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ABSTRACT

In this paper two new adaptive equalizers are proposed which be-
long to the quasi-Newton (QN) algorithmic family. The first algo-
rithm is a Linear Equalizer (LE) and the second one is a Decision
Feedback Equalizer (DFE). In the LE case the involved inverse
Hessian matrix is approximated by a proper expansion consisting
of powers of a Toeplitz matrix. Due to this formulation the algo-
rithm can be efficiently implemented in the transform domain (TD)
using FFT. The same idea is applied to the Feedforward part of the
DFE. The derived algorithms enjoy the advantages of QN algo-
rithms, that is, they exhibit faster convergence than their stochastic
gradient counterparts and less computational complexity as com-
pared to other Newton-type algorithms. These advantages are fur-
ther enhanced due to TD implementation.

1. INTRODUCTION

The proposed paper is concerned with adaptive equalization in mo-
bile wireless communication systems in which the transmission is
done in bursts of data. A major cause of performance degradation
in wireless mobile systems is the so-called multipath phenomenon.
The introduced Intersymbol Interference (ISI) may reduce dramat-
ically the probability of a correct decision in the receiver [1, 2].
Therefore, equalization turns out to be a major task in these cases.
Moreover, since the channel may change significantly during the
inter-bursts period, and even within a burst, the involved equalizer
should be able to track the channel variations, and also have a fast
convergence so as to need a reduced training sequence. This lat-
ter requirement implies that a corresponding saving in bandwidth
may be achieved. Furthermore, since the adaptive equalizer is to
operate in real time it should require a low computational burden.

Most of the existing symbol-by-symbol adaptive equalization
schemes (either linear or DFE) belong to the stochastic gradient
algorithmic family and they are implemented using variations of
the well-known Least Mean Squares (LMS) algorithm. However,
when the equalizer’s input is colored the LMS-based DFE has slow
convergence [3], hence does not lend itself for burst transmission
systems with a short training sequence. The colored input results
in an ill-conditioned autocorrelation matrix and the situation dete-
riorates as the filter order increases. A possible solution would be
an RLS-based equalizer incorporating the Recursive Least Squares
algorithm (or a fast version) to update the feedforward (FF) and
feedback (FB) filters. However, the complexity of such a scheme
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is several times more than that of the LMS based schemes [1]. As
for the fast-RLS schemes [4], their numerical behavior in certain
implementation platforms is still an issue under investigation.

The algorithm proposed in this paper belongs to the QN family
of algorithms. This family of algorithms lies between the LMS
and RLS algorithms. They exhibit faster convergence rate than
LMS and lower complexity than RLS. The characteristic of QN
algorithms is that an approximation of the inverse Hessian matrix
is involved in the filter updating relations in an attempt to whiten
the input process. With appropriate choices of the inverse Hessian,
the LMS and RLS algorithms can be considered as special cases
of QN algorithms. Thus, under the same settings, the performance
of a QN algorithm (in terms of convergence and tracking) depends
mainly on the choice of the inverse Hessian matrix [4, 5].

In this paper the Hessian matrix is initially approximated by
a Toeplitz matrix which is constructed by estimates of the auto-
correlation sequence of the channel output. However, its inver-
sion at each time step requires O(M2) operations, where M is the
equalizer’s order. To overcome this problem, the inverse Hessian
matrix is expanded to a proper series, allowing fast, FFT-based,
computation of the involved terms. Both the LE and DFE cases
are treated in the paper. The resulting algorithms enjoy the ad-
vantages of QN algorithms, i.e. they exhibit faster convergence
than their stochastic gradient counterparts and less computational
complexity as compared to most Newton-type algorithms. These
advantages are further enhanced due to transform domain imple-
mentation.

The following notation is used throughout the paper. In the
time domain, vectors and matrices are denoted by bold lower case
and bold upper case letters, respectively. In the frequency domain,
vectors are denoted by calligraphic upper case letters.

2. PROBLEM FORMULATION AND PRELIMINARIES

The channel is assumed to be a discrete-time finite impulse re-
sponse channel corrupted by additive white gaussian noise. The
transmitted information sequence fdg consists of i.i.d. symbols
taken from a finite alphabet with zero mean and variance �2d. The
channel output is sampled at the symbol rate and the resulting se-
quence is denoted as fxg.

The algorithm proposed for estimating the LE filter is

y(n) = w
H
M(n)xM(n) (1)

e(n) = d(n)� y(n) (2)

wM (n+ 1) = wM(n) + �R
�1
xM (n)e�(n) (3)



where xM(n) = [x(n +M1) � � �x(n +M1 �M + 1)]T is the
current input vector (M1 is a proper delay of the LE), wM(n)
contains the LE coefficients and y(n) is the output of the equal-
izer. R is a Toeplitz matrix constructed by a time-averaged es-
timator of the autocorrelation sequence r0; r1; : : : ; rM�1 of fxg,
i.e. rk(n) =

Pn
i=1+k �

n�ix(i)x�(i � k). The inversion of the
(Toeplitz) autocorrelation matrix R requires O(M2) operations
per time step if a Levinson-type algorithm is used. To alleviate
this problem we propose, as an alternative to [6], the expansion of
R as described in the subsection below.

2.1. Inverting the autocorrelation matrix

Introducing a real constant 
 > 0 we consider the matrix

1



R = I +A (4)

where we have defined the matrix
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We will proceed further by exploiting a matrix analysis result.
Let �1; : : : ; �M be the eigenvalues of a matrix S. Then %(S) =
max
i
j�ij denotes its spectral radius. Then according to a well-

known theorem [7]: The series
1P
k=0

S
k converges iff %(S) < 1.

Under this condition, I � S is nonsingular and the limit of the
series is equal to (I � S)�1

Note that in our case, S = �A is a Hermitian matrix and
kSk2 = %(S). Using this theorem we may invert the autocorrela-
tion matrix R as

(
1



R)�1 = (I +A)�1 (6)

R
�1 =

1



(I �A+A2 �A3 +A4 � � � � ) (7)

Obviously we may approximate the inverse matrix as close as de-
sirable using only the first q terms of the infinite sum, i.e.

R
�1 �

1




q�1X
i=0

(�1)iAi (8)

The role of the constant 
 is to ensure that kAk2 < 1 so as the
above theorem to be applicable. Let �1 � � � � � �M > 0 be the
eigenvalues ofR. Then (�1



�1) � � � (�M



�1) are the eigenvalues

of A. Since kAk2 = %(A) and kRk2 = %(R) = �1 it is readily
found that we must divide R with a constant


 > 0:5kRk2 (9)

but not too large so that the eigenvalues of A stay away from 1 in
magnitude for the series to converge faster. Based on the hermi-
tian symmetry of R and the well known inequality, [8], kRk2 �p
kRk1kRk1 we get that kRk2 � jr0j + 2

PM�1

k=1
jrkj. Thus

we may choose for 
 the non-optimal value


 = 0:5jr0j+

M�1X
k=1

jrkj (10)

3. THE LINEAR EQUALIZATION CASE

To end up with a practical scheme let us approximate R�1 as

R̂

�1
=

1



(I �A+A2) (11)

This yields the following update scheme

wM(n+1) = wM(n)+
�e�(n)



(xM (n)�AxM (n)+A2

xM(n))

(12)
An important thing to notice is that matrix A is Toeplitz. So

we may implement the product Ax efficiently in the frequency-
domain by embedding A into the 2M � 2M circulant matrix

C =

�
A B

B A

�
(13)

where it is sufficient here to define the first column of C as c =
[a�; 0;aR1:M�1] with the help of some Matlab notation. The col-
umn vector a denotes the first row of A. Vector aR1:M�1 consists
of the M � 1 last elements of a in reverse order. If F is the DFT
matrix of order 2M then FCF�1 = diag(Fc) =D and�

AxM (n)
0M

�
=

�
IM OM

OM OM

�
F
�1
DF

�
xM (n)
0M

�

In other words, three DFTs and a pointwise vector-by-vector prod-
uct suffice to carry out the matrix-vector multiplication.

