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ABSTRACT

Last year, the IEEE Signal Processing Society offered a
prize of $1000 for proving or disproving Makhoul’s conjec-
ture, which says that, given a causal all-pass digital signal
x,, of order p, with nonzero z, the location of the peak of
xn, always lies betweenn = 0 and n = 2p — 1. The case
of p = 1 is trivial, and no further progress had been made
in 25 years until Lertniphonphun, Rajagopal, and Wenzel
gave counterexamples for large p. In this paper, Makhoul’s
conjecture is proven for p = 2. It is also shown that the
conjecture fails dramatically in the case of complex coeffi-
cients.

1. The Preliminaries.

If z,, is the impulse response of an all-pass digital filter
of order p = 2, then z,, satisfies a recurrence relation

T +bTp_1 +aTp_2 = a(sn + b(sn—l + 6n—2

with z_o,2_1 = 0, where a, b are real numbers, a # 0,
such that the roots of z2 + bx + a (call them a, 3) lie strictly
inside the unit circle. Thus, e.g. zo = a, 1 = b — ab,
22 =1 —a? —b% + ab?.

We first obtain a nice representation of x,,.

Lemma. zo = af; ifn > 1, then
zn = (@B = 1)(gn(@) — gn(B))/(a = B) (a# B),

an = (0” = 1)gp(a) (a=p),

where g, (z) = 2"t — g7~ L

Note that because a3 is never 1, we can equivalently
consider the sequence y,, where y, = z,, /(a8 — 1). Note
Yo = aB/(af—1),y1=a+p,y2 =’ +af+5°—1, ...
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2. The Repeated Roots Case.

In this case « is real. Since g, is either even or odd,
we simply need to show that g/, (@) (= (n + 1)a™ — (n —
1)a™~2% = y,,) is always less than 2a (= y;) for a € (0,1)
and n > 2. (This is actually a limiting case of case | below.)
One easily checks that 2z — (n + 1)z + (n — 1)z 2 is
positive for z € (0,1).

3. The Real Roots Case.
Suppose « and S are both real.
Casel. a,8 > 0.

Without loss of generality assume o > (. Letn >
2. Recall g,(z) = 2™+t — 2»~1. One easily checks that
z? — g, () is an increasing function of z in [0,1]. Then
a? — gn(a) > /32 - gn(ﬁ) Soa? — /32 > gn(a) - gn(ﬂ)a
S0 a+ 3 > y,. Likewise, since 2 + g, (z) is an increasing
function of z in [0, 1], it follows that & + 8 > —yn.

Casell. a,8 <0.

The substitution @« — —a, 8 — —p sends y,, to (—1)"y,,
which does not affect absolute values, and so this case re-
duces to case |.

Caselll. o >0,5<0.

Letn > 3. Consider the function x — z® — g,,(z). This
is positive if x > 0 and negative if z < 0. Thus, o —
C“S_gn(a) > /B_ﬂS_gn(ﬂ)’ soa—a®—p+p° >
gn(a) — gn(B). Dividing by a — 3, we get —(a? + a8 +
B2 —1) > yn. Likewise, using z — z3 + g, (z), we get



—(®+af+p*=1) > -y,

To summarize, in each case, we have the absolute value
of y; or of y5 exceeding the absolute value of y,, forany n >
3. This establishes Makhoul’s conjecture in this case (in fact
something stronger, since yo and y3 are not employed).

4. The Complex Roots Case.

Assume that « and /3 are complex conjugates. The ques-
tion of which of xg,z1,... is largest now becomes quite
complicated. The proof proceeds in a similar manner to be-
fore. We wish to prove inequalities of the form | g, () —
9m(B) |>] gn(a) — gn(B) | for various m, n. If we suppose
gn(z) = h(gm(z)) for some function h, then we wish to
obtain an upper bound of 1 for (| k() — k() |)/(| y=4|).
where v = g,,(a) and § = g,,(8). This is achieved by the
Intermediate Value Theorem, saying that this equals h’(c)
for some ¢ between ~ and 4, and then bounding 4'(c). Note
that g/, () = &' (g (2))g (2). 1 ¢ = gin(d), then '(c) =
94, (d) /gl ().

