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ABSTRACT

This paperillustratesthe useof “averaging” to improve the con-
vergencerateof adaptive sign regressorandsign error multiuser
detectors. The ingeniousconceptof averagingwas inventedby
Polyakin 1990– this paperanalysesthe performanceof averag-
ing in the sign error andsign regressoradaptive blind multiuser
detectionalgorithmsin DS/CDMA Systems.

1. INTRODUCTION

Demodulatinga givenuserin a DS/CDMA network requirespro-
cessingthereceivedsignalto minimizetwo typesof interference,
namely, narrow-bandinterference(NBI) andwide-bandmultiple
accessinterference(MAI) causedby otherspread-spectrumusers
in thechannel–aswell asambientchannelnoise. Recently, blind
multiuserdetectiontechniques[4], [8] have beendevelopedthat
allow oneto usea linearmultiuserdetectorfor a givenuser, with
noknowledgebeyondthatrequiredfor implementationof thecon-
ventionaldetectorfor thatuser. Blind multiuserdetectionis useful
in mobilewirelesschannelswhenthedesiredusercanexperiencea
deepfadeor if a stronginterferersuddenlyappears.In [4] a blind
leastmeansquare(LMS) algorithmis given for linear minimum
meansquareerror (MMSE) detection. In [8] a code-aidedblind
recursive leastsquaresalgorithmfor jointly suppressingMAI and
NBI is giventogetherwith convergenceanalysis.

Themain idea in this paperis to deriveandanalyseacceler-
atedconvergent low complexity adaptivesignalgorithmsfor joint
MAI andNBI suppression.Our contributionsaretwofold:
1. We derive sign-errorandsign-regressorbasedmultiuserdetec-
tion algorithms. We show how the convergenceof the sign-error
andsign-regressorblind multiuserdetectorscanbeacceleratedus-
ing the ingeniousprocedureof averaginginventedby Polyak in
1990,seealso[6].

Theingeniousideabehindthis approachis to introducea sec-
ond roundof averagingon the sign algorithm. For the LMS al-
gorithmbasedblind multiuserdetectorit hasrecentlybeenshown
that averagingresultsin asymptoticconvergencerateandperfor-
manceidenticalto recursive leastsquares(RLS) basedmultiuser
detectors[5]. In this paperwe show that averagingalso yields
substantialimprovementsfor thesign-errorandsign-regressoral-
gorithmsin blind multiuserdetection.
2. Expressionsarederivedfor theasymptoticexcessmeansquare
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errorandthesignalto interferenceratio of theseaveragedsigned
algorithms. Numericalstudiesarepresentedwhich illustrate the
performanceof theaveragedalgorithms.

Sign error and sign regressoralgorithmshave beenstudied
extensively [2], [1]. Their main advantageis the low complex-
ity in implementationcomparedto the LMS algorithm. To our
knowledgetheirusein adaptive multiuserdetectionandaccelerat-
ing their convergencevia averaginghave notbeenstudied.

2. DS/CDMA SIGNAL MODEL

Considera synchronous
�

-userbinary DS/CDMA communica-
tion system.After the received continuous-timesignalis prepro-
cessingandsampledat theCDMA receiver theresultingdiscrete-
time receivedsignalat time � , denotedby ��� , is givenby����� ��	 
�� 
 � 	���	�� ����� 	���� � ����� ��� (2.1)

Here ��� is an  -dimensionalvectorwhere  denotesthespread-
ing gain; � 	 is thenormalizedsignaturesequenceof the ! th user
( �#" 	 � 	 �%$ ); the iid &'$ sequence

��	�� ��� denotesthe transmitted
databit of the user ! at time � ;

� 	
is the received power of the! th user;

� � is theNBI signal  -vector, which is assumedto bea
wide-sensestationaryautoregressive processwith meanzeroand
covariancematrix (*) ; � is the standarddeviation of the channel
noise;and

� � is a white Gaussianvectorwith meanzeroandco-
variancematrix + , where+ denotesthe  -,. identitymatrix.

