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ABSTRACT

ConsidertheHiddenMarkov modelestimationproblemwherethe
realizationof a singleMarkov chainis observed by a numberof
noisy sensors.The sensorschedulingproblemfor the resulting
HiddenMarkov modelis asfollows: Designanoptimalalgorith-
m for selectingat eachtime instant,oneof the many sensorsto
provide thenext measurement.Eachmeasurementhasanassoci-
atedmeasurementcost. Theproblemis to selectanoptimalmea-
surementschedulingpolicy, so asto minimize a costfunction of
estimationerrorsandmeasurementcosts. The problemof deter-
mining the optimal measurementpolicy is solved via stochastic
dynamicprogramming.An optimal finite dimensionalalgorithm
is presentedalongwith numericalresults.

1. INTR ODUCTION

In many signal processingapplicationsseveral typesof sensors
are available for measuringa given process. However physical
andcomputationalconstraintsoften imposethe requirementthat
at eachtime instant,oneis ableto useonly oneout of a possible
total of

�
sensors.In suchcases,onehasto make the decision:

Which sensor(or modeof operation) shouldbe chosenat each
timeinstantto providethenext measurement. Typically associated
with eachtypeof measurementis a perunit-of-timemeasurement
cost, reflectingthe fact that somemeasurementsaremorecostly
or difficult to make thanothers,althoughthey may containmore
usefulor reliable information. The problemof optimally choos-
ing which oneof the

�
sensorobservationsto pick at eachtime

instantis calledthesensorschedulingproblem. Theresultingtime
sequencewhich at eachinstantspecifiesthebestsensorto choose
is termedthesensorschedulesequence.

Several papershave studiedthe sensorschedulingproblem
for systemswith linearGaussiandynamicswherelinearmeasure-
mentsin Gaussiannoiseareavailableat a numberof sensors(see
[1] for thecontinuous-timeproblemand[6] for thediscrete-time
problem).In thispaperwestudythediscrete-timesensorschedul-
ing problemfor HiddenMarkov Model (HMM) sensors.We as-
sumethattheunderlyingprocessis afinite stateMarkov chain.At
eachtime instant,observationsof theMarkov chainin whitenoise
aremadeat

�
differentsensors.However, only onesensorobser-

vationcanbechosenat eachtime instant.Theaim is to devisean
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algorithmthatoptimally pickswhich singlesensorto useat each
time instant,in orderto minimizeagivencostfunction.

In ourrecentwork [4], weformulatedtheHMM sensorschedul-
ing problemandpresentedthe dynamicprogrammingfunctional
recursionfor determiningtheoptimalsensorschedule.However,
thedynamicprogrammingequationsin [4] donotdirectlytranslate
into practicalsolutionmethodologies.The fundamentalproblem
is thatateachtime instantof thedynamicprogrammingrecursion,
oneneedsto computethedynamicprogrammingcostover anun-
countablyinfinite set. Thus an approximatealgorithm was then
presentedin [4] whichwasbasedondiscretizingthedynamicpro-
grammingrecursionto a finite grid.

The main contribution of this paperis to presentan optimal
finite dimensionalsolutionto theHMM sensorschedulingprob-
lem. Unlike thegrid basedapproximatesolutionpresentedin [4],
we determinea closed-formfinite dimensionalsolutionto thedy-
namicprogrammingrecursion.We show that the solutionto the
dynamicprogrammingequationis piecewise linear and convex.
An algorithm is given for computingthesepiecewise linear seg-
ments.Thefinite dimensionalschedulingalgorithmspresentedin
this paperaresimilar to thoserecentlyusedin the operationsre-
search(see[5] for a tutorial survey) andin robot navigation sys-
tems[3] for theoptimalcontrolof PartiallyobservedMarkov Deci-
sionProcesses(POMDP).(We will usethetermsHiddenMarkov
Model controlandPOMDPinterchangeably).

Therearenumerousapplicationsof theoptimalschedulingof
sensors.Someapplicationsinclude [6], [4], [3]: finding the op-
timum channelallocationamongvariouscomponentsof a mea-
surementvectorwhenthey mustbetransmittedoveratime-shared
communicationchannelof limited bandwidth; finding the opti-
mumtiming of measurementswhenthenumberof possiblemea-
surementsis limited becauseof energy constraints;and finding
the optimumtrade-off betweenmeasurementof rangeandrange
rate in radarsystemswith a given ambiguity function. Thereis
alsogrowing interestin flexible sensorssuchasmulti-moderadar
which canbeconfiguredto operatein oneof many modes.

2. SIGNAL MODEL AND PROBLEM FORMULA TION

Let �������	�
���	��� denotediscretetime. Assume
�� is an � -state
Markov chainwith statespace�����	��������������� . Here ��� denotesthe� -dimensionalunit vector with � in the � -th position and zeros
elsewhere.This choiceof usingunit vectorsto representthestate
spaceconsiderablysimplifiesour subsequentnotation.Definethe��� � transitionprobability matrix !"�$# %'& �)(*��+,� where %'& � �



-/. 
 � �0� ��1 
 ��2 �3���4&
5 . Denotetheinitial probabilityvector 687
of theMarkov chainas6 7 �9# 6 7 . �:5 ( ��+�� where6 7 . �:5;� -/. 
 7 �<�:5 (1)

2.1. SensorSchedulingProblem

Assumethereare
�

noisysensorsavailablewhich canbeusedto
give measurementsof 
/� . At eachtime instant � , we areallowed
to pick only oneof the

�
possiblesensormeasurements.Motivat-

edby thephysicalandcomputationalconstraintsalludedto in the
introduction,weassumethathaving pickedthissensor, wearenot
allowedto look atany of theother

� = � observationsat time � .
Let >��@?A�B�'�	����� � � denotethesensorpicked at time � . The

observation measuredby this sensoris denotedas CB� . >D�
5 . Sup-
pose >��E�GF , where FH?I���
�	�����J� � � . We assumethat the mea-
surementCB� . F)5 of the F -th sensorbelongsto a known finite setof
symbols K � . F*5L��KNM . F)5L�������J��KNOQP . F)5 . For > � ?����
�	������� � � , de-
notethesymbolprobabilitiesas R � . >��/�SF:�TC�� . >��'5U�VKQW . F)5T5X�-/. C�� . >��
5Y��K W . >D�
5 1 
��Z�0�[�\�T>��H��F)5 , �]�V�'�4^��	�������4� . These
representthe probability that an output K_W . F)5 is obtainedgiven
that the stateof the Markov chainis �[� andthat the F th sensoris
chosen.Thesymbolprobabilitiesareassumedknown. Finally de-
fine thesymbolprobabilitymatrix`a. > � ��KQW . > � 5T5;� diag

bcd R � . > � ��KQW . > � 5T5...R�� . >�����K W . >��'5T5
e fg

Let hJ�i�I�[>j�	�\> M �������J�T>����TC,� . >��L5L�TC M . > M 5L�������J�TCB� . >��
5�� de-
noteinformationavailableat time � uponwhich to baseestimates
andsensorschedulingdecisions.Thesensorschedulingandesti-
mationproblemproceedsin threestagesfor each�k�����	�
���	������l =� , wherel is afixedpositive integer
1) Scheduling: Basedon hJ� we generate>���m � �onj��m � . hJ�'5
whichdetermineswhichsensoris to beusedat thenext timestep.
2) Observation: We thenobserve C���m � . >���m � 5 where>���m � is the
sensorselectedin thepreviousstage.
3) Estimation: After observingCB��m � . >D��m � 5 we generateourbest
estimate p
 ��m � of thestateof theMarkov chain 
 ��m � as p
 ��m �q�r �	
s��m � 1 hJ��m � � . Here p
/��m � denotesthe HiddenMarkov Model
filteredstateestimateat time �itu� definedasp
 ��m �q� r �	
 ��m � 1 h ��m �4�N� �v �xwy� � � -/. 
 ��m �z�u� �{1 h ��m �45L� p
k7U�u687
�

