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ABSTRACT

In this paper we present a new method for separating non-stationary
sources from their convolutive mixtures based on approximate joint
diagonalization of the observed signals’ cross-spectral density ma-
trices. Several blind source separation (BSS) algorithms have been
proposed which use approximate joint diagonalization of a set of
scalar matrices to estimate the instantaneous mixing matrix. We
extend the concept of approximate joint diagonalization to esti-
mate MIMO FIR channels. Based on this estimate we then design
a separating network which will recover the original sources up
to only a permutation and scaling ambiguity for minimum phase
channels. We eliminate the commonly experienced problem of ar-
bitrary scaling and permutation at each frequency bin, by optimiz-
ing the cost function directly with respect to the time-domain chan-
nel variables. We demonstrate the performance of the algorithm by
computer simulations using real speech data. Speech samples are

available at: http://sparky.mcmaster.ca/SSP/telephony_kamran.htm.

1. INTRODUCTION

In a blind source separation (BSS) problem the objective is to sepa-
rate independent sources that are mixed through an unknown mix-
ing environment (channel) where no information is available about
the sources nor the environment. An example is the room environ-
ment when different speakers are talking simultaneously. So far
many algorithms have been proposed to solve the BSS problem.
Most of them are directed toward the simpler case of instanta-
neous mixing, i.e., the case when the observed signals are a linear
combination of sources and no time delays are involved [1],[2],
[3].[4]- A more challenging problem which is closer to the prac-
tical situation is when the mixing environment is convolutive, i.e.
the observed signals are a linear mixture of the sources and their
delayed versions [5], [6], [7] [8]. Most of methods for convolutive
BSS use a backward model; i.e., they try to estimate a separating
network, rather than directly estimate the channel, based on some
measure of the observed signal, (e.g., [6], [8]) or the output signals
(e.g. [5]). In this work we propose a new method to estimate the
MIMO FIR channel H(z) by direct use of the observed signals.
The sources then can be separated (or even recovered) based on
this estimated channel. In [9], [2], [10] the authors use joint ap-
proximate diagonalization of scalar data matrices to estimate the
instantaneous mixing matrix. In this paper we extend the con-
cept of joint diagonalization to rational matrix functions, for the
convolutive mixing case. The MIMO FIR channel is estimated by
joint approximate diagonalization of the cross-spectral density of
the observed signals at different time lags. Our method is simi-

lar to [6] and [11] in this respect, in that all of them use second—
order time—varying cross-spectral information, assuming that the
sources are non-stationary. The primary differences between the
proposed method and the previous methods are 1) we estimate the
channel directly, and 2) we eliminate the common difficult prob-
lem of arbitrary permutation and scaling at each frequency bin by
directly optimizing a new cost function (formulated in frequency
domain) with respect to the channel coefficients. Also the previous
methods separate the sources only up to a filtered version of origi-
nal sources. With the proposed method, under the assumption that
the order of channel is known, it is possible to recover the sources
up to a scaled version of the original sources. Notice that in the
case of separation, the separation system output is a permuted and
filtered version of the sources, while in the case of recovery, the
outputs are only a scaled and permuted version of the sources.
Numerical simulation using real speech data have been presented
to demonstrate the performance of the algorithm.

2. PROBLEM FORMULATION

Assume that we have a source signal vector s(n) consisting of N
sources s(n) = (s1(n),s2(n),---,sn(n))T where the source
signals are real, zero mean, non-stationary, where the cross- spec-
tral matrix of sources D(w, m) for any given frequency w and time
epoch m is diagonal. Now let’s assume that s(n) is the input to
a causal system with transfer function H(z~!), which is a square
polynomial matrix of order L, the general form for which is given

by:

H(z ')=Ho+Hiz ' +---+Hpz " (1)
where H; (: = 0,--- , L) are real square matrices. The output of
the systems is given by

L
x(n) = Z H;s(n — i) 2
=0

The objective of the BSS problem is, given only the observed
signals, separate (or recover) the original sources. This is ac-
complished by means of a separating system whose transfer func-
tion we denote by B(z~'). If we denote the estimated channel
by H(z~1), then to recover the sources we can set B(z~!) =
H~!(z~!) where H™!(271) is the inverse of H(2~1) and is given
by [12]:

_adjH(z"!)  adjH(27?)

H (=)= detH(z-1)  F(z71)

©)




where adj(-) denotes the adjoint matrix. Notice that for H(z ) to
be causal and stable F(z~") should be minimum phase. For cases
when F(z~1) is not minimum phase it can always be factorized as
F(27Y) = Fmin(z7 1) Fa(2z™) where Fin (271) is a minimum
phase filter and , (z~*) is an all-pass filter. If we use Fpnin (271)
instead of F(z~") in (3) then the separating system is always sta-
ble but the sources can only be recovered up to a scaling and phase
ambiguity of the original sources. Note that for minimum phase
channels, F(z™") = Fmin(z~") and complete source recovery
is possible. If we are only interested in separation of sources then
we can always set B(z~!) = adjH(z~!). Notice that in this case
B(z™1) is a polynomial matrix with order of (N — 1)(L —1) +1
where L is the order of H(z™1).

3. POLYNOMIAL APPROXIMATE JOINT
DIAGONALIZATION (PAJD)

Blind source separation and joint diagonalization are closely re-
lated, as discussed in [13],[3],[10]. The idea behind joint diagonal-

ization is the existence of a set of known matrices Py, --- , Py €
CY *Ngych that:
Pn=AAA" m=12-- M 4)

where A is an unknown matrix and A, are some unknown diag-
onal matrices. Notice that in the case where an exact estimate of
P,, is not available, the above problem becomes an approximate
joint diagonalization of a set of estimates: Py, - - - , Pas. In [9] the
authors propose a solution assuming an orthogonal structure for
A, while [10] and [14] present non-orthogonal joint diagonaliza-
tion methods. In what follows, we extend the concept of joint di-
agonalization using finite order polynomial matrices. To this end,
consider rational, square matrix functions Py (2 1), - - Par(27 1)
where Pp,(w) > 0 for z = e and for all w € [0,#] and
m=1,2,---, M. We have:

Pn(z7") = H(z ")Dm(z"HH(z"H)" ®)
forw € [0,7] and m = 0,--- ,M — 1. H(2~?) is a unknown
polynomial matrix with a known order L and D(z™') is a un-
known diagonal matrix with diagonal elements which are rational
functions of 2. In situations where only an estimate P, (z 1) is
available, the problem becomes one of finding estimates H(z~*)
and D1 (z71),- - - Dar(z™1) such that (5) approximately holds.

Note that we can directly apply the above formulation to the
convolutive BSS problem. P, (2~*) can be considered the cross
spectral density of observed signal at epoch m. Then H(z™!)
is the unknown transfer function of channel and D, (271) is the
cross-spectral density of the sources at epoch m. Notice the as-
sumption of uncorrelated sources implies that D, (z~*) is diag-
onal. In next section we propose a criterion to estimate H(z~1)
using the formulation given in (5).

4. ALGORITHM

To solve (5) we propose following criterion:

x M—1

= [73 1p.m I 4 ©)
m=0

where

L
W)= Y HoDp(w)Hje 7"
a=0,8=0

F(w,m) =P, fl) (1)

By discretizing the frequency range [0, 7] to K equidistant
sample points wg = %k the integral in (6) can be replaced by a
summation and we have:

M—-1

N

|| F(wk,m) ||z ®)

£l
Il
<)

m=0

We minimize the criterion using a conjugate gradient method by
optimizing with respect to H; and D, (wx). To do so, we need
first to calculate the gradient of I" with respect to I3Ii and ﬁm(w).
Notice that F'(wx, m) is a complex matrix function and in general
can be written as:

F(wk, m) = Fr(wk, m) + jF1(wk,m) ©)

where Fr(wk,m) and Fr(wk, m) are respectively the real part
and imaginary part of the F(ws, m). Substituting (9) into (8) and
using the identity || A||% = Tr(AA) for any matrix A we can
write:

M-1K-1
r = Tr(F (wk, m)F¥ (wg, m))
m=0 k=0
M-1K-1
= Tr(Fr(wk, m)Fr(ws,m) +  (10)
m=0 k=0

F 1(wk, m)FT (wg, m))

Taking the derivative of (10) with respect to H; we can write:

M-1K-1

aa:[;‘i = —4 Z Z FR wk,

m=0 k=0
+F1(wk, m)Gy(wk, m) (11)

m) G (wk, m)

where G (wi, m) and G¥(wy, m) are respectively the real
part and imaginary parts of

Gi(wk,m) = Y HoDp(wr) exp(—jli —alwx)  (12)
a=0

To find the derivative of I" with respect to D, (wg) we first rewrite
the criterion (8) as:

M-1K-1

P= 3" 3 B (wr) — H(wr) Do (wr)

m=0 k=0

(wr)llF  (13)

Suppose d,,(wg) is a vector containing the diagonal values of
D, (wg). Then we can write (13) as:

M-1K-1

=3 3 lpn(on) -

B(wi)dm(wi) [I* (14)

where pr, (wi) = vee(P o (wk)) and

B(wk) = (H* (wr) ®1) © (1 @ H(ws)). (15)



Here * represents the conjugate operation and 1 is 1 x M vector of
ones. The derivative of (14) with respect to d,, (wg) can be easily

found to be:
% = —2[pm(wk) — B(wk)dm(wk)]HB(wk) (16)

