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ABSTRACT

In this paper we investigate how to improve the robustness of a
speech recognizer in a noisy, mismatched environment when only
asingle or afew test utterances are available for compensating the
mismatch. A new hierarchical tree-based transformation is pro-
posed to enhance the conventional stochastic matching algorithm
in the cepstral feature space. The tree-based hierarchical transfor-
mation is estimated in two criteria: i) maximum likelihood (ML)
using the current test utterance; ii) Sequential maximum a poste-
rior (MAP) using the current and previous utterances. Recognition
results obtained using a hands-free database show the proposed
feature compensation is robust. Significant performance improve-
ment has been observed over the conventional stochastic matching.

1. INTRODUCTION

It is well known that any mismatch between training and testing
conditions can significantly degrades the performance of a speech
recognizer. Many compensation and adaptation algorithms [3], at-
tempting to maintain or improve the ASR performance by mini-
mizing the mismatch, have been proposed. When amassive amount
of data is available, adaptation techniques[4, 6] are shown to be
very effective in increasing the robustness of ASR under various
conditions. However, the problem becomes more challenging when
very few, sometimes, only one single test utterance is available for
compensation. We study this difficult case in this paper and pro-
pose a method to deal with the data sparseness. Stochastic match-
ing [5] has been shown to be effective in transforming the noisy
test feature vector into the clean feature space. The approach, as
discussed in[5], is not limited to the feature space transformation.
Signal space or model space is aso possible for this transforma-
tion. However, compensation in the feature space does indeed have
certain advantages: (1) Transformation in the feature spaceissim-
pler and flexible than its counterpart in the model or signal space;
(2) It isrelatively easy to couple a feature compensation module
in the overall recognizer since decoding and recognition algorithm
need not to be modified.

In this paper, we propose a hierarchical transformation in the
feature domain to compensate various mismatches between train-
ing and testing conditions in order to improve the robustness of a
recognizer in various operating environments. The name “hierar-
chical” isfromthelayered structure of atree where thetransforma-
tion is estimated. The hierarchical transformation parameters are
estimated from the test data (utterances) using two possible opti-
mization criteria: i) maximum likelihood (ML); and ii) sequential
maximum a posterior (MAP). Experimenta results obtained us-

ing a hands-free database recorded in a moving car show that the
proposed method yields significantly better performance than the
conventional stochastic matching method.

2. HIERARCHICAL TRANSFORMATION FOR
FEATURE COMPENSATION

Based on the signal distortion model used in [1], distortions in
a noisy speech signal can be broken down into two components,
additive and convolutional. Given clean speech signal, z, additive
noise, n and convolutional noise, h, the noisy speech signal, y, can
be expressed as the form of

y=x®h+n @

where @ denotes convolution. In the cepstral domain upon which
most modern speech recognitions are based, the above relation can
be re-written in cepstral domain as

x =y — h— IDFT{In(1 + ¢PFTn-h—x)y )

where bold letters represent the corresponding cepstral features,
and DFT and IDFT denote discrete Fourier transform and its in-
verse. In the cepstral domain, the clean speech can be estimated
from noisy speech viathe following bias-based transformation:

x =y —b(x,h,n) )

where the bias, b(x, h, n), depends on many factors. Usually the
exact values of x, h and n are unknown in practice, we assume the
bias depends solely on noisy speech, y, and we approximate the
compensation function and rewrite as:

x~y—b(y) @

Herethe bias b(y) isanon-linear function without an explicit
expression. In this paper, we adopt a piece-wise linear approxi-
mation for the above function, b(y). More specifically, we par-
tition the feature space of noisy signal y into I disjoint regions,
i.e, Q1,Q,---,Q;. For every region 2;, we estimate the corre-
sponding bias b; to compensate noisy speech, y. To use datamore
efficiently, we organize all biases into a hierarchical structure, e.g.
atree. By using a hierarchical structure, the bias function can be
expressed in multi-scale, where biases at different level of treerep-
resent different resolution. Every bias at the lowest level or aleaf
node corresponds to one region, €2;, in the feature space and the
node at a higher level represents a union of al its children. In



this paper, we denote the hierarchical bias-based transformation as
T = {b{"} where b\") denotes i-th bias at the n-th level of tree.

