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ABSTRACT

Consideithe HiddenMarkov modelestimationproblemwherethe
realizationof a single Markov chainis obsered by a numberof
noisy sensors. The sensorschedulingproblemfor the resulting
HiddenMarkov modelis asfollows: Designan optimal algorith-
m for selectingat eachtime instant,one of the mary sensorgo
provide the next measurementEachmeasuremerttasan associ-
atedmeasurementost. The problemis to selectan optimal mea-
surementschedulingpolicy, soasto minimize a costfunction of
estimationerrorsand measurementosts. The problemof deter
mining the optimal measuremenpolicy is solved via stochastic
dynamicprogramming.An optimal finite dimensionalalgorithm
is presenteclongwith numericalresults.

1. INTRODUCTION

In mary signal processingapplicationsseveral types of sensors
are available for measuringa given process. However physical
and computationakonstraintsoften imposethe requirementhat
at eachtime instant,oneis ableto useonly oneout of a possible
total of L sensors.In suchcasespnehasto male the decision:
Whidh sensor(or modeof opeiation) shouldbe chosenat eath
timeinstantto providethenext measuement Typically associated
with eachtype of measuremeris a perunit-of-time measurement
cost, reflectingthe fact that somemeasurementare more costly
or difficult to make thanothers,althoughthey may containmore
useful or reliableinformation. The problemof optimally choos-
ing which one of the L sensorobsenationsto pick at eachtime
instantis calledthe sensorschedulingproblem Theresultingtime
sequencevhich at eachinstantspecifieghe bestsensotto choose
is termedthe sensorschedulesequence

Several papershave studiedthe sensorschedulingproblem
for systemsawith linear Gaussiardynamicswherelinearmeasure-
mentsin Gaussiamoiseareavailableata numberof sensorgsee
[1] for the continuous-timeproblemand[6] for the discrete-time
problem).In this papenwe studythediscrete-timesensoischedul-
ing problemfor HiddenMarkov Model (HMM) sensors.We as-
sumethatthe underlyingprocesss afinite stateMarkov chain. At
eachtime instant,obserationsof the Markov chainin white noise
aremadeat L differentsensorsHowever, only onesensombser
vation canbe choserat eachtime instant. Theaim is to devise an
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algorithmthat optimally picks which single sensorto useat each
time instant,in orderto minimize a given costfunction.

In ourrecenwork [4], weformulatedheHMM sensoschedul-
ing problemand presentedhe dynamicprogrammingfunctional
recursionfor determiningthe optimal sensorschedule.However,
thedynamicprogrammingequationsn [4] donotdirectlytranslate
into practicalsolutionmethodologies.The fundamentaproblem
is thatat eachtime instantof thedynamicprogrammingecursion,
oneneedgo computethe dynamicprogrammingcostover anun-
countablyinfinite set. Thus an approximatealgorithmwasthen
presentedh [4] whichwasbasedn discretizingthe dynamicpro-
grammingrecursionto afinite grid.

The main contribution of this paperis to presentan optimal
finite dimensional solutionto the HMM sensorschedulingprob-
lem. Unlike the grid basedapproximatesolutionpresentedn [4],
we determinea closed-fornfinite dimensionakolutionto the dy-
namic programmingrecursion. We shav that the solutionto the
dynamic programmingequationis piecavise linear and convex.
An algorithmis given for computingthesepieceavise linear seg-
ments. Thefinite dimensionakchedulingalgorithmspresentedn
this paperare similar to thoserecentlyusedin the operationge-
search(see[5] for a tutorial surey) andin robot navigation sys-
temsg[3] for theoptimalcontrolof Partially obseredMarkov Deci-
sion ProcessePOMDP).(We will usethetermsHiddenMarkov
Model controlandPOMDPinterchangeably).

Therearenumerousapplicationsof the optimal schedulingof
sensors.Someapplicationsinclude [6], [4], [3]: finding the op-
timum channelallocationamongvarious componentf a mea-
suremenvectorwhenthey mustbetransmittecover atime-shared
communicationchannelof limited bandwidth; finding the opti-
mum timing of measurementehenthe numberof possiblemea-
surementss limited becauseof enegy constraints;and finding
the optimumtrade-of betweenmeasuremendf rangeandrange
ratein radarsystemswith a given ambiguity function. Thereis
alsogrowing interestin flexible sensorsuchasmulti-moderadar
which canbe configuredto operatdan oneof mary modes.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Letk = 0,1,... denotediscretetime. AssumeXy, is an S-state
Markov chainwith statespace{es, ... ,es}. Heree; denoteshe
S-dimensionalunit vector with 1 in the i-th position and zeros
elsavhere. This choiceof usingunit vectorsto representhe state
spaceconsiderablysimplifiesour subsequenotation. Definethe
S x S transitionprobability matrix A = [a;i]sxs Wherea;; =



P(X} = ei|Xx—1 = e;). Denotetheinitial probability vectormo
of theMarkov chainas

o = [mo(%)]sx1 Wheremo (i) = P(Xo = 1) 1)

2.1. SensorSchedulingProblem

Assumethereare L noisy sensorsvailablewhich canbe usedto
give measurementsf X. At eachtime instantk, we areallowed
to pick only oneof the L possiblesensomeasurementsdviotivat-
ed by the physicalandcomputationatonstraintsalludedto in the
introduction,we assumehathaving pickedthis sensorwe arenot
allowedto look atary of theotherL — 1 obserationsattime k.

Letur € {1,... L} denotethe sensomicked attime k. The
obseration measuredy this sensoris denotedasyy (ux). Sup-
poseu, = I, wherel € {1,...,L}. We assumehatthe mea-
surementy (1) of thel-th sensobelongsto a known finite setof
symbolsO (1), 02(1), ... ,On, (). Forug € {1,...,L}, de-
notethe symbolprobabilitiesasb; (ur, = I, yx(ur) = Om (1)) =
P(yr(ur) = Om(up)| Xk = es,ur =1),1=1,2,...,5. These
representhe probability that an output O, (1) is obtainedgiven
that the stateof the Markov chainis e; andthatthe Ith sensoris
chosen.Thesymbolprobabilitiesareassumedknown. Finally de-
fine the symbolprobability matrix

b1 (uk, O (ur))
B(ug, Om(ux)) = diag :
bs (ur, Om (ux))

LetY, = {ulau2: cee U, yl(ul),yQ(UZ)a cee :yk(uk)} de-

noteinformationavailableattime k£ uponwhich to baseestimates
andsensorschedulingdecisions.The sensoischedulingand esti-
mationproblemproceedén threestagedor eachk = 0,1, ... ,N—
1, whereN is afixedpositive integer
1) Scheduling: Basedon Y;, we generateur+1 = pir+1(Y%)
which determinesvhich sensoiis to be usedat the next time step.
2) Observation: Wethenobsere yy+1(ug+1) whereug 41 is the
sensoiselectedn thepreviousstage.
3) Estimation: After observingyx+1(ur+1) we generateur best
estimateXj+1 of thestateof theMarkov chain X 41 asXy+1 =
E{Xk+1|Yi+1}. Here Xy4+1 denoteghe HiddenMarkov Model
filteredstateestimateattime k£ + 1 definedas

S
Xirr = E{Xpt1 | Yera} = D ei P(X41 = € | Yiqa),
i=1

)

wheremny is theinitial apriori stateestimateