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ABSTRACT

A commonproblemwith theexistingblindmulti-userCDMA
detectorsis that their performanceis very sensitive to the
SignatureWaveform Mismatch(SWM) causedby channel
distortion.In this paperweconsidertheproblemof design-
ing ablind multi-userCDMA detectorwhichis robustto the
SWM. Wepresentaconvex formulationfor thisproblemby
usingtheSecondOrderCone(SOC)programming.Wealso
proposethe useof recentlydevelopedinterior point meth-
odsto efficiently solve the resultingSOCproblem. Com-
putersimulationsindicatethat theperformanceof our new
robustblind multi-userdetectoris superior.

1. INTRODUCTION

Multiuserdetectionis mainly beingusedfor thedemodula-
tion of digitally modulatedsignalsin thepresenceof multi-
accessinterference,andit hasnow becomeoneof thebasic
techniquesin Code-Division Multiple-Access(CDMA) re-
ceiver design[1, 4, 5]. However, a commonproblemwith
the existing multi-userCDMA detectorsis that their per-
formanceis very sensitive to theSignatureWaveformMis-
match(SWM) causedby channeldistortion.Sincechannel
distortionexistsin mostenvironmentswhereCDMA is used
(e.g.,cellularmobile telephony), mitigationof SWM is es-
sential(ormayevenberequired)whenwedesignapractical
multi-userCDMA detector[2, 6].

One approachto deal with SWM is by using training
sequences.An alternative strategy of mitigating SWM is
to designa blind multiuserdetectorwhich hasstrongro-
bustnessto SWM. In [2] (seealso [3]), a formulation is
presentedfor the designof robustblind multi-userCDMA
detectorswhich calls for theminimizationof thedetector’s
outputenergy. Moreover, two gradientdescentalgorithms
(theStochasticGradient(SG)algorithmandtheLeastSquares
(LS) algorithm)wereproposedin [2] for achieving theMin-
imum OutputEnergy (MOE) underthe constraintthat the
so called “surplus energy” createdby SWM is bounded.�
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However, constrainingthe “surplus energy” is an indirect
way of achieving robustness.A morenatural(andperhaps
also more desirable)formulation is to directly maximize
the worst casesystemperformancegiven a specificrange
of SWM. This is the approachtaken by the presentpaper.
Anotherdrawbackof thetwo iterative algorithmsproposed
in [2] is that they requiresomechannel/data-dependentpa-
rameterswhich arenot easyto choose,anda poor choice
would leadto poorperformance.

In this paperwe presenta new formulationfor the de-
sign of robust blind multi-userCDMA detectors.Our for-
mulation is direct in the sensethat it allows explicit con-
trol of the amountof requiredrobustnessin the detector.
Moreover, the new robust blind multi-userdetectorcanbe
obtainedusing the highly efficient interior point methods
recentlydevelopedin theoptimizationcommunity.

2. PROBLEM FORMULATION

Consideranantipodal� -userdirectsequenceCDMA chan-
nel corruptedby someadditive and white Gaussiannoise���	��
 . Supposethe standarddeviation of ������
 is 
���� .
Let ��� �	��
 denotethe signaturewaveform for the � -th user
which is assumedto haveunit energy ( ����� ����
 ����� ), andlet��� ��� denotethetransmitteddatabitswhichareindependent
BPSKsignals.Supposethedatabits aretransmittedat the
rateof �� �! , with !"�#� beingthe bit duration. Thenthe
synchronousreceivedsignalcanbewrittenas$%�	��
 � &'�)(+* , � � �-��� �	��
/.0���	��
�1 �3254 � 1 !76 (2.1)

where
, � is thereceivedsignalamplitudefor the � -th user.

AlthoughasynchronousCDMA is therealityin practice,
it is often beneficialto considersynchronousCDMA sys-
temsfirst sincethey provide a usefulsimplified framework
to developour algorithmsandcarry out the analysis.Fur-
thermore,algorithmsdesignedfor thesynchronousCDMA
canstill beusedin theasynchronouscaseprovidedthetim-
ing offsets

�98 �:� aresmall.



Samplingthereceivedsignal $;����
 atchiprate �< -= , where=#�>� is thechip interval,weobtainthesignalvector(2.1):? � &'�)(+* , � � ��@9� .BAC1 (2.2)

where
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with G beingthecodespreadingfactor. Notethat !O� G = .