Given a transformation 7, every feature vector y in noisy
speech is classified into an appropriate region ; by a classifier
C. If the biasin the leaf node corresponding to €; can be reliably
estimated, it will be used to compensate y asin eq.(4). Otherwise,
we use the bias in its parent node and the pop-up process can go
up al the way to the root node. The classifier C can be imple-
mented in various ways. If the tree is built directly from data by
some clustering methods, such as hierarchical VQ, the classifier C
issimply aVQ encoder. Alternatively, we also can construct the
tree from an existing HMM rather than from the dataitself. Some
clustering methods are used to grow atree from all Gaussian mix-
ture components (kernels) in HMM. In thefinal tree each leaf node
corresponds to a single Gaussian component in HMM. In this case,
the classifier C is implemented in the recognition process: Each
utterance isforce-aligned (with transcription) or recognized (with-
out transcription) against HMM models to get the optimal Viterbi
path; Then each frame of data is distributed down the tree to the
corresponding Gaussian component, i.e., leaf node of tree, based
on the optimal path.

The hierarchical transformation 7 is estimated from data. De-
pending on the optimization criteriaused in the estimation, we will
have various strategies for robust speech recognition. In this paper,
we study two different estimation methods, i.e., ML and sequential
MAP.

3. HIERARCHICAL STOCHASTIC FEATURE
MATCHING: ML ESTIMATION

At first, we extend Stochastic Matching in [5] to use the hierar-
chical transformation 7 proposed in section 2. In [5], one or two
biases have been used to compensate tel ephone channel mismatch.
By using a hierarchical transformation 7-, we believe stochastic
matching strategy will become more effective to compensate many
general mismatches between test data and model s since more struc-

tured parametersare used in hierarchical transformation. The method

is named as Hierarchical Sochastic Feature Matching (HSFM) in
this paper.

Stochastic matching in feature domain is usually performed in
two passes. In the first pass, the transformation is estimated for
current test data based on Maximum Likelihood (ML) criterion.
Then the current test data is compensated by the estimated trans-
formation. In the second pass, the compensated data is recognized
with original model to get the fina results. Given atest utterance
Y = {y1,y2,---,yr}, our HSFM agorithm similarly runs as
follows:

(2) First pass (Feature compensation)

e Recognize (decode) the current utterance Y to get the opti-
mal Viterbi path.

e According to the optimal path, populate all frames of Y
into corresponding nodes in the tree. Then all biasesin the
whole tree are estimated based on the maximum likelihood
(ML) criterion. For instance, abiasb!™ inatreenode O™
is estimated as:

T Yid—fimd
n EWEM(,H) Et:l ’Yt(m) o2
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where ME” stands for the Gaussian set including all Gaus-
sian mixands belonging to the node OE") or all nodes below
itin tree, and . (m) denotes the probability of y, residing
in the mth Gaussian component which is calculated based
on only the optimal Viterbi path, and ., and o2, denotes
the mean and variance vectors of the m-th Gaussian com-
ponent.

e Cut the whole tree according to some pre-set threshold, NV,
i.e., data allocated into a tree node has to be more than v
frames.

e Compensate the data'Y based on the biases estimated in the
cut tree, asin eg.(4).

(2) Second pass (Recognition)

e The compensated data is sent to decoder to get the final
recognition results.

4. HIERARCHICAL STOCHASTIC FEATURE
MATCHING: INCREMENTAL MAP

In the above ML-based HSFM, the transformation 7 is estimated
solely from current test utterance. For a short utterance, usually
only a few biases at the top of 7 can be estimated reliably be-
cause of the data sparseness. Thismay limit performance improve-
ment. A better strategy is that we estimate 7 based on sequen-
tial Bayesian learning, i.e., we keep a prior pdf, p(b), for every
node in the tree. Given any test utterance, Y, al biasesin the tree
are estimated based on Maximum a posteriori (MAP) estimation.
Meanwhile, Y is also used to update the prior p(b) to derive a
posterior pdf, which is treated as a new prior pdf for the next test
utterance. In this way, all information seen before can be utilized
for compensating the current test utterance.

4.1. Hierarchical Priors

Asin [6], we introduce a prior pdf for every node in the tree. For
any tree node Oz@, based on the concept of natural conjugate
prior, aprior pdf for its biasb(") ischosen as

(n
o) (b™) = H’/ i el bg;»)

where {9 (1

05 (9

") |d=1,2,---, D} are hyper-parameters.

4.2. MAP Estimation of Biases

The MAP algorithm runs in the same way as that in ML-based
HSFM except the biases are estimated based on MAP rather than
ML in eq.(5). The new bias estimation formulais:

b{™ —argmax[ ) (bMY - 1(Y | bi™) )

b{"

i

where [(Y | bE")) denotes likelihood function and 0 < ¢ < 1
is the forgetting factor. Based on the priors in eq.(6), the MAP
estimate of b{" is:
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4.3. On-lineUpdatePriors

After all biases are derived in the MAP sense, al the prior pdf’'s
in the tree are then updated for next test utterance according to
sequential Bayesian learning.

