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ABSTRACT

In this paper, a comparison is made between the spectral regrowth
of quadrature phase shift keyed (QPSK) and offset QPSK (OQPSK)
signals as they go through non-linear amplifications. Contrary to
existing approaches that assume the power amplifier input is Gaus-
sian, our analysisis carried out without the Gaussian assumption,
by using higher-order statistics. We show that it is possible to as-
sess quantitatively, whether and how much OQPSK is beneficial
in reducing spectral regrowth. Simple closed form formulas are
obtained when the pulse shape filter is time-limited. A particular
measure of spectral broadening is also provided.

1. INTRODUCTION

QPSK is a popular modulation format that is used in many appli-
cations (e.g., 1S-95 CDMA). Let us denote a QPSK symboal by s,
where s, = [£1 % j] with probability 0.25 each. A significant
drawback of QPSK isthe £180-degree phase change at the 1 + 5
< —1—jandthel — j <+ —1 + j transitions. Such transitions
are undesirable if the waveform is to be filtered and subsequently
processed by anonlinear power amplifier (PA).

Nonlinear PAs are used in communication systems for im-
proved efficiency because generally, there is an inverse relation-
ship between linearity and efficiency [1]. Higher efficiency means
that alarger percentage of the dc (e.g., battery) power is delivered
to the load, thus increasing battery life and minimizing heat dissi-
pation.

Figure 1 shows in solid line, the AM/AM (amplitude to am-
plitude) conversion of a nonlinear PA. The dashed line shows in
comparison, alinear AM/AM response. Although |s,,| = V2 is
constant modulus, the envelope of a filtered QPSK signal could
fluctuate, thus leading to nonlinear distortions. In Figure 1, this
means that afiltered QPSK signal could traversethe A-C region of
the PA response. In addition to the PA compression at the larger
amplitudes, thefiltered QPSK signal also experiences cut-off when
the input amplitude is close to zero.

A remedy isto employ offset QPSK (OQPSK) modulation. In
OQPSK, the I- and Q- symbol streams are offset in time by half
the symbol period, thus avoiding the +180-degree phase change.
For illustration purpose, we can imagine that in Figure 1, instead
of the A-C region, thefiltered OQPSK signal traverses through the
B-C region of the PA, thus avoiding cut-off.

Despite of this merit of OQPSK, some concerns were raised
about the overall effectiveness of employing OQPSK. First of al,
it does not lend itself to differential encoding [2]. Furthermore, ar-
gument has been made that although the QPSK signal experiences
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Fig. 1. AM/AM characteristic of anonlinear PA (solid line).

the cut-off effect, it spends a very small percentage of timein the
cut-off region. On the other hand, the region that the OQPSK sig-
nal spends its time with (e.g., the B-C region in Figure 1) is more
compressed and hence more nonlinear than the A-B region that the
QPSK signal frequently visits.

This paper attempts to offer a means of quantitatively analyz-
ing spectral regrowth of a communication signal passing through
a nonlinear device. Specifically, we compare the power spectra
of filtered QPSK and OQPSK signals after their nonlinear ampli-
fication. Although spectral analysis is routinely carried out for
communications signals, the nonlinearity present in the PA com-
plicates the problem. In [3], the authors analyzed the spectral re-
growth pattern when the input signal is Gaussian, but their results
have limited applicability since many communication signals are
non-Gaussian. In[4], aVolterra system approach was adopted. We
address here spectral regrowth of a memoryless nonlinear device.

2. PROBLEM FORMULATION
A linearly modulated signal is expressed in the baseband as

A (oo}
m(t):ﬁ > smh(t—mT), 1)

where s, = am + jbm isthe mth symbol transmitted, h(t) isthe
baseband pulse shape filter, A is area-vaued input scale factor,
and T is the symbol period. We assume that a,, and b,,, arei.i.d.
and are mutually independent. We refer to the resulting s, as
circular complex symmetric.

When s, isQPSK, we havea., € {1, —1} with equal proba-
bility 0.5, and similarly for b, .

m=-—o00



A filtered OQPSK signal may be written as:

z(t) = 7 m;oo amh mT)
_2_; bl ( T - %) e

wherea,, by, h(t), A, and T arethe same asin thefiltered QPSK
case. The only difference is that the imaginary part of (2) has a
T'/2 delay relative to that of (1).

Next, z(t) isinput to a PA to yield output y(t). Ideally, we
would likey(t) = o z(t), where a isaconstant with |a| > 1. But
in reality, all PAsare inherently nonlinear. In the case of a memo-
ryless nonlinear PA, we can approximate its baseband i nput/output
relationship by [5, p. 735]:

£) " aznsr (b)), ©)
n=0
from which we infer that the complex gainis
ylt) i aznt1 [z(t)]7". &)
z(t)

It is seen that the complex gain is a function of the input ampli-
tude |z(¢)| only. Thisis consistent with the fact that a memoryless
nonlinear PA is often characterized by its AM/AM (i.e., |y(¢)| vs.
|z(¢)]) and AM/PM (i.e., Zy(t) — Zz(t) vs. |z(t)|) characteris-
tics. If |z(¢)] is constant such as the case of (1) with arectangular
shaped h(t) (see aso Section 3), then z(¢) will not experience any
nonlinear distortion since the gain in (4) is constant. Our objective
here is to analyze the power spectral density (PSD) of y(¢) and
its dependence on the PA parameters {a2»+1}, the baseband filter
h(t), and the input scale factor A.

