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ABSTRACT

This paperillustratesthe useof “averaging”to improve the con-
vergencerate of adaptve sign regressorand sign error multiuser
detectors. The ingeniousconceptof averagingwas inventedby
Polyakin 1990- this paperanalyseghe performanceof averag-
ing in the sign error and sign regressoradaptve blind multiuser
detectionalgorithmsin DS/CDMA Systems.

1. INTRODUCTION

Demodulatinga given userin a DS/CDMA network requirespro-
cessinghereceied signalto minimize two typesof interference,
namely narrav-bandinterference(NBI) andwide-bandmultiple
accessnterferencg MAI) causedy otherspread-spectrumsers
in the channel-asvell asambientchannelnoise. Recently blind
multiuserdetectiontechniqued4], [8] have beendevelopedthat
allow oneto usea linear multiuserdetectorfor a given user with
noknowledgebeyondthatrequiredfor implementatiorof thecon-
ventionaldetectorfor thatuser Blind multiuserdetectionis useful
in mobilewirelesschannelsvhenthedesiredusercanexperiencea
deepfadeor if a stronginterferersuddenlyappearsin [4] ablind
leastmeansquare(LMS) algorithmis given for linear minimum
meansquareerror (MMSE) detection. In [8] a code-aidedlind
recursve leastsquareslgorithmfor jointly suppressing/Al and
NBI is giventogethemwith corvergenceanalysis.

Themainideain this paperis to deriveand analyseacceler
atedcorvementlow compleity adaptivesignalgorithmsfor joint
MAI and NBI suppession.Our contritutionsaretwofold:

1. We derive sign-errorandsign-rgressombasedmultiuserdetec-
tion algorithms. We shav how the corvergenceof the sign-error
andsign-regressoblind multiuserdetectorcanbeaccelerateds-
ing the ingeniousprocedureof averaginginventedby Polyakin

1990,seealsol[6].

Theingeniousdeabehindthis approachs to introducea sec-
ond round of averagingon the sign algorithm. For the LMS al-
gorithmbasedlind multiuserdetectoiit hasrecentlybeenshavn
that averagingresultsin asymptoticconvergencerate and perfor
manceidenticalto recursve leastsquare§RLS) basedmultiuser
detectorg[5]. In this paperwe shaw that averagingalso yields
substantialmprovementsfor the sign-errorandsign-regressoral-
gorithmsin blind multiuserdetection.

2. Expressionsrederived for the asymptoticexcessmeansquare
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error andthe signalto interferenceatio of theseaveragedsigned
algorithms. Numericalstudiesare presentedvhich illustrate the
performanceof the averagedalgorithms.

Sign error and sign regressoralgorithmshave beenstudied
extensiely [2], [1]. Their main advantageis the low comple-
ity in implementationcomparedto the LMS algorithm. To our
knowledgetheir usein adaptve multiuserdetectionandaccelerat-
ing their convergencevia averaginghave not beenstudied.

2. DSICDMA SIGNAL MODEL

Considera synchronousk -userbinary DS/CDMA communica-
tion system. After the received continuous-timesignalis prepro-
cessingandsampledat the CDMA recever theresultingdiscrete-
time recevedsignalattime n, denotedby r,,, is givenby

K
o =Y VPsbr(n)sk + s + 0wy (2.1)

k=1

Herer, is an N-dimensionalvectorwhere N denoteghe spread-
ing gain; s, is the normalizedsignaturesequencef the kth user
(sksk = 1); theiid +1 sequencéy(n) denoteghe transmitted
databit of the userk attime n; P; is thereceved power of the
kth user;g, is the NBI signal N-vector which is assumedo bea
wide-sensestationaryautorgressie processvith meanzeroand
covariancematrix R.; o is the standarddeviation of the channel
noise;andw, is awhite Gaussiarvectorwith meanzeroandco-
variancematrix I, wherel denotegshe N x N identity matrix.
Assumethatuserl is theuserof interest.A linearblind mul-
tiuserdetectordemodulateshe bits of userl accordingo
b1(n) = sgn(c.'r,) whereb; (n) denotesheestimateof thetrans-
mittedbit b; (n) attimen, andthe“weight vector” ¢, is choserto
minimizethe Meanoutputerror (MOE) costfunction
Cn = E{(c'r.)’} subjectto theconstraint ¢'s; = 1.
(2.2)

Theblind MOE detectorieldsthefollowing estimateh; (n) of the
transmittedsignal(seg[8] for details)

—1
R S1

/1;1 (n) = Sgr(C*l’I"n) Where Cx = 3’1137_131

(2.3)
HereR = E{rr’'}. In the abore equationc. is the optimal lin-
earMOE “weight vector”. The outputsignal-to-interferenceatio
(SIR) for anarbitraryweightvectorc is definedas

A P

SIR2 - (2.4)
odc+ Y _y Pr(cs)?