P (") oc [y ()] - 1Y | b™) C)

All hyper-parameters are updated based on Quasi-Bayes ap-
proximation asin [2]:
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For simplicity, at the beginning, the prior pdf’s start from non-
informative priors, i.e., for all nodesandd = 1,2,---, D, Ti(:) =
0and 6} = 0.

5. HANDS-FREE ASR EXPERIMENTS

5.1. Database and Experimental Setup

To evaluate the new algorithms, we use a hands-free car database,
called CARVUI, recorded in a running car with typical car noise
in the background. Speech data were simultaneously recorded

through multi-microphone channels, including a head-mounted close-

talking microphone and a 16-channel microphone array located on
the visor. In our experiments, data from only two channels are
used: the close-talking microphone, denoted as CT, as reference;
and a microphone array channel, denoted as HF, as hands-free
data. CARVUI was recorded from 56 speakers, some of whom
are non-native English speakers. Each speaker recorded 3 ses-
sions, including: i) phonetically-balanced TIMIT sentences, ii)
digit strings with 1-7 digits, and iii) about 85 short commands
for car application, such as “Wndow Down”, “Check Email”, etc.
Datawas originally recorded in 16-hit PCM format and sampled at
24 kHz sampling rate. All data is down-sampled to 8 kHz for the
recognition experiments. In this paper, recognition of commands
and digit-strings (unknown length) is performed. We choose com-
mand and digit-string data from 6 speakers as our testing data (993
utterances in total). Note some test utterances can be as short as
0.6 second. All data from the other 50 speakers (including TIMIT
sentences) were used for adaptation (about 12,000 utterances alto-
gether).

In our experiments, we used 38-dimension feature vector, con-
sisting of 12 Mel LPCCEP, 12 delta CEP, 12 delta-delta CEP, delta
log-energy and delta-delta energy. As for acoustic model, we use
astate-tying, tri-phone HMM models, estimated mainly from tele-
phone data, as our initial models. Then models are adapted based
on the SMAP method[6]. The baseline performance is shown in
Table 1. For example, the initial models before it was adapted
yields a 15.3% string error rate when tested on the CT data but im-
proved significantly to 5.8% after being adapted to the CT adap-
tation data. However, the adapted model (CT-adapt) does not per-
form well when tested against the HF test data. A string error rate
of 28.6% was obtained, which is still better than the unadapted

[ mode | Initial | CT-adapt | HF-adapt |
CTtestdata | 15.3 58 13.8
HF testdata | 46.2 28.6 14.3

Table 1: The string error rate (in %) in the baseline system with
different model and test data (993 utterances).

initial model performance of 46.2% string error rate, but is about
two times worse than the 14.3% string error rate obtained by the
HF adapted model when the matched adaptation data (HF) was
used to adapt the initial model. We should note the al the model
adaptation here was done in a supervised mode.

Starting from these models, in the following experiments, we
aretrying to use the proposed HFSM methods to compensate some
unknown mismatches when supervision information is unavail-
able.

5.2. ML-HSFM Experimental Results

For more interesting results, in the rest of the paper, only the HF
datawas used to test the proposed HFSM algorithm in various con-
ditions. Inour experiments, except explicitly stated, HFSM isused
to compensate static feature, then delta and delta-deltafeatures are
derived from compensated static features. Three different models:
Initial, CT-adapt and HF adapted, were used for evaluations. The
first set of experiments were performed using the ML criteria in
HFSM compensation. For each test utterance, ahierarchical trans-
formation was obtained with athreshold vV = 10 to cut the hierar-
chical tree. In other words, the biases are estimated at a node of the
tree when at least 10 frames test data frames have been assigned
to that node. The results are shown in Table 2 under ML-HFSM.
Next to the ML-HFSM are the conventional ML-based stochastic
matching (ML-SM) results, where only asingle biaswas used. For
comparison, baseline performance (without any compensation) is
also repeated in the table. For either the matched (i.e., test data
and model adaptation data the same) or mismatched conditions,
the ML-HFSM yields better results than the baseline performance
and the performance of the conventional SM.

