12)

S13(f) =
A4

T
H(�f) [H(f)~H�(�f)~H�(�f)](13)

S31(f) =
A4

T
H�(�f) [H�(f)~H(�f)~H(�f)](14)

S33(f) =
A6

T
jH�(f)~H(�f)~H(�f)j2 ; (15)

where H(f) is the Fourier transform of h(t), and ~ is the convo-
lution operator.

When h(t) is real valued and symmetric, we obtain a surpris-
ingly simple expression for the PSD of y(t):

S2y(f) = ja1j2A2 1

T

����H(f) +
a3
a1

A2H3(f)

����
2

(16)

where H3(f) = H(f)~H(f)~H(f).
We make the following remarks regarding (16):

Remark 1: Potential spectral regrowth is indicated by the H3(f)
term which generally expands the bandwidth of H(f) through the
triple convolution.

Remark 2: The severity of spectral regrowth is determined by
the coefficient (a3=a1)A2 in (16). If the PA is inherently very
nonlinear; i.e., the a3=a1 ratio is high, then one needs to reduce the
input amplitude factor A in order to minimize spectral regrowth –
this is referred to as input back-off. In general, spectral regrowth
becomes more severe as A increases.

Now let us consider two baseband filters often studied in the
literature [7]:

h(t) =

8<
:

1 jtj � T
2

0 jtj > T
2

(17)

and

h(t) =

8<
:

p
2 cos(� t

T
) jtj � T

2

0 jtj > T
2
:

(18)

For the rectangular pulse (17), we obtain

H(f) =
1

fo

sin( f�
fo

)

( f�
fo

)
; (19)

and

H3(f) =
1

fo

sin( f�
fo

)

( f�
fo

)
= H(f): (20)

Substituting (19)-(20) into (16), we infer that there is no spec-
tral regrowth when the rectangular pulse is used for the x(t) in (1).

This is expected since in this case, the resulting jx(t)j = A has
constant envelope.

For the sinusoidal pulse (18), we have

H(f) =

p
2

2�fo

cos( f�
fo

)

1

4
�
�

f
fo

�2 ; (21)

and

H3(f) =
3
p
2

2�fo

cos( f�
fo

)�
1

4
�
�

f
fo

�2��
9

4
�
�

f
fo

�2� : (22)

This H3(f) can be shown to have a wider mainlobe than H(f).
One way to quantify spectral regrowth is to use a notion of

bandwidth
p
hf2i where

hf2i ,
R
1

�1
(f � hfi)2S(f)dfR
1

�1
S(f)df

(23)

and

hfi ,
R
1

�1
fS(f)dfR

1

�1
S(f)df

: (24)

Note that for a symmetric spectrum S(f), the corresponding hfi =
0.

Substitution of (16), (21), and (22) into (23) yields the follow-
ing bandwidth formula for the cosine pulse (18):

p
hf2i =

fo
2

s
1� 3 Re(�) + 4:5 j�j2
1� 3 Re(�) + 2:5 j�j2 ;

� = �a3
a1

A2: (25)

When the PA is linear, we have a3 = 0 and hence � = 0.
The bandwidth formula (25) yields 0:5fo as the bandwidth of a
linear system. Therefore the ratio,

phf2i=(0:5f0), can be used
as a measure of bandwidth expansion and from (25), it is obvious
that this ratio is > 1 for any � 6= 0.

When x(t) is OQPSK, the analysis is generally more involved.
But with either (17) or (18), the OQPSK signal in (2) has jx(t)j =
A and hence the corresponding PA output y(t) = (a1+a3 A

2)x(t)
does not experience any spectral regrowth.

4. SIMULATIONS

In this section, we present a numerical example to verify the accu-
racy of the expressions (12)-(16). 1; 000 symbols sm were gener-
ated and a filtered QPSK signal x(t) was obtained from equation
(1) with the cosine pulse (18). The scale factor was A = 1 and
the sampling period was 1

40
T seconds. The resulting x(t) went

through nonlinear amplification as described by (5) with a1 = 1
and a3 = �0:3 exp (j �

4
).

Figure 2 shows the theoretical S11(f) (c.f. (12)) in solid line
and its estimate in dashed line. The estimate is nothing but the PSD
estimate of x(t). Close agreement between the two is observed.

Figure 3 shows the theoretical S33(f) (c.f. (15)) in solid line
and its estimate – the PSD estimate of x(t)2x�(t) in dashed line.
Similar agreement is observed. Comparing with Figure 2, we see
that the bandwidth of S33(f) has increased from that of S11(f).



Indeed,
p
hf2i of S33(f) is

p
1:8 times or 34% larger than that

of S11(f) (c.f. (23)). Moreover, evaluation of the (12)-(15) terms
reveals that S33(f) is the major contributor to spectral regrowth in
S2y(f).

In Figure 4, we show a comparison between the output spec-
trumS2y(f)when the input is QPSK (solid line) or OQPSK (dashed
line). The bandwidth of the QPSK signal is indeed larger than that
of the OQPSK signal. In fact, equation (25) with � = 0:3 exp (j �

4
)

tells that the bandwidth increase was 14%.

5. CONCLUSIONS

We have described in this paper, an analytical approach for evalu-
ating the power spectra of filtered QPSK and OQPSK signals after
nonlinear amplification. A salient feature of our analysis is that
we do not need to assume that the PA input is Gaussian. In the
QPSK case, we were able to obtain a simple closed form expres-
sion for the output PSD when the PA is cubic nonlinear and the
baseband filter is time-limited. We treated the cosine pulse fil-
tered QPSK/OQPSK signals in detail and provided a measure of
bandwidth expansion. We are currently working on applying our
analysis to more general scenarios.
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Fig. 2. The theoretical S11(f) (solid line) and its estimate (dashed
line).
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Fig. 3. The theoretical S33(f) (solid line) and its estimate (dashed
line).
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Fig. 4. The PA output PSD S2y(f) when the input is QPSK (solid
line) or OQPSK (dashed line).