3. ADAPTIVE SIGN ALGORITHMSFOR BLIND
MULTIUSER DETECTION

In adaptiveblind multiuserdetectionproblemswe areinterested
in recursvely adaptingheweightvectore,, to minimizetheMOE
¢n (2.2). It is necessaryo usea constanttepsizetrackingalgo-
rithm dueto thetime-varying natureof ¢* causedy thebirth and
deathof users(MAI interferers).

It is corvenientto work with an unconstrainedptimization
problemratherthan(2.2). Let ¢y, ¢ € [1, ..., N] denotethe ele-
mentsof ¢,,. The constrainedptimizationproblem(2.2) may be
transformednto an unconstraine@ptimizationproblemby solv-
ing for oneof the elementsc,;, ¢ € [1,...,N] usingthe con-
straint(2.2). With no lossof generality we solve for thefirst ele-
mentc,,; andobtain

1 N
cp1=— 11— 81,iCn,i 3.5
By definingthe(N—1)-dimensionalectord,, = (cn,2,... ,cn,N)’,

we obtainthe equivalentunconstraine@ptimizationproblem:
Computemgin Jn whereJ, = E(y, — 0’<,pn)2 . (3.6)
Herey, = —rn,1/s1,1 andy, denoteghevector

s Tn,N — Tn,181,N/81,1)’

(3.7)

$n = (Tn,z - Tn,181,2/81,1, ces

Let 4. denotethe MMSE solutionf. = {E{¢, ¢, } *E{pnys}.
It is straightforvardbut tediousto shav thatthe componentsf 6,
areindeedthelast (N — 1) elementsf optimal weightvectore,
definedin (2.3).
Wenow presentonstanstep-sizeversionsof thesign-reyressor
andsign-erroralgorithmsfor blind adaptve multiuserdetection.
Averaged Sign-regressor Blind Multiuser Detector

Or1 =05 +eSgn(pn) (yn — 67" on) (3.8)
On+1 = (1= pn)n + pabs,

where0 < p, < 1 denotesaforgettingfactorappliedto the aver-
agingprocedure.
Averaged Sign-Error Blind Multiuser Detector

Or+1 =65 +epnsgn(yn — 67" 0n)

Buir = (L= pu)Ba + pub, (3.9)

Note that because;, is a finite variancestationaryGaussian
AR processaind{bx(n)}, w, areiid processest straightforvard-
ly followsthat{¢n, y» } is astationarymixing processAs aresult
it canbeprovedthatthe above algorithmsconvergein meanto the
optimalweightvectore. [2].
Canonical Coordinates. In [4] the constraint(2.2) is taken care
of by introducingcanonicalcoordinates.The essentiaideais to
replaceheunconstrainedradientof theMOE in (2.2) by its com-
ponentorthogonalo s; namely r,, ¢, (rn — r5,5151). Theblind
averaged_MS andblind averagedsign-erroralgorithmcanbe ex-
pressedn canonicalkoordinatestraightforvardly. However, it is
not possibleto derive a sign-rggressoralgorithmin canonicalco-
ordinatesthat satisfiesthe constraint(2.2). For the corvergence
analysishowever, it is more corvenientto work with the equiva-
lentalgorithmderivedfor the unconstrainedostfunction.

4. PERFORMANCE ANALYSISOF AVERAGED
ALGORITHMS

In this sectionexpressiongor the asymptoticexcessmeansquare
errorof theaveragedandun-averagedsignedLMS algorithmsare
derivedfor the DS/CDMA signalmodel.In the sequethe follow-
ing covariancematrices

Dyy =E{pnp,},  Dsr=E{Sgn(¢.)¢y}

will be used. As is commonin the analysisof blind multiuser
detectionalgorithmswe male the following simplifying assump-
tions, both of which hold for the DS/CDMA model.
(i) For slow adaptationsmalle, Sgn(¢» )¢, behaeslikeits time
or ensembleverageDsr. Similarly ¢, ¢;, ~ Dy, Thisemgodic-
ity is atheartof stochasti@veragingresults;see[7].
(i) Theinput datar,, and the previous weight vectorc,,—; are
assumedo be statisticallyindependen{3, Chapter9]. This as-
sumptionis satisfiedif the interferenceconsistonly of MAI and
white noise.
(iii) Somefourth orderstatisticsareapproximatedn termsof sec-
ondorderstatistic§3, Chapter9].

We first quotethefollowing resultin Ljung [7].