Assumethatuser1 is theuserof interest.A linearblind mul-
tiuserdetectordemodulatesthebitsof user1 accordingto/ � � � ���0� sgn

�21 3 " ���4� where
/ � � � ��� denotestheestimateof thetrans-

mittedbit

� � � ��� at time � , andthe“weight vector”

1 3 is chosento
minimizetheMeanoutputerror(MOE) costfunction5 �.6�87:9 �21 " � � ��;#< subjectto theconstraint

1 " � � �=$>�
(2.2)

Theblind MOE detectoryieldsthefollowing estimate
/ � � � ��� of the

transmittedsignal(see[8] for details)/ � � � ���?� sgn

�21 3 " ���@� where

1 3 � ('A � � �� " � ( A � � � (2.3)

Here (B�C7:9��D� " < . In the above equation

1 3 is the optimal lin-
earMOE “weight vector”. Theoutputsignal-to-interferenceratio
(SIR) for anarbitraryweightvector

1
is definedas

SIR 6� � �� ; 1 " 1E�GF �	 
 ; � 	��21 " � 	 � ; (2.4)



3. ADAPTIVE SIGN ALGORITHMS FOR BLIND
MULTIUSER DETECTION

In adaptiveblind multiuserdetectionproblems,we areinterested
in recursively adaptingtheweightvector

1 � to minimizetheMOE5 � (2.2). It is necessaryto usea constantstepsizetrackingalgo-
rithm dueto thetime-varyingnatureof

1 3
causedby thebirth and

deathof users(MAI interferers).
It is convenientto work with an unconstrainedoptimization

problemratherthan(2.2). Let

1 �IH J , KMLONP$RQ��S�S�TQU WV denotetheele-
mentsof

1 � . Theconstrainedoptimizationproblem(2.2) maybe
transformedinto anunconstrainedoptimizationproblemby solv-
ing for oneof the elements

1 ��H J , KXLYNP$RQ��Z�#��Q� .V using the con-
straint(2.2). With no lossof generality, we solve for thefirst ele-
ment

1 ��H � andobtain1 �IH � � $� � H � [ $�\^]� J 
 ; � � H J
1 ��H J`_ (3.5)

By definingthe

�  a\b$�� -dimensionalvector c � � �21 ��H ; Q#���#�dQ 1 �IH ] �e" ,we obtaintheequivalentunconstrainedoptimizationproblem:

Compute fhgTij-k � where k �X�87Wl`mR�'\�c "on �@p ; � (3.6)

Here mR�h�q\r����H �ts � � H � and n � denotesthevectorn � � � � ��H ; \a� ��H � � � H ; s � � H � Q#���#�dQ�� �IH ] \a� ��H � � � H ] s � � H � � "(3.7)

Let c 3 denotetheMMSE solution c 3 �u9�7b9 n � n " � <vA � 7b9 n �@mR�w< .
It is straightforwardbut tediousto show thatthecomponentsof c 3
areindeedthelast

�  x\O$�� elementsof optimalweightvector

1 3
definedin (2.3).

Wenow presentconstantstep-sizeversionsof thesign-regressor
andsign-erroralgorithmsfor blind adaptive multiuserdetection.

Averaged Sign-regressor Blind Multiuser Detectorc>y�vz � �8c y� ��{>|�} i � n � � � m � \ac y H "� n � �c>�vz � � � $~\����@� cR� � ���@c y� Q (3.8)

where ���G� � �u$ denotesa forgettingfactorappliedto theaver-
agingprocedure.

Averaged Sign-Error Blind Multiuser DetectorcRy�vz � ��c y� ��{ n ��� } i � m � \ac y H "� n � �c �Rz � � � $r\�� � � c � � � � c y� Q (3.9)

Note that because

� � is a finite variancestationaryGaussian
AR processand 9 ��	I� ���t< , � � areiid processes,it straightforward-
ly followsthat 9 n �dQ�mR��< is astationarymixing process.As aresult
it canbeprovedthattheabove algorithmsconvergein meanto the
optimalweightvector

1 3 [2].
Canonical Coordinates. In [4] the constraint(2.2) is taken care
of by introducingcanonicalcoordinates.The essentialideais to
replacetheunconstrainedgradientof theMOE in (2.2)by its com-
ponentorthogonalto � � namely, � "� 1 � � � � \�� "� � � � � � . Theblind
averagedLMS andblind averagedsign-erroralgorithmcanbeex-
pressedin canonicalcoordinatesstraightforwardly. However, it is
not possibleto derive a sign-regressoralgorithmin canonicalco-
ordinatesthat satisfiesthe constraint(2.2). For the convergence
analysishowever, it is moreconvenientto work with the equiva-
lent algorithmderivedfor theunconstrainedcostfunction.