(2)

where6 7 is theinitial apriori stateestimateat time ���u� .
Definethesensorschedulingsequencen@�0�	n;�	�Tn M �	�����J�\nj|N�

andsaythattheschedulingsequencesareadmissibleif nj��m � mapshJ� to �B�
�	��������}I� . Notethat n is a sequenceof functions.
Weassumethefollowing coststructure.If basedontheobser-

vationat time � , thedecisionis madeto choose>���m � �9F (i.e. to
choosethe F -th sensorat time �Htu� where F;?~���
�	������� � � ), then
theinstantaneouscostincurredat time � is� � . F*5��L
/� = p
/����� t���� . 
/���4F)5L� (3)

Here � � . F)5 , F����'�L^z������� � are known positive scalarweights.
The“distance”function � is assumedto beaconvex functionwith����� �<� � . �L
/� = p
������ denotesthe stateestimationerror

(with respectto thedistancefunction � ) at time � dueto choos-
ing the sensorschedule>j�	�������J�T>�� . For exampleif � is the F M
norm,then �L
�� = p
/�,� � denotestheEuclideandistancebetween
 � andits estimate p
 � . In sucha casethe instantaneouscost is
themeansquareerror in thestateestimatewhenusingthesensor>���m � . Finally, �	� . 
����\>��
5 denotestheinstantaneouscostof using
thesensor> ��m � whenthestateof theMarkov chainis 
 � .

Our aim is to find the optimal sensorscheduleto minimize
the total accumulatedcost ��� from time 1 to l over the set of
admissiblecontrollaws:�B�/� r{� | 2 �v� w 7 � � . >���m � 5��4
�� = p
��,� � t | 2 �v� w 7 �	� . 
�����>D��m � 5��t � | �4
 | = p
 | ���H� (4)

where>���m � �<nj��m � . hJ��5 .
2.2. Inf ormation StateFormulation

As is standardwith suchstochasticcontrolproblems– in this sec-
tion, we convert thepartially observedstochasticcontrolproblem
to a fully observedstochasticcontrolproblemdefinedin termsof
the informationstate.

Let 6 � denoteinformationstateattime � . with elements6 � . �:5{�-/. 
��i�u�[� 1 hJ�
5 , �]�I�
�L^B�������J�4� . Also becausewehave assumed
that 
�� is a unit vector ?"���������	�����T�'|Q� , we straightforwardly
have 6D����p
/� . The informationstate 6�� is a sufficient statistic
to describethecurrentstateof a HMM (see[2]). Theinformation
stateupdateis computedstraightforwardlyby theHMM statefilter
(alsoknown asthe“forwardalgorithm” [4]):6 ��m �q� `s. >���m � �TCB��m � . >D��m � 5T5,!Q�	6D�� � � `s. >���m � ��CB��m � . >D��m � 5T5�! � 6�� (5)

where
� � representsan � -dimensionalvectorof ones.

Let � denotethesetof all informationstates6 . Thatis,�����D6E?a� � � � � � 6��I�'������6 . �:5q��� for all �;?E���{�	�����4�{���
(6)

Considerthecostfunctional(4). Define��� . >���m � 5;��� � � . � � ��> ��m �45������ � � . � � �\> ��m �45:¡ �
Usingthesmoothingpropertyof conditionalexpectation,thecost
functionalof (4) canbe rewritten in the form (see[2, Chapter5]
for details) � � � r �'¢ | . 6 | 5Jt | 2 �v� w 7 ¢ � . 6 � �T> ��m �45�� (7)

where>���m � �<nj��m � . 6��'5 ,¢ | . 6 | 5;� � |X£ . 6 | 5 � 6 |¢3� . 6��B�T>���m � 5;� � � . >���m � 5 £ . 6���5 � 6D�3t�� �� . >���m � 5¤6�� (8)

Here £ . 6 � 5 denotesthe � dimensional“distance”vector£ . 6��'5;� � ����� = 6���� � �L� M = 6���� � �	���¥����� = 6D�,� �q¡ �
(9)

We now have a fully observed control problemin termsof
the informationstate6 : Find anadmissiblecontrol law, n , which
minimizesthecostfunctionalof (7), subjectto thestateevolution
equationof (5).



3. STOCHASTIC DYNAMIC PROGRAMMING

Weusestochasticdynamicframework to optimally solve theHM-
M sensorschedulingproblem. In this sectionwe first presentthe
backwarddynamicprogrammingrecursion.Themainresultis to
give anexplicit solutionto thisdynamicprogrammingrecursion.

3.1. Dynamic Programming Formulation

Definethe“value-to-go”functionas��| . 6j5;� r �'¢3| . 6D|_5 1 6D¦��<6y���� . 6j5;� §�¨ª©�'«4¬8­�® ¯ ¯ ¯T® �'° rE± ¢3| . 6D|Q5Jt | 2 �v ² w � ¢ ² . 6 ² �Tn ² m � . 6 ² 5T5 1 6D�i�u6z³
Thenthedynamicprogrammingrecursionproceedsbackward-

s in time from ���ul to �k��� asfollows:��| . 6�|_5;��¢3| . 6D|Q5
andfor ���ul = �'�4l = ^��	�������T���� . 6��
5{� §�¨ª©´ «4¬8­�µ�¶ �T® ¯ ¯ ¯\® ·,¸ #�¢3� . 6��B�T>���m � 5t OU¹ «L¬�­vW wy� � ��m �Uº `s. >���m � ��K W . >���m � 5T5,!U�	6��� � `s. >���m � �4KQW . >���m � 5T5�! � 6���»� � `s. >���m � ��K_W . >���m � 5T5\! � 6�� ( � for all 6D��?¼� (10)

Finally, the optimal coststartingfrom the initial condition 6 7 is
given by �B7 . 6D7	5 and if >J½��m � �¾ny½��m � . 6 � 5 minimisesthe right
handsideof (10) for each� andeach6�� , theoptimal scheduling
policy is givenby n ½ �0�	n ½ � �\n ½M ���������¤n ½| � .

As it standsthe above dynamicprogrammingequations(10)
hasamajorproblem:Theinformationstate6 is continuousvalued.
Hencetheabove dynamicprogrammingequations(10) do not di-
rectly translateinto practicalsolutionmethodologiessince ��� . 6j5
needsto beevaluatedat each6A?¿� , anuncountablyinfinite set.
In [4], asuboptimalalgorithmwasobtainedby discretisingthein-
formationstatespace� to a finite grid. Theaim of this sectionis
to show thatthis approximationis un-necessary. Indeedtheabove
dynamicprogrammingcan be explicitly solved – we show that��� . 6j5 is convex andpiecewiselinearin 6 .

3.2. Finite DimensionalOptimal Scheduler

In this subsectionwe considerthecasewherethedistancevector£ . 6j5 definedin (9) is a piecewise linearandcontinuousfunction
of 6 . Examplesof suchpiecewise linearcostfunctionsin the in-
formationstateincludethecasewhen � is a discretenorm. Also
piecewise linear costscanbe usedto approximatenonlinearcost
functionsof theinformationstateuniformly andarbitrarilyclosely.