(4.10)

Result 4.1 (Lemma 3.1 and Eq.25, [7]) Considerthefollowingav-
eraged constantstepsizealgorithmwith 0 < p, p < 1,

(4.11)
(4.12)

On+1 = (1 —eD)by + cwy
On+1 = (1 = p)bn + pbn.
Here either D = CD,, andw, = Cy,y. (C > 0 denotesa

constantjor D = Dsgandw, = Sgn(y,)y». Undertheabove
assumptionst followsthatfor large n,

Ont1 = (1= p)Bn + pD™" Qnyn. (4.13)

Themainpointto noteis that(4.13)is independentf thestepsize
p. It only depend®n p, theforgettingfactorusedin theaveraging
andon D. The proof for thecaseD = CE{p, ¢, } andw, =
Conyn is givenin [7]. ForthecaseD = E{Sgn(p»)¢;} and
wn = Sgn(¢n)yn, theproofis very similarandhenceomitted.

Also we will needto thefollowing principle of orthogonality
for the MMSE solutioné..: The estimationerrore;, of the MMSE
(Wiener)solutiond. , i.e,

en = Yn — Onb (4.14)

is azeromeaniid processlLet o2 2 E{ef}.
Averaged LMSalgorithmt The LMS algorithmcanbewritten as

Ont1 = (I — €0np)0n + €0 Yn
By assumptior(i) above, this behaesfor largen as
On+1 = (I — €Dyy)0n + pnyn.
UsingResult4.1,the averagecdestimatebehaesfor largen as
Ont1 = (1= p)Bn + pDyyPnyn.
Finally usingthe principle of orthogonality(4.14)yields

Ont1 = (1= p)bn + pDogipuen. (4.15)



Averaged Sign-egressorAlgorithm. Using the Result4.1 andthe
principle of orthogonality(4.14)yields

p)0n + pDszSen(pn)en.  (4.16)

Averaged Sign-eror Algorithm. Here we usethe following addi-
tional assumptionshatarewidely usedin the analysisof signer-
ror algorithms[1]. Theseassumptionarethat{y,, y»} is jointly
GaussianandthatE{e;,”|0,} = E{e}’} = o2. The Gaussian
assumptioron (., y» ) is valid if thenumberof usersK is large.
Indeedfor large K the Centrallimit theoremimpliesthat,, de-
finedin (3.7)is azeromeanGaussiammandomvector

Undertheseapproximations|1, Eq.39]shavs thaté,, behaes
accordingo (4.11)with

Using(4.13)thisyields

gn+1 = (1 -

Dsg = CDWP! Wp = PnYn-

Ony1=(1—p)bn + ngégnyn,

whichis exactly thesameasthatfor theaveraged_MS algorithm.
Usingtheorthogonalityresult(4.14)yields (4.15).

Remark 4.2 Theaboveresultwhichshavsthattheaveraged_-M-

S andaveragedsignerroralgorithmbehae similarly is somavhat
surprising.However, oneshouldkeepin mind thatseveralapprox-
imationswere usedto get[1, Eq.39]. Still, the above equation
justifies numericalexampleswhich shav thatthe averagedLMS

andaveragedsignerroralgorithmperformsimilarly.

Weight Error Correlation Matrix.

Let K,, £ E{f,8!} denotethe weighterror correlationma-
trix. Note that K, is an (N — 1) x (N — 1) positive definite
matrix. To derive arecursionfor K, we startwith (4.15). As in
[3, Chapter9], we expandE{4,,6,,}. Firstconsiderthe averaged
LMS case(which is identical to the averagedsign error caseas
shavn above). Thlsmvolvesthefollowmg four terms:

0] (1 _p)2 E{gn 1071. 1} ( P) K, 11

(i) p(1—p)EAB,,_ 1™ Fren} = p(1—p)E{,_

0 sincee;, is azeromeanud _process;

(i) p(1 — )E{en(pn D™ '6,_1} = 0, similarly to (ii);

(iv) p>D~ IE{gane enpn'} = p2E{e*2}D_ Recallingthat¢

is the MOE it follows that p?%~ IE{gpnenengpn'} =piCn L.