4. PERFORMANCE ANALYSIS OF AVERAGED
ALGORITHMS

In this sectionexpressionsfor theasymptoticexcessmeansquare
errorof theaveragedandun-averagedsignedLMS algorithmsare
derivedfor theDS/CDMA signalmodel.In thesequelthefollow-
ing covariancematrices����� ��7:9 n � n " � <vQ �

SR �87b9 |I} i � n � � n " � < (4.10)

will be used. As is commonin the analysisof blind multiuser
detectionalgorithms,we make thefollowing simplifying assump-
tions,bothof whichhold for theDS/CDMA model.
(i) For slow adaptation,small

{
,

|�} i � n �4� n " � behaveslike its time
or ensembleaverage

�
SR. Similarly n � n " �h� ����� . Thisergodic-

ity is atheartof stochasticaveragingresults;see[7].
(ii) The input data ��� and the previous weight vector

1 � A � are
assumedto be statisticallyindependent[3, Chapter9]. This as-
sumptionis satisfiedif the interferenceconsistonly of MAI and
white noise.
(iii) Somefourthorderstatisticsareapproximatedin termsof sec-
ondorderstatistics[3, Chapter9].

Wefirst quotethefollowing resultin Ljung [7].

Result 4.1 (Lemma 3.1 and Eq.25, [7]) Considerthefollowingav-
eragedconstantstepsizealgorithmwith �'��� , �a�u$ ,c �vz � � � $~\ { � ��c � ��{�� � (4.11)cR�vz � � � $~\��@� c>� � ��c���� (4.12)

Here either
� �B� ����� and

� � �C� n � m � ( �-��� denotesa
constant)or

� � � SR and

� ��� |�} i � n �@�emv� . Under theabove
assumptions,it followsthat for large � ,c>�vz � � � $�\��@� cD� � � � A � n �@mR��� (4.13)

Themainpoint to noteis that(4.13)is independentof thestepsize� . It only dependson � , theforgettingfactorusedin theaveraging
andon

�
. The proof for the case

� �C�:7:9 n � n " � < and

� ���� n � m � is given in [7]. For the case
� �C7b9 |I} i � n � � n " � < and

� � � |�} i � n � �em � , theproof is verysimilar andhenceomitted.
Also we will needto the following principleof orthogonality

for theMMSE solution c 3 : Theestimationerror � 3� of theMMSE
(Wiener)solution c 3 , i.e,� 3� �8m � \ n " � c 3 (4.14)

is a zeromeaniid process.Let

� ;� 6�87:9D� 3� ; < .
AveragedLMSalgorithm: TheLMS algorithmcanbewritten asc �vz � � � +b\ { n � n " � ��c � ��{ n � m �
By assumption(i) above, this behavesfor large � asc��Rz � � � +b\ { � ��� ��c�� ��{ n �@mR���
UsingResult4.1,theaveragedestimatebehavesfor large � asc>�vz � � � $�\��@� cD� � � � A ���� n �@mR���
Finally usingtheprincipleof orthogonality(4.14)yields�c �vz � � � $�\��@� �c � � � � A ���� n � { 3� � (4.15)



AveragedSign-regressorAlgorithm.Using the Result4.1 andthe
principleof orthogonality(4.14)yields�c �Rz � � � $�\a�@� �c � � � � A �SR

|�} i � n � ��� 3� � (4.16)

AveragedSign-error Algorithm. Herewe usethe following addi-
tional assumptionsthatarewidely usedin theanalysisof signer-
ror algorithms[1]. Theseassumptionsarethat 9 n �dQ�mR�w< is jointly
Gaussian,andthat 7:9D� 3� ;v� c � <���7b9D� 3� ; <�� � ;� . The Gaussian
assumptionon

� n ��Q�mR�w� is valid if thenumberof users
�

is large.
Indeedfor large

�
theCentrallimit theoremimplies that n � de-

finedin (3.7) is a zeromeanGaussianrandomvector.
Undertheseapproximations,[1, Eq.39]showsthat c�� behaves

accordingto (4.11)with�u�=� �� $� � � ��� Q �
SE ��� � ��� Q � ��� n ��mv���

Using(4.13)this yieldsc��vz � � � $r\��@��c�� � � � A ���� c���mR�dQ
which is exactly thesameasthatfor theaveragedLMS algorithm.
Usingtheorthogonalityresult(4.14)yields(4.15).