3. ANALYSIS

Although our analysis on spectral regrowth can be generalized to
accommodate higher-order nonlinearities, for simplicity, we illus-
trate our approach using a 3rd-order nonlinear model:

y(t) = az(t) +as e(t)*2(t)
= az(t) +as 22 ()2 (t). (5)

Since s,, has a symmetric distribution, y(¢) has zero-mean.
Therefore, the auto-correlation and auto-covariance functions of
y(t) coincide. We define the auto-correlation function of y(¢) at
time ¢ and lag 7 asfollows:

eay(t77) = Ely(t) y™ (¢ + 7)) (6)

In (6), 7" indicates that conjugation is applied to the lagged copy,
y(t + 7). Note that 7 itself is aways areal number.

Sincey(t) iscyclostationary, itstime-averaged auto-correlation
function is

1 T
Coy(T) = T / Coy (85 77) dt. @)
0
The power spectrum of y(¢) isthe Fourier transform of &, (7):
S2y(f) = Frosieay(n)}

= / oy (1) 777 dr, (8)

We would like to examine S, (f) for the PA model in (5) and
theinput asin (1) or (2). Substituting (5) into (6), we obtain

coy(t;m) = Elyt)y (t+7)] 9
= |a|’Efz(t)e (t+T)]
+arazE [z(t)|z(t + )"z (¢ + 7)]
+asai E [z"( t+7' |a: )Px(t)]
—+—|a3| E [|x )|zt + 1) m*(t—i—T)] .

Alternatively, we write

ey (t;7) = a1’ uit;7) +aras dua(t;T)  (10)
+asai ¢a1(t;7) + |as|® gas(t; 7)
where
pultr) = cov{o(t),z" (¢t +7)}
d13(t;7) = cov {1‘ |x(t+T)| , *(t—f-r)}
d31(t;T) cov {x (t+71), |zt )| a:(t)}
P33(t;T) = cov{|a:(t) 2alc(t), |x(t+7’)|2x*(t +7')}(1l)

Our next step is to expand the above covariance terms using
the Leonov-Shiryaev formula [6]. Under the circular symmetry
assumption of s,,, we infer that z(¢) of (1) is circular symmetric
aswell. Therefore, we find for filtered QPSK,

pu(t;T) = c(t;T)

d13(t;7) car(t; 75,1, 7)) + 200 (87 )22 (8 + 775 0)
G31(t;7) = cax(t;07,0,77) + 2¢00 (t; 77 )22 (¢;07)
¢as(t;T) = cee (07,0, 77,7, 77)

+dear (807, 7, 7 )eow (5 77)
+2¢az (677, 7, 7)o (;07)
+2¢az (0,0, 77 )cor (t + 7507)
+eae (80,75, 7 ) eon (5 T)
+4coq (877 )e2n (807 )eon (t + 750%)
+2¢04 (t; 77 ) Con (87 )2z (75 7).
Note that the OQPSK signal (2) isno longer circular symmet-
ric and hence the corresponding ¢13, ¢31, and ¢ss expressions
contain additional terms.

The kth-order cumulant of z(¢) at time ¢ and lags (1, ...,
Ti—1) isdefined as

Cha (B T1y o oy Te— 1, T0 g ey Tho1)
L2 cum{z(t),z(t+11),...,x(t+ 70_1),
z(t+70),..., " (t+Te—1)}

Note that a conjugated lag in the argument of ¢, (-); eg., 7/, im-
pliesthat the corresponding term in the cumulant; e.g., z* (¢ + ),
has conjugation. For the z(t) in (1), we have

* *
77-[7"'7ka1)

k
Vs <%) ;h(t —mT)h(t — mT + 1) ...

h(t — mT +7—1)h"(t = mT + 1) ... K" (t — mT + 15.—1),
and

Cra(t;T1, ...

Yis = cum{s(t),s(t +71),...,s(t +10-1),



s"(t+710),. .., 8 (t+ 1)}
_ Next, let usanalyze Sy (f), which is the Fourier transform of
¢re(7), thetime-average of ¢ (t; 7).
Interestingly, when h(t) = 0,V |t| > T'/2, the ¢re(t; T) ex-
pressions can be simplified considerably. Asaresult, we obtain

A2

Su(f) = FIHEHP (12)
Sulf) = SHDEHE S B~ T (NI
Sulf) = SH (P () ® H(=f) & (=114
Sulf) = ST (PeHHOHENE. (@9

where H(f) isthe Fourier transform of h(¢), and ® is the convo-
lution operator.