Let �_�������	�����XÀ , denotethepartitionof the informationstate
spacesimplex � over which £ . 6j5 is piece-wiselinear. Thepiece-
wise linearity implies that thereexist Á vectors Â£ ����Â£ M �������J�	Â£ À
suchthat £ . 6j5 canberepresentedas£ . 6j5]� Àv Ã w]� Â£ Ã�Ä . 6�?@� Ã 5

where

Ä . � 5 denotestheindicatorfunctionÄ . 6E?Å� Ã 5{� � � if 6E?@� Ã� otherwise

Dueto theconvexity andpiecewiselinearityanequivalentand
moreconvenientrepresentationfor ourpurposesis£ � . 6y5¤6@� §�¨ª©Ã µ �T® M ¯ ¯ ¯¤® À Â£ �Ã 6

Thefollowing theoremshowsthatthesolutionto theDPrecur-
sionis convex piecewise linearandthuscompletelycharacterized
ateachtime � by afinitesetof vectors(piecewiselinearsegments).

Theorem3.1 At each timeinstant� , thevaluetogofunction � � . 6y5
is convex andpiece-wiselinear. ��� . 6j5 hastheexplicit representa-
tion ��� . 6j5;�9§�¨Æ©� µ�Ç «DÈ ��É® � 6 for all 6 ?¼� (11)

where Êj� is a finitesetof � -dimensionalvectors.

PROOF. The proof is by induction. At time l , from (10),� � . l�5;�<§�¨Æ© Ã Â£��Ã 6 | which is of theform (11).
Assumeattime �,t�� that ����m � . 6j5 hastheform §�¨ª©,� µ�Ç
«4¬8­ È ��É® ��m � 6 .

Thenit is easilyshown that thevaluefunctionat time � is piece-
wiselinear. Ë
3.3. Optimal Algorithm

Theorem3.1 shows that the solution to the DP recursion(10) is
convex piecewiselinearandcompletelycharacterizedateachtime� by thefinite setof vectorsÊy� definedin (11). Thuswe needto
deviseanalgorithmfor computingtheset Ê � ateachtime � . There
arenumerouslinearprogrammingbasedalgorithmsin thePOMD-
P literaturesuchasSondik’s algorithm[7] Cheng’s algorithm[5],
andtheWitnessalgorithm[3] thatcanbeusedto computethefi-
nite setof vectorsÊy� , see
http://www.cs.brown.edu/research/ai/pomdp/index.html for atuto-
rial expositionwith graphics.

Notethattheentiredynamicprogrammingalgorithmandhence
thecomputingthevalue-to-gofunctionvectorsÊj� areoff-line and
independentof thedata.Thevectorset Êj� is usedduringreal-time
simulationsto give theoptimalsensorscheduledependingon the
computedinformationstate6��

4. NUMERICAL EXAMPLE

Thescenarioinvolvesanincomingaircraft.
State Space: The statespacefor this problemcomprisesof how
far the aircraft is currently from the basestationdiscretizedintoÌ

distinct distancesÍ8�¼�Î�	� , Í M �ÐÏ , Í�Ñ���� . The transition
probabilitymatrix of 
 � is

!u� bd ��� ÒÓ��� ^ ����ª�¥��� ÒÓ���ª�� ��� ^Ô��� Ò eg (12)

Sensors: Assumethattwo sensorsareavailable,i.e.,
� ��^ .

1. active: This active sensor(e.g. radar)yields accuratemea-
surementsof thedistanceof theaircraftbut rendersthebasemore
visible to theaircraft.Thustheactive sensoris merelya HMM



statefilter.
2. predict: Employ nosensor– predictthestateof theaircraft.
Thusthepredict sensoris merelya HMM statepredictor.
At any time instant � , > � ?��'ÕBÖ�×�Ø�ÙBÚ��\ÛBÜ�Ú
Ý�Ø�Ö�×�� denoteswhich
oneof theabove two sensorsis used.
Observation Symbols: Whenusingtheactive sensor, theob-
servation symbolsat eachtime � consistsof distancemeasure-
mentsto the basestation Í8� , Í M , Í�Ñ . In addition thereis an ad-
ditional observation symbol; nothing which resultswhen the
predict sensoris used(i.e.noobservationis made).In termsof
thenotationof Sec.2,thenumberof possibleobservationsymbols
is }Þ�<ß and K � �<Í � , K_MX�uÍ�M , K Ñ �<Í Ñ , K_àQ�<á�â'×
ã,Ø[á�ä .