4.1. Conjugate Gradient Algorithm

Using the gradient information obtained in last section we use the
conjugate gradient algorithm to minimize (8) with respect to H;
and d,, (wz). The Conjugate Gradient method has the advantage
that, while it uses only gradient information, it has a faster conver-
gence rate than gradient descent [15], [4]. The search direction for
the conjugate gradient method at each step is calculated using a lin-
ear combination of the gradient of the cost function at the current
step and the search direction at the previous step. For our problem,
the adaptation rule for H; using conjugate gradient is given by:

HiT = HY +o*TF @an
where o is the step size and
Tk = —@F 4+ gErEt (18)
or
k __
Here ®; = oH? and
i TT[‘l’?‘I’?T]
Ly s P L (19)
Tr[@F 1@k
Likewise the adaptation rule for d., (w;) can be written as:
d (@) = di (wi) + " 67, (wi) (20)
where
O (1) = =y (1) + YO ' (w1) (21)
or
Here 1% = ~——— and
ere ¥, (wi) Bk, () an
6" 0",
Tm = T e 22)

where in all the equations ¢ = 0,--- ,L, m =10,---,M — 1,
1=0,---,K —1and k is the iteration number.

5. SIMULATION RESULTS

To demonstrate the performance of the algorithm we perform nu-
merical simulations using real speech data. For sources, we use
two segments of speech, each 2.2 seconds in duration sampled at
8.0 kHz. The speech is from two different females reading differ-
ent sentences. We specified the channel H(z~") to be of order of
L = 7 with elements given as:

Hi(z7') = 140827 407277404272 +0327* +
0.252 % +0.22 % +0.152" "7

Hiz(z™') = 0.6+0527" +05277 +0.427%40327* +
0.227% +0.2527% +0.127"

Hoi(z™') = 05+0527" +04272 403527 +0.327* +
0.3z °+02z °401z7

Hy(z™') = 1409277 408277 +0.627° +0.427% +

0.352 % +0.327% +0.152"7

We then generated the observed signals by convolving the chan-
nel with the sources. To estimate the cross spectral density of ob-
served signal, we first divide a block of the observed signal of size
L, into M frames of size L,,. Notice that the frame length should
be chosen such that the signals within the frame stays nearly sta-
tionary. We then calculate the cross spectral density at each frame
using standard spectral estimation methods. For this simulation we
used the well-known Welsh method. In each frame we divide the
sequence into J overlapping subsequences of length L and then
calculate the FFT of each subsequence after applying a Hamming
window. Note that L should be much greater than the channel
length L. The resulting cross-spectral is given by:

J—-1
P(w,m)=§2x,~m(w)xﬁn(w) m=0,---,M—1 (23)
=0

where x;, (w) is the FFT of the ith windowed subsequence in
the mth frame. These estimated cross-spectral matrices were then
used as inputs to our algorithm. The algorithm converged after 700
to 800 iterations.

The sources were then separated using the estimated fI(zfl).
As indicated previously, this can be done by using the adjoint of
H(z~!) and convolving it with observed signals. The results are
shown in figure (1). The first row of figures represents the origi-
nal sources s1(n) and s2(n), the second row shows the observed
signals z1(n) and z2(n), and the third row represents the outputs
which are the result of the convolution of the observed signals with
the adjoint of the estimated channel. As can be seen, the sources
have been separated. However, we notice that (by observing the
envelope of the separated signals) the outputs are not recovered,
since they are a filtered version of the original sources. To recover
the sources, we equalize the outputs using a truncated version of
the minimum phase inverse of detFI(z~1). The resulting recov-
ered sources are shown in the last row of figure(1). By comparing
the envelopes it can be seen that the signals in the last row are less
distorted than the original sources. These qualitative results have
been verified by listening tests.

To find a quantitative measure of the separation performance,
we measured the signal to interference ratio (SIR) through the
combined mixing and separation systems appearing at each sepa-
rated output, in dB. The results are shown in table (1). Notice that
the equalization process results in some degradation of the separa-
tion performance. Also to quantify equalization performance, we
used following formula:

Kij = 1010910(M) (24)
lleiill3 — lleiillZ

where c¢;; is the impulse response of combined system from source
1 to output j, measured by applying a delta-function to one input
of the combined system while the other inputs were set to zero.
The results are tabulated in table 2. The computational time for
this simulation was approximately 0.1s for each iteration using a
1.3G Pentium-4 machine in the Matlab environment to run the al-
gorithm. The computational bottleneck of the algorithm is mainly
due to calculating the gradient of H; given by equations (11) and
(12). This can be greatly improved by using the FFT method to
calculate G; in (12).



Table 1: SIR for separated only and separated and equalized out-

puts

Output SIR SIR1 SIR2
Before Equalizing | 24.12 dB | 19.0324 dB
After Equalizing | 12.75dB 9.43dB
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