Remark 4.2. TheaboveresultwhichshowsthattheaveragedLM-
Sandaveragedsignerroralgorithmbehave similarly is somewhat
surprising.However, oneshouldkeepin mind thatseveralapprox-
imationswere usedto get [1, Eq.39]. Still, the above equation
justifiesnumericalexampleswhich show that the averagedLMS
andaveragedsignerroralgorithmperformsimilarly.

Weight Error Correlation Matrix.

Let
� � 6�Y7:9 �c�� �cD"� < denotetheweighterrorcorrelationma-

trix. Note that
� � is an

�  �\�$���, �  �\�$�� positive definite
matrix. To derive a recursionfor

� � , we startwith (4.15). As in
[3, Chapter9], we expand 7b9 �c�� �c "� < . First considertheaveraged
LMS case(which is identical to the averagedsign error caseas
shown above). This involvesthefollowing four terms:
(i)

� $r\��@� ;?  9 �cD� A � �c "� A � <:� � $�\a�@� ; � � A � ;
(ii) � � $R\��@��7:9 c " � A �¢¡ A � �>�@���4<:�£� � $>\��@��7b9 �c "� A � < � A � 7b9 n �4� 3� <:�� since � 3� is a zeromeaniid process;
(iii) � � $�\��@��7b9�� � n � " � A � �c � A � <:�8� , similarly to (ii);
(iv) � ; � A � 7b9 n �4� 3� � 3� n �@"o<X�Y� ; 7b9�� 3� ; < � A � . Recallingthat

5
is theMOE it follows that � ; ¡ A � 7b9 n �4� 3� � 3� n � " <:�£� ; 5 ¡ A � .
Thusfor large � ,

� � satisfiesthefollowing recursion:� � � � $�\a�@��; � � A � � �@; 5 � A ���� � (4.17)

Since

� $�\��@� ; ��$ , � � convergesto
�X¤ � ¥; A ¥ 5 � A ���� �Next considertheaveragedsignregressoralgorithm.Expand-

ing out
� � into four termsasabove, thefourth termnow is� ; 5 � A �SR 7b9 |�} i � n �w� |I} i � n �w� " < � A �SR

" . But 7b9 |I} i � n �@� |�} i � n �@� " <:�+R¦ ] A �¨§e© ¦ ] A �¨§ . Thusfor theaveragedsignregressoralgorithmwe
have � ¤ � �� \�� 5 � A �SR

� A �SR
" � (4.18)

Asymptotic Excess Mean Square Error.
TheMOE

5 � definedin (2.2)canbere-expressedas5 �ª�87�«#mR�'\ n¬"� � c 3 \ �c��w�e­ ;� 5 ��®�¯ N ������� � Vw\ � 7±° � m � \ n¬"� c 3 � n¬"�¬² �c � �

Since7:9 �c � <:³�� as �´³¶µ , thelasttermis transient.Hencefor
large � ,

5 ��� 5 �£· ��¸ � ��� wheretheexcessmeansquareerror is
definedas ·

ex

� ���E� ®�¯ N �����w� � V`� (4.19)

Below we computeexpressionsfor the asymptoticexcessmean
squareerror

·
ex

� µ±� .
Considerfirst theaveragedblind LMS andsignerroralgorith-

m. It follows from (4.17)that®�¯ N � ��� � �IV´� � $�\��@� ; ®�¯ N � ��� � � A � V � � ; 5 ®�¯�¹ + ¦ ] A �¨§e© ¦ ] A �¨§¨º� � $�\��@� ; ®�¯ N � ��� � � A � V � � ; 5 �  �\G$��¢�
(4.20)

Since

� $�\O�@� ; �»$ , ®�¯ N �����w� � V converges. The steadystate
excessmeansquareerroris thengivenby·

ex

� µG�0� �� \a� 5
�  �\±$�� (4.21)

Notethattheabove equationis identicalto thatof theBlind RLS,
see[8, Eq.40]. As with blind RLS, the convergenceof the MSE
andthesteadystatemisadjustmentof BAG areindependentof the
eigenvaluedistributionof thedataauto-correlationmatrix.