So we may augment the update scheme as�
wM(n+ 1)

�

�
=

�
wM (n)
�

�
+

�e�(n)



(

�
xM (n)
�

�

�

�
AxM (n)

�

�
+

�
A

2
xM(n)
�

�
):

We denote by �, a “don’t care”, M � 1 vector. Taking the DFT of
both sides we have

W(n+1) =W(n)+
�e�(n)



(Q0(n)�Q1(n) +Q2(n)) (14)

where W(n) = F

�
wM (n)
�

�
and Qi(n) = F

�
A
i
xM (n)
�

�
for i = 0; 1; 2. We also define the frequency-domain vectorX (n) =

F

�
xM(n)
0M

�
.

Let us now assume that the frkg sequence is fixed from step to
step. Then at time n we just have to update the frequency-domain
vectorsQi(n) in terms of the already computed vectorsQi(n�1).
More specifically we define that Q0(n) = X (n). From the DFT
definition we note that, for k = 0; 1; : : : ; 2M � 1,

Xk(n) = Xk(n�1)e�j
�k
M +x(n+M1)�(�1)kx(n+M1�M)

If we define the corresponding vector-operation as

X (n) = recdft(X (n� 1); x(n+M1); x(n+M1 �M));

where recdft stands for recursive DFT, then we may write

Q0(n) = recdft(Q0(n�1); x(n+M1); x(n+M1�M)) (15)



Furthermore, defining

Q1(n) = F

�
AxM(n)
0M

�
; (16)

it can be readily shown that DQ1(n) = F

�
A

2
xM(n)

BAxM (n)

�
.

So, it is legal, according to the definition of Qi(n)’s, to compute
Q2(n) simply as

Q2(n) =DQ1(n) (17)

Finally, the computation of Q1(n) is left. Defining z(n � 1) =
AxM (n� 1), we observe that

AxM (n) =

�
a
T
xM(n)

z0:M�2(n� 1)

�
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0

a
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So, if we define the 2M � 1 frequency-domain vectors A1 =

F

2
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a
�

1:M�1

0M

3
5 and A2 = F
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a
R
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3
5, then we may write

in a compact way that

Q1(n) = recdft(Q1(n� 1);aTxM (n);aRHxM (n� 1))

+A1x(n+M1)�A2x(n+M1 �M) (18)

To finish with the update equation we observe that the time-
domain error signal can be computed by already available fre-
quency domain vectors as

e(n) = d(n)�wH
M (n)xM (n)

= d(n)�

�
wM (n)
�

�H �
xM(n)
0M

�

= d(n)�

�
wM (n)
�

�H
F
H
F

2M

�
xM (n)
0M

�

= d(n)�
1

2M
WH(n)X (n) (19)

The resulting QN-LE scheme is summarized below:

Quantities defined at initialization: �, �, W(0), Pk(�1)
Quantities updated en block: rk, 
, a, D, A1, A2, Q1

For n = 0; 1; : : : (sample by sample)
Q0(n) = X (n)
Q0

1(n) = recdft(Q1(n� 1);aTxM(n);aRHxM(n� 1))
Q1(n) = Q0

1(n) +A1x(n+M1)�A2x(n+M1 �M)
Q2(n) =DQ1(n)
Q(n) = Q0(n) +Q1(n) +Q2(n)
e(n) = d(n)� 1

2M
WH(n)X (n)

Pk(n) = �Pk(n� 1) + (1� �)jXk(n)j
2

M(n) = diag
�
P�10 (n); : : : ; P�12M�1(n)

�
W(n+ 1) =W(n) + �e�(n)



M(n)Q(n)

End

We note that we have used a matrix step size M(n) instead of
the classic � following [9, 10].

It can be shown that the above algorithm requires no more that
16M complex multiplications and a comparable number of com-
plex additions per time step, plus 4 FFTs each time the autocorrela-
tion sequence based quantities are updated (once per block, which
block could be even the whole burst in a transmission system).