Thusfor largen, K, satisfieghefollowing recursion:
Kn=1-p)’Kn-1+p’(D,,. (4.17)

Since(1 — p)? < 1, K, convergesto K, (jD

Next conS|dertheaveragedS|gnregressonalgorlthm Expand-
ing out K, into four termsasabove, thefourthtermnow is

p*CDsy E{Sgn(vn)Sgn(¢n) }D5r . BUtE{Sgn(pn)Sgn(pn)'} =

I n_1yx(v—1)- Thusfor theaveragedsignregressoalgorithmwe
have
Koo = 2 gD D3

o (4.18)

Asymptotic Excess M ean SquareError.
TheMOE (,, definedin (2.2) canbere-expresseds

¢ =E (yn - Spln(g* - én))2

= (+tr[Dyyp Kn] — 2E {(y - 90219*)90%} O

3D E{pnen} =

SinceE{én} — 0 asn — oo, thelasttermis transient Hencefor
largen, ¢» = ¢ + €.-(n) Wherethe excessmeansquareerroris
definedas
ex(n) = tr[Dyy K] (4.19)
Below we computeexpressiondor the asymptoticexcessmean
SqUAreerroree (co).
Consideffirst theaveragedlind LMS andsignerroralgorith-
m. It follows from (4.17)that
tr[Dyp Kn] = (1— p)2tr [Dyp Kn—1]

r [Iv-1yx(v-1)]
=(1-p)’tr 1).
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(4.20)

Since(1 — p)? < 1, tr[D,,K,] corverges. The steadystate
excessmeansquareerroris thengiven by
eec(00) = 2%pg(zv -1 (4.21)
Notethatthe above equationis identicalto thatof the Blind RLS,
see[8, Eq.40]. As with blind RLS, the convergenceof the MSE
andthe steadystatemisadjustmenof BAG areindependentf the
eigemvaluedistribution of the dataauto-correlatiomatrix.

Next considerthe averagedsignregressomlgorithm. To eval-
uatetr[Dsg] we first assumehaty,, is aniid zeromeanGaussian
vectorrandomvariablewith covarianceD,,. This Gaussiaras-
sumptionfollows from the centrallimit theoremif the numberof
usersK islarge. ThenPricesformulayields

12
Dsgr=14/—DD
SR p v

D 2 diag (1/v/B{pn(, D%, .., 1/VE[@A(N -1, N — 1)}).

Using(4.19)yields

€e(00) = tr[Dypy Koo] = %ngtr [DD,,D]  (4.22)

We can easily computea lower boundfor ee(co
tr[DDy, D] in termsof tr [DD,,, D]~ " asfollows: Let \;, i =
1,..., N — 1 denotethe eigevaluesof the positive definitesym-
metric matrix [DD,,D]~". Sinceall the diagonalelementsof
thismatrixarel, tr [DD,,D]"' = 1" i = (N — 1). Using
the well-known inequalitythatthe harmonicmeanis lessthanthe
arithmeticmeanwe obtain

) by bounding

N-1
tr[DDy, D]

N-—-1
DAV —N—le =

which impliesthat

tr[PDy,D] > N — 1, and ee(co) >3 Z

l\9|>!

(N —1).

It isillustrative to comparegheasymptoticexcessneansquare

errorof theaveragedsignalgorithmswith theirstandarqun-averaged)

counterparts Expressiongor the asymptoticexcessmeansquare
error of the standardsign-erroralgorithmshave beenderived in

[1] andfor thesign-regressorlgorithmin [2]. Thefollowing table
summarizesheresults.



Table 1. AsymptoticExcessMeanSquareErrorsee (co)

Remarks (i) All theexpressiongor the standaralgorithmsabove
assumdhaty < 1. In particulay termsinvolving p? arenegligi-

ble. More preciseexpressionsareavailablein [1] and[2]. Theex-

pressiondor the signregressoralgorithmgiven arelower bounds.
(ii) eex(00) for theaveragednlgorithmsdonotdependntheeigen-
distribution of D, . Thisis particularlyusefulin dynamicmobile
environmentswheretheeigen-structuref D, canchangeaapid-
ly. In [8] asimilar propertyis shavn for theblind Recursie Least
squaregRLS) algorithm.

5. NUMERICAL EXAMPLES

All the signal and noise powers are given in dB relative to the
channelnoisevariances?, see(2.1). The simulationsassumea
synchronou®S/CDMA systemwith processingyain N=31. The
desiredusers signatureis generatedis an m-sequenceThe sig-
naturesequencesf the otherMAIs aregeneratedandomly The
userof interesthasSNR of 20 dB. Thereare7 multiple accessn-
terferers:5 userseachof SNR 20 dB, andtwo usersof SNR 40
dB. Fig. 1 shaws the SIR versustime for the following six algo-
rithms,averagedver 100independensimulations.(a) Blind LM-
S; (b) Blind AveragedLMS; (c) Blind Sign Regressor;(d) Blind
AveragedSignRegressor{e)Blind SignError; (f) Blind Averaged
SignError. Fig. 1 shavsthattheaveragedlgorithmsexhibit faster
corvergencethanthe un-averagedalgorithms.

Remarks: For detailsof convergenceproofsof thesignalgorithms
andoptimalasymptoticcorvergencevia averagingsee[9].
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