Without lossof generality, supposethattheuser1 is our
desireduserwhosesignaturewaveformis @<* . Ourgoalis to
selectavector P:* which,uponcorrelatingwith thereceived
vector ? and passingthrougha hard limiter, will recover
the databits

�<� * 4 Q 6R� sentby user1. The Minimum Output
Energy (MOE) basedmulti-userdetectorintroducedin [2]
canbedescribedasfollows.

minimize SUTWV ?�1 P:*YX�T Z[�UP�\*^] P:*
subjectto P�\ * @<*7�_� (2.3)

whereP:` is thevectortobedetermined,and ] �US ��?%? \ 
a2bacedfc
. In practicewehaveonly finite numberof snapshots

of the received data. Thus,we needto replace] in (2.3)
with thesamplecovariancematrix g] � *cihCj ckhl (+* ?C4 � 6 �	?C4 � 6 
 \ ,
where Gnm is the numberof snapshotsand ?C4 � 6 is the � th
received datavector. This leadsto the following imple-
mentableversionof (2.3):

minimize Po\ * g] P *
subjectto Po\ * @�*7�p�oq (2.4)

When SWM is present,the actual received signature
waveformsbecomesg@��r�s@�� .Bt � (2.5)

where t � is the mismatcherror vector. Clearly, � t �u� is a
measureof the magnitudeof signal waveform mismatch.
Note that t � may be differentamongdifferentusers. It is
well known that theMOE solutionto (2.4) is highly sensi-
tive to SWM andoften leadto poorBER performance.To
overcomethis sensitivity to SWM, Honig et. al. [2] intro-
ducedanenergy-constrainedMOE detector. Therobustness
againstSWM is achievedindirectlyby constrainingthesur-
plusenergy. In whatfollows,wedescribeamoredirect(and
perhapsmorenatural)way to constructarobustsolutionfor
the MOE formulation(2.4) whoseglobal optimal solution
canbefoundefficiently.

Supposewehaveestimatedthatthenormof signalwave-
form distortion t * is boundedby someconstantvw�U� , that
is � t * �yxzv . Thentheactualreceivedsignalwaveform g@ *
canbedescribedasa vectorin theset{ * � v 
 � � g@ * T g@ * �s@ * .0t * 1 � t * �|x>v:��q
Since g@ * canbe any vector in

{ * � v 
 , we mustensurethat
the detectorgain for all signalsin

{ * � v 
 shouldbe greater
than1, that is, Po\ * g@�*y}~� for all vectors g@�* 2 { * � v 
 . Such
a constraintensuresthat we canextract the databits from
user1 regardlesshow its signaturewaveformis distorted,as
long as the distortion is boundedby v . Now supposethis
gainconstraintis enforced,thenour goal remainsto pick a
vector P:* thatminimizes Po\ * g] P�* . Thus,a robustversionof
(2.4)canbedescribedasfollows:

minimize P \ * g] P�*
subjectto Po\ * g@<*[}�� for all g@<* 2 { * � v 
�1 (2.6)

where v is an upperboundon the norm of the signalmis-
matcherrorvector.

For eachchoiceof g@<* 2 { * � v 
 , thecondition Po\ * g@<*M}_�
representsa linearconstrainton P�* . Sincethereareinfinite
numberof g@�* in

{ * � v 
 , the constraintsin (2.6) are semi-
infinite andlinear. To facilitatethecomputationof optimalP:* , wewill convertthesesemi-infinitelinearconstraintsinto
a so calledsecond-orderconeconstraint.This is achieved
by consideringtheworstcaseperformanceasfollows.Note
thattheoptimalsolutionof theminimizationproblem�w����� h)���o���W��� P \ * g@ * or equivalently �w�W��R� � ��� � P \ * � @ * .Bt * 

is givenby ��v<P *  ���P * � . ThiscanbeeasilyverifiedbyCauchy-
Schwartzinequality. Therefore,theconstraintP \ * g@ * }�� for all g@ * 2 { * � v 

canbeequivalentlydescribedbyP \ *�� @<*3�5v P *��P:*o��� }s�
or P \ * @ * ��vu��P * �|}���q (2.7)

Substituting(2.7) into (2.6),weobtain

minimize P \ * g] P�*
subjectto Po\ * @<*���vu��P:*o��}�� (2.8)

Noticethattheconstraintin (2.8)of theform���MPf*-�[x�� \ P:* .|��1 for somegiven � 2 bacedfc , � 2 bac
and ��2 b , is calleda second-orderconeconstraint.



Next weconvertthequadraticobjectivefunctionof (2.8)
into a linear one. To do so, we first noticethat P�\ *^] P:* ���¡�P * � Z , where ¡�\+¡¢� ] is the Cholesky factorization.
Obviously, minimizingthequadraticnorm ��¡�P * � Z is equiv-
alent to minimizing ��¡�P * � . Introducinga new variable �
anda new constraint��¡�P * �nx � , we canconvert (2.8) into
thefollowing:

minimize �
subjectto ��¡CP�*-�|x �)1��v *�£ Z P:*-�|x>@ \* P:*a�¤� (2.9)

Theabove formulation(2.9) is now in thestandardform of
asecond-orderconeprogrammingproblem.This is because
the objective function is linear andthe two constraintsare
bothsecond-orderconeconstraints(which areconvex).