We assumethat thedistancetheactive sensorreportsis n-
ever more than 1 discretelocation away from the true distance.
Theactive sensordetectsthe true distancewith probability å .
Thepredict sensoronly recordstheobservationnothingwith
probability1. In particulardefiningthe læ��} matrix of symbol
probabilities Â`�. >��
5q�ç# Â` � & . >D�
5 ( � - �	CB� . >��
5z�0K & 1 
/�k�0���:� ,
we assignÂ`s. >��i��ÕBÖ�×�Ø�Ù�Ú�5{� bd å � = å � �� = åDè
^ å � = å�è
^Ô�� � = å å � eg

Â`a. >D�N�éÛBÜBÚ
Ý�Ø
Ö�×,5{� bd �Ô�Ó�ê��Ô�Ó�ê��Ô�Ó�ê� eg
Costs: Our costfunctioncomprisestwo components.
1. SensorCosts:� . 
/�i�u���\�T>D��m � ��ÕBÖ�×�Ø�ÙBÚ�5{�"ë activeÍ�� tíì active� . 
/�i���[�\�T>���m � �éÛBÜBÚ
Ý�Ø�Ö�×�5{� ë predictÍ�� tíì predict
We assumeì active �"Ò , ì predict ��Ï meaningthat the operat-
ing costof usingtheactive sensoris higherthanthepredict
sensor. Also thecostincurredis inverselyproportionalto thedis-
tanceof theaircraft. This reflectsthefactthatwhentheaircraft is
closeto thebase-stationthe threatis greater. We chosethegainsë active ��^ and ë predict �0Ï .2.StateEstimationError Cost: For thestateestimationerror cost
component,we considerthe F M cost � � . � = p
¼� p
�5 . We chose� � �I��� .
Results: With the above setup,we usedthe POMDP program
availablefrom thewebsite
http://www.cs.brown.edu/research/ai/pomdp/index.html tooptimal-
ly solve theHMM sensorschedulingproblem.

All oursimulationswererunonaPentium-2400MHz person-
al computer. usingthe“IncrementalPruning”algorithmdeveloped
by Cassandra,et.al. in 1997(This is currentlythe fastestknown
algorithmfor solvingPOMDPs,see[3]).

We ranthePOMDPprogramfor theabove parametersover a
horizonof lî�ðï for differentvaluesof å (probabilityof detec-
tion). In all cases,no apriori assumptionwasmadeon the initial
distance(state)of thetarget– thuswe chosetheinformationstate
(filtereddensity)at time 0 as 6 7 ��#ñ�[è Ì �N�	è Ì �_�[è Ì ( � , see(1). We
approximatedthe F M cost function by a uniform piecewise linear
triangularinterpolationconsistingof 9 triangularpatches.

Figure1 showsthecostsincurredfor theoptimalsensorsched-
uleversuså . Also shown arethecostincurredif only theactive
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Fig. 1. FiniteHorizonCosts

or predict sensoris usedalone. It canbe inferredfrom Fig.1
thatwhentheprobabilityof detectionis low ( ��� Ï�òEå@òA��� ó�Ï ) us-
ing thepredict sensoralonedoesbetterthanusingtheactive
sensor. Thereasonis thatfor low probabilityof detection,theac-
tive sensor(HMM filter) yields inaccuratestateestimates.This
togetherwith the fact that theactive sensorhasa higheroper-
atingcostthanthepredict sensor, meansthatfor low å it costs
lessto usinga HMM predictorandnot incur any costobtaining
extremelyinaccuratemeasurements.Notethatin all cases,theop-
timal sensorscheduleincursthesmallestcost.
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