4. EXTENSION TO THE DFE CASE

The output y(n) of a DFE equalizer at time n is given by

y(n) = c
H
Mf

(n)xMf
(n)� bHMb

(n)dMb
(n) (20)

where xMf
(n) is the taps input vector of the FF filter at time n

and dMb
(n) is the taps input vector of the FB filter at time n. We

may write the last equation as follows

y(n) =
h
c
H
Mf

(n) �bHMb
(n)

i �
xMf

(n)
dMb

(n)

�
(21)

� w
H
M(n)uM(n) (22)

The task here is to develop a quasi-Newton type adaptive algorithm
for the updating of filter wM = [cMf

;�bMb
]. Unfortunately the

derivation steps followed in the previous section cannot be directly
extended to the DFE case. The reason is that the autocorrelation
matrix of the input vector in the filter w loses its Toeplitz struc-
ture. Let us denote by Ru this matrix assuming for the moment
stationarity where necessary. Then

Ru = E[uM (n)uHM(n)] (23)

= E[

�
xMf

(n)
dMb

(n)

� h
x
H
Mf

(n) d
H
Mb

(n)
i
] (24)

= E[

"
xMf

(n)xHMf
(n) xMf

(n)dHMb
(n)

dMb
(n)xHMf

(n) dMb
(n)dHMb

(n)

#
] (25)

=

�
Rx R

H
dx

Rdx Rd

�
(26)

wherefrom we see that the full autocorrelation matrix is no longer
Toeplitz but block Toeplitz with Rd a diagonal matrix assuming
i.i.d. information symbols d(n).

As we have just mentioned, matrix Rx is only the upper left
part of the full autocorrelation matrix Ru. Moreover, we have
assumed that Rd = �2dI , so its inversion is trivial. What make
the inversion of matrix Ru difficult to handle are the (Toeplitz)
cross-terms Rdx and RH

dx. It can be shown that the matrix Rdx

is composed of the causal coefficients (excluding the main echo
h0) of the channel’s impulse response and so, for typical multipath
channels, it is sparse with small-valued elements.

Thus, at a first approach, we may set these blocks equal to
zero matrices and investigate the loss in performance in compari-
son with the ideal Newton/LMS algorithm. In that case, we have
the approximation

R̂u =

�
R̂x OMf ;Mb

OMb;Mf
�2dI

�
(27)

and it is straightforward to apply the proposed scheme for the R̂x.
That is, we update the FF filter by using the QN-LE scheme as
described in the previous section, while we update the FB filter by
applying the TD-LMS technique.

5. SIMULATIONS AND DISCUSSION

To illustrate the performance of the algorithms we provide some
simulation results. Two typical wireless channels, named as chan-
nel A and channel B, have been used [11]. Channel A has the val-
ues [0.9333, 0.5012, 0.5129, 0.5370] at taps [1,8,15,22] and chan-
nel B has the values [0.7490, 1, 0.2290, 0.3160, 0.0550, 0.1580] at
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Fig. 2. channel B - LE(128,16)

taps [1, 2, 18, 26, 34, 40]. Clearly, channel B results in more
serious ISI than channel A. We study the performance using a
M = 128-order LE (with a M1 = 16 taps noncausal length),
and a DFE stucture with a noncausal FF filter of order Mf = 16
and a causal FB filter of order Mb = 64. The results are shown
on figures 1-4 comparing the Quasi-Newton algorithm with New-
ton/LMS, TD-LMS and NLMS algorithms. We update the matrix
step-size for the TD-LMS and QN algorithms as suggested in [10].
A suitable matrix step-size initialization/update is still under inves-
tigation for the QN approach. For � the value 0.9995 was chosen.

By inspecting figures 1-2, we conclude that the new QN-LE
algorithm has a performance which is better as compared to TD-
LMS and approaches that of the ideal Newton/LMS. From figures
3-4 we deduce that the same comment holds for the QN-DFE al-
gorithm as compared to the TD-LMS-DFE.
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