Letr =| a |=| B |. We combine the above with the
observation that if » > 1/2/3, then yo (= 7%/(r> — 1))
has absolute value > 2, whereas clearly y, (n > 1) has
absolute value < 2. Thus, it just remains to check cases
where r < 1/2/3 = 0.816....

The cases m = 1,2, 3 lead to us seeking upper bounds
for (n + 1)2™ — (n — 1)z" 2 divided by (respectively)
22,3z — 1,423 — 2 in the region | = |< /2/3. One
can show that these always have absolute value less than 1
if respectively n > 16, 11, 9. It is interesting that this leaves
us now with a finite check and also that x5 leaves us with
the shortest such check. A similar but finer analysis of the
cases 4 < n < 8 yields that in each case (in the region
| # |< /2/3) one of @1, x, 23 has larger absolute value
than z.,.

5. The Complex Coefficients Case.

At the end of his conjecture challenge paper, Makhoul
states his belief that the conjecture also holds in the case
of complex coefficients. This is false. Consider e.g. a =
B = riasr variesfrom0to 1. Thenz,, = (—r? —1)g’ (ri),
which has absolute value r»=2(r2 +1)((n+1)r? +(n—1)).
For a given value of r, we consider this as a function of n.
Differentiating with respect to n, we see that this function
has a maximumatn = —(1 + 72 + (r2 — 1) logr)/((1 +
r?)logr), which increases steadily from 1 to infinity as r

goes from 0 to 1. The value of the function at this n exceeds
1 and so exceeds | zo |= r2.

In this way, we obtain cases where x,, attains its max-
imal absolute value for arbitrarily large n. (Of course, we
only need one example to show the falsehood of this con-
jecture.)

6. An Alternative Approach.

The following approach is more systematic, explains the
role of 2p — 1, and should generalize to larger p.

Lemma. Ifn > 5,thenz,, = F(zp—4,Tn—3,Tn—2,Tn—1),

where F is the function R* — R defined by

F(t,x,y,2) := (y® +t2° - 2xyz)/(ty — z?).

Proof. Since z,, + bx,_1 + at,_» = 0and z,,_1 +
bxp—2 +ar,—3 =0and z,,_o + bx,_3 + ax,—s = 0, we
obtain a matrix equation

Ty  XTp_1 Tp—2 1 0
Tp—1 ITp—2 Tp-3 b = 0
Tp_2 Tp_3 Tp_4 a 0

Thus, the determinant of the 3-by-3 matrix is 0. Solving for
T interms of z,_4, ..., z,—1 gives the lemma.

Note that the function F' is “universal” for the case p =
2 in that it does not involve any particular @ and b. Let V'
denote

{(t,2,y,2) :| F(t, 2,9, 2) [<maz(| ¢ ],| 2 |, [y |,[ 2 ]}

This is a very interesting subset of R*. For instance, it has
the property that if z € V, then \x € V forany A € R*.
Thus, V' can be considered as a subset of projective space
P3(R), which is compact. It makes sense then to ask what
the measure of V' is. Computations suggest it is exactly 0.5;
in other words, half of the elements of R* lie in V.

For our purposes, we are interested in particular ele-
ments of R4, namely those 4-tuples (z,, 4, Tn 3,Tn_2,ZTn 1)
arising from second order recurrence relations with real co-
efficients. Let W be the subset of such 4-tuples (running
over all n and all such recurrence relations). The following
claim appears to be true but the proof is as yet incomplete.
The “right” proof should perhaps come from the field of
semialgebraic geometry. Computations confirm the claim.

Claim. W CV.



Consequence. The location of the peak for any all-pass
digital signal of order 2 occurs for n < 4.

Proof. Letm = max(| 21 |,| z2 |,| z3 |,| 4 |). The
proof establishes by inductiononn that | z,, |[< mand < m
if n > 5. This is certainly true for n < 4. Suppose it is true
foralln < N. Then N = F(ZL‘N747.’L'N,3,.’L'N,2,.’EN,1)
and, since by the above claim (zy 4, 2N _3,ZN_2,ZN_1) €
Vil an [<maz(| zn-4 || =Nv-3 |,| Zv_2 |,] Tn-1 |
) < m, and we’re done.

A little extra work reduces this to n < 3. Note that for
general p, the same method leads to z,, being expressed as
a rational function of z,_sp, ..., z,—1, and we obtain a set
with properties similar to V" above.