Recentlytherehave beensomehighly efficient interior
point methodsdevelopedto solve the above second-order
coneproblem(2.8). Below we briefly describea primal-
dual potential reductionmethod[7] for solving the SOC
problem. To do so,we first introducethe dual problemof
(2.9)givenby

maximize ¥ Z
subjectto ¦§\*^¨ * . ¦ \Z ¨ Z . ¥�*�© . ¥ Z�ª �s©� ¨ *o�|xB¥�*� ¨ Z �|xB¥ Z (2.10)

where©[� 4 � 1 � 1 q�q�q 1 ��6«\ 2 baca¬ * , ¦­*7� 4 ¡ 1¯® 6 2 baced;��ca¬ * � ,ª � 4 @Y\ * 1 �-6°\ 2 bac3¬ * , and ¦ Z � 4 v<± 1�® 6 2 baced²�Wc3¬ * � .
The dual optimizationvariablesare the vectors ¨ � 4 ¨ * ,¨ Z 6 2 baced Z , and ³´� 4 ¥�* 1 ¥ Z 6 2 b Z . Thedifferencebe-
tweenthe primal anddual objectives is called the duality
gap associatedwith � , P�* , ¨ and ³ , andwill bedenotedbyµ%�	�)1 P�* 1 ¨ 1 ³ 
 , or simply µ :µ%���)1 P:* 1 ¨ 1 ³ 
 � � �¶¥ Z (2.11)

It is known thatthedualitygapis nonnegativefor eachfea-
sible � , P:* , ¨ and ³ (i.e.,satisfytheconstraintsof (2.9)and
(2.10)),andis minimizedat theoptimalpoint �¸· , P · * , ¨ · and³ · .

A useful tool in solving the SOC problemis the log-
arithmic barrier function which can be optimizedby the
primal-dualpotentialreductionmethod[7]. The detail of
this approachis omittedhere.

3. SIMULATIONS

WeconsiderasynchronousCDMA systemusingGoldcodes
of length G �º¹u� with the numberof users�»�½¼ . The
SNRis 10dBwhile the interferenceto signalratio (ISR) is
20dB,representinga severenear-far effect. In our simula-
tions, the lengthof thedatasequenceis setto be Q �º�9�o� ,

so that thetotal datasamplesizeis ¹u�Y��� . Sucha choiceofQ is to ensureadequateiterativeconvergenceof bothLS and
SGmethodswhichweshallcomparewith ourSOCmethod,
andto ensurethesamplecovariancematrix g] is acloseap-
proximation. We performa total of ¾��À¿-�o� MonteCarlo
runs.Randomdata,randomdistortionandrandomnoiseare
chosenfor eachrun. To measurethe effect of interference
cancellation,we calculatethe bit error rate (BER) of the
detectoroutput.

We now comparethe averagedBER of our new SOC
methodwith thoseof the existing methodswhich include
the classicalMatchedFiltering method(MF), the standard
(non-robust)MOE detector, the LeastSquare(LS) method
andtheStochasticGradient(SG)method(bothfrom [2]). In
our simulations,we assumethe valueof v is known to the
detectorandweusethisvaluein theSOCformulation(2.9).
To solve (2.9)we have useda Matlab-basedtool calledSe-
DuMi [8] which is anefficient implementationof a primal-
dual interior point methodfor solving SOCproblems.For
the LS and the SG methods,we have experimentedwith
a large selectionof differentvaluesof Á (the “surplusen-
ergy” parameter)andhave chosenthe onewhich givesthe
bestSINR. For v��½��q Â , the BER comparisonis given in
Fig. 1.
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Fig. 1: BER averagedover 100randomruns

It canbeseenfrom Fig. 1 that theSOCmethodhasthe
bestBERperformance,followedby LS, SG,MOE andMF.
Notice that the BER for the MOE detectorworsenswhen
theSNRincreases.This is becausefor a non-robustdetec-
tor like the MOE method,a part of the signalpower will
be contributedtowardsthe interferencewhenSWM exists,
leadingto largerinterferencepowerandworseBERperfor-
manceasthesignalpower increases.

Sofar we have seenthat theSOCdetectorhassuperior



performancewhen v is assumedto beknown. It is important
to seehow sensitive the SOCdetectoris to the valueof v .
We considertwo caseswhen the SWM bound v is over-
estimatedandunder-estimated,respectively. Theresultsare
shown in Fig. 2. andFig. 3, respectively.
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It canbeseenfrom Figs.2 and3 thatSOCdetectoris ro-
bustevenwhentheboundof SWM is unknown. In contrast,
we have foundtheperformanceof theLS andSGmethods
to berathersensitive to thechoiceof surplusenergy Á . Fi-
nally, weremarkthat,in oursimulations,solvingeachSOC

problem(2.9) with the Matlab tool SeDuMi [8] takesless
thana secondon a600MHz PentiumIII PC.

4. CONCLUDING REMARKS

In this paperwe have proposeda new robust blind multi-
userdetectorfor synchronousCDMA in thepresenceof sig-
naturewaveformmismatch(SWM).Ourmethodis basedon
arobustformulationof theMinimumOutputEnergy(MOE)
detectorusingtheSecond-Order-Cone(SOC)programming
technique.TheSOCformulation(2.9) is convex andcanbe
efficiently solved by the recentlydevelopedinterior point
methods.The new SOCdetectorcanbe consideredblind
sinceit only requirestheknowledgeof thesignaturewave-
form of thedesiredsignal.
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