5.3. Sequential MAP-HSFM Experimental Results

Since the test utterance can be very short, a tree-cut threshold
N = 10 only allows a few biases estimated at the top of the tree.
To overcome this insufficient data problem, we use the sequential
MAP-HSFM proposed in the section 4. All initia priorsinthetree
are assigned non-informative. Given atest utterance, HFSM trans-
formation is then estimated based upon the MAP criterion and the
priors are updated based on sequential Quasi-Bayes approxima-
tion in an un-supervised mode. In thiscase, al test utterances seen
before can be utilized to improve the feature compensation. We
use a forgetting factor of e = 1.0 in our sequential Bayesian esti-
mates. In Table 3, the results of sequential MAP-based HFSM are
compared with those of the conventional MAP-based stochastic
matching (MAP-SM) using asingle bias. For the mismatched test
condition, the sequential MAP-based HFSM yields better perfor-
mance than the corresponding entries in Table 2. For example, the
intial model performance improves from 43.7% string error rate
for the ML-HFSM to 39.0% for sequential MAP-HFSM. When
HF data was tested with the matched models HF-adapt, we found
only arelatively small improvement at N = 10 in this case.



[ model | baseline | ML-SM [ ML-HSFM |

Initial 46.2 47.3 43.7
CT-adapt 28.6 28.6 26.7
HF-adapt 14.3 14.4 13.8

Table 2: The string error rate (in %) comparison of ML-based
HSFM (ML-HSFM) with the conventional ML-based stochastic
matching (ML-SM) when HF data is tested with various models.
In HSFM, the treeis cut with threshold N = 10.

[ model | basdine | MAP-SM | MAP-HSFM (V) |
Initial 462 449 39.0 (300)
CT-adapt | 286 286 25.6 (300)
HF-adapt | 14.3 144 14.1 (10)

Table 3: The string error rate (in %) comparison of online MAP-
based HSFM (MAP-HSFM) with the conventional MAP-based
stochastic matching (MAP-SM) when HF data is tested with vari-
ous models. Numbers in parentheses indicate thresholds to cut the
tree.

5.4. Different feature compensation scheme Ay, A; and A,

Actually we have three different feature compensation schemes for
delta and delta-delta features: 1)Aq: compensate the static, delta
and delta-delta features together; 2)A; : compensate the static fea-
ture only, and leave the delta and delta-delta features unchanged;
3)A.: compensate the static feature only, and derive the delta and
delta-delta features from compensated static parameters. Three
feature compensation schemes yields not too great a performance
difference. The A, scheme is probably the most sensible ap-
proach. The recognition performance of A, seemsto confirm that
and theresult isshown in Fig. 1 for different tree-cutting threshold
values.

5.5. Theeffectsof tree-cutting threshold

The choice of threshold IV used to cut the tree is dependent upon
the HFSM estimation criterion, ML or sequential MAP. The ML-
HFSM due to its memoryless bias estimation, i.e., the transforma-
tion is estimated based entirely upon the current test utterance, not
too large an IV can be chosen. On the other hand, for sequential
MAP-based HFSM, due to its exploitation of the prior informa-

50

— . - MAP HSFM with Al
—o- MAP HSFM with AZ
Baseline performance _o_- MAP HSFM with &,

1N
®

String Error Rate (in%)
5 B 3 5
] N A Q
T T T
I
0o
I
(]

/

/

/

/

/

I

I

9
. . .

W
[
T
I

N
o

10 30 100 200 300 500 o
Threshold to cut the tree

Figure 1: Performance comparison of sequentidl MAP-HSFM as
afunction of threshold to cut the tree. (HF datais tested with No-
Adapt models)
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Figure 2: Performance comparison of ML-based HSFM as a func-
tion of threshold to cut the tree. (HF data is tested with No-Adapt
models)

tion derived from the past utterances we can relax its choice of
N to a rather large value and further performance improvement
can be obtained. The ML-HFSM performance is shown in Fig.
2, where A, was used. When comparing Fig. 1 with Fig. 2, we
found that MAP-HSFM consistently outperforms the baseline sys-
tem. However, ML-HSFM becomes worse when IV is larger then
100 because too few of biases are |eft due to insufficient data.

6. CONCLUSIONS

In this work, we have proposed a new hierarchical transformation
for stochastic matching in speech feature space in order to compen-
sate mismatches between recognition models and testing data. An
advantage to use hierarchical transformation is that we can com-
pensate some complex (even non-linear) mismatches and distor-
tions in a simple and tractable way. In this paper, we have inves-
tigated two different optimization criteria to estimate hierarchical
transformation from data, namely ML and on-line MAP estima-
tions. Both of them gives significant performance improvements
over the conventional stochastic matching method on a hands-free
car ASR database. Currently, we are estimating such atransforma-
tion using simultaneously recorded stereo data to achieve a more
precise mapping between two channels. Moreover, structural con-
straints can also be imposed as [6] to improve the sequential MAP
method.
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