Next considertheaveragedsignregressoralgorithm.To eval-
uate

®�¯ N � SRV we first assumethat n � is aniid zeromeanGaussian
vectorrandomvariablewith covariance

� ���
. This Gaussianas-

sumptionfollows from thecentrallimit theoremif thenumberof
users

�
is large.ThenPrice’s formulayields�

SR �=� ��*¼ � ���¼ 6� diag «R$ s�½ 7:9 n � � $>Q#$�� ; <�Q#�#�#�dQ#$ s�½ 7:9 n ;� �  ¾\±$RQt �\±$��t<�­ .

Using(4.19)yields·
ex

� µ±�0� ®�¯ N � ��� �X¤ V�� �� \�� 5 � �
®�¯ N ¼ � ��� ¼ V (4.22)

We can easily computea lower boundfor

·
ex

� µG� by bounding
®�¯ N ¼ � ��� ¼ V in termsof

®�¯ N ¼ � ��� ¼ V A � asfollows: Let ¿wJ , KM�$RQ��Z�#��Q� x\±$ denotetheeigenvaluesof thepositive definitesym-
metric matrix N ¼ � ��� ¼ V A � . Sinceall the diagonalelementsof
thismatrix are1,

®�¯ N ¼ � ��� ¼ V A � � F ] A �J 
À� ¿wJ�� �  Y\�$��¢� Using
thewell-known inequalitythattheharmonicmeanis lessthanthe
arithmeticmeanweobtain �\±$®�¯ N ¼ � ��� ¼ V �  �\±$F ]J 
À� $ s ¿wJ�Á $ �\�$ ]� J 
�� ¿wJÀ�q$RQ
which impliesthat®�¯ N ¼ ����� ¼ VÀÂG �\±$RQ and

·
ex

� µG�?Â �� \a� 5 � �
�  ¾\±$��¢�

It is illustrativeto comparetheasymptoticexcessmeansquare
errorof theaveragedsignalgorithmswith theirstandard(un-averaged)
counterparts.Expressionsfor theasymptoticexcessmeansquare
error of the standardsign-erroralgorithmshave beenderived in
[1] andfor thesign-regressoralgorithmin [2]. Thefollowing table
summarizestheresults.



Algorithm Standard Averaged
Blind LMS Ã ; 5 ®�¯ N � ��� V ¥; A ¥ 5 �  �\±$��
SignRegressor Ã ; 5 ½ Ä ; �  ¾\±$��IfXÅDÆ�J ½ � ��� � K�QtK¨� ¥; A ¥ 5 Ä ; �  x\±$��
SignError Ã ; ½ Ä ; ®�¯ N ����� V ¥; A ¥ 5 �  �\±$��

Table 1. AsymptoticExcessMeanSquareErrors

·
ex

� µG�
Remarks: (i) All theexpressionsfor thestandardalgorithmsabove
assumethat ��ÇÈ$ . In particular, termsinvolving � ; arenegligi-
ble. More preciseexpressionsareavailablein [1] and[2]. Theex-
pressionsfor thesignregressoralgorithmgivenarelower bounds.
(ii)

·
ex

� µG� for theaveragedalgorithmsdonotdependontheeigen-
distributionof

� ���
. This is particularlyusefulin dynamicmobile

environmentswheretheeigen-structureof
�����

canchangerapid-
ly. In [8] asimilarpropertyis shown for theblind Recursive Least
squares(RLS)algorithm.

5. NUMERICAL EXAMPLES

All the signal and noisepowers are given in dB relative to the
channelnoisevariance

� ;� , see(2.1). The simulationsassumea
synchronousDS/CDMA systemwith processinggain  =31. The
desireduser’s signatureis generatedasan É -sequence.Thesig-
naturesequencesof theotherMAIs aregeneratedrandomly. The
userof interesthasSNRof 20 dB. Thereare7 multiple accessin-
terferers:5 userseachof SNR 20 dB, andtwo usersof SNR 40
dB. Fig. 1 shows theSIR versustime for the following six algo-
rithms,averagedover100independentsimulations.(a)Blind LM-
S; (b) Blind AveragedLMS; (c) Blind Sign Regressor;(d) Blind
AveragedSignRegressor;(e)Blind SignError; (f) Blind Averaged
SignError. Fig.1 showsthattheaveragedalgorithmsexhibit faster
convergencethantheun-averagedalgorithms.
Remarks: Fordetailsof convergenceproofsof thesignalgorithms
andoptimalasymptoticconvergencevia averagingsee[9].
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