When h(t) isreal valued and symmetric, we obtain a surpris-
ingly simple expression for the PSD of y(t):

2

Say(f) = lan P42 | () + 22 4% H () (19)
1

where Hy(f) = H(f) ® H(f) ® H(f).
We make the following remarks regarding (16):

Remark 1: Potential spectral regrowth is indicated by the Hs(f)
term which generally expands the bandwidth of H( f) through the
triple convolution.

Remark 2: The severity of spectral regrowth is determined by
the coefficient (as/a1)A? in (16). If the PA is inherently very
nonlinear; i.e., theas /a1 ratioishigh, then one needsto reducethe
input amplitude factor A in order to minimize spectral regrowth —
thisis referred to as input back-off. In general, spectral regrowth
becomes more severe as A increases.

Now let us consider two baseband filters often studied in the

literature [7]:
1 <3
h(t) = (17)
0 |t>3
and
Vacos(nk) [t <3
h(t) = (18)
0 It > L.
For the rectangular pulse (17), we obtain
1 sin(%)
H(f)=— °, 19
(f) F (o) (19)
and
in(LZ
(= LB gy (20)
fo (fo

Substituting (19)-(20) into (16), we infer that there is no spec-
tral regrowth when the rectangular pulseisused for the z(t) in (1).

This is expected since in this case, the resulting |z(t)| = A has
constant envelope.
For the sinusoidal pulse (18), we have

V2 cos(J;—:)

H(f)= L2 e’ (21)
21 fo i _ (fio)
and
I
Hy(f) = 22 o7, (22)

@) E-0)

This Hs(f) can be shown to have awider mainlobe than H( f).
One way to quantify spectral regrowth is to use a notion of

bandwidth | /{f2) where

o o I =S
R T )

and
T [=_S(fdf

Note that for asymmetric spectrum S( f), thecorresponding { f) =
0.

(H (24)

Substitution of (16), (21), and (22) into (23) yields the follow-
ing bandwidth formulafor the cosine pulse (18):

7 - fo [1—=3Re(B) + 4.5 |B]?
~ 2\ 1-3Re(B) +25]|6)2’

g = -2 42 (25)
ai

When the PA is linear, we have a3 = 0 and hence 3 = 0.
The bandwidth formula (25) yields 0.5 f, as the bandwidth of a
linear system. Therefore the ratio, /(f2)/(0.5f0), can be used
as ameasure of bandwidth expansion and from (25), it is obvious
that thisratiois > 1 for any 8 # 0.

When z(t) isOQPSK, theanalysisisgenerally moreinvolved.
But with either (17) or (18), the OQPSK signal in (2) has |z(t)| =
A and hence the corresponding PA output y(t) = (a1+az A?)xz(t)
does not experience any spectral regrowth.

4. SIMULATIONS

In this section, we present a numerical example to verify the accu-
racy of the expressions (12)-(16). 1,000 symbols s,,, were gener-
ated and afiltered QPSK signal z(t) was obtained from equation
(2) with the cosine pulse (18). The scale factor was A = 1 and
the sampling period was 57" seconds. The resulting =(t) went
through nonlinear amplification as described by (5) witha; = 1
andaz = —0.3exp (5 ).

Figure 2 shows the theoretical Si1(f) (c.f. (12)) in solid line
and itsestimate in dashed line. The estimate is nothing but the PSD
estimate of z(t). Close agreement between the two is observed.

Figure 3 shows the theoretical S33(f) (c.f. (15)) in solid line
and its estimate — the PSD estimate of z(¢)?z* (¢) in dashed line.
Similar agreement is observed. Comparing with Figure 2, we see
that the bandwidth of S33(f) has increased from that of Si1(f).



Indeed, \/(f2) of Ss3(f) is /1.8 times or 34% larger than that
of S11(f) (c.f. (23)). Moreover, evauation of the (12)-(15) terms
revealsthat Ss3(f) isthe major contributor to spectral regrowthin
Sy (f).

In Figure 4, we show a comparison between the output spec-
trum Sz, (f) when theinput is QPSK (solid line) or OQPSK (dashed
ling). The bandwidth of the QPSK signal isindeed larger than that
of the OQPSK signal. Infact, equation (25) with 8 = 0.3 exp (%)
tells that the bandwidth increase was 14%.

5. CONCLUSIONS

We have described in this paper, an analytical approach for evalu-
ating the power spectra of filtered QPSK and OQPSK signals after
nonlinear amplification. A salient feature of our analysis is that
we do not need to assume that the PA input is Gaussian. In the
QPSK case, we were able to obtain a simple closed form expres-
sion for the output PSD when the PA is cubic nonlinear and the
baseband filter is time-limited. We treated the cosine pulse fil-
tered QPSK/OQPSK signals in detail and provided a measure of
bandwidth expansion. We are currently working on applying our
analysisto more general scenarios.
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Fig. 2. Thetheoretical S11(f) (solid line) and its estimate (dashed
line).

Fig. 3. Thetheoretical S33(f) (solid line) and its estimate (dashed
line).

Fig. 4. The PA output PSD S», (f) when theinput is QPSK (solid
line) or OQPSK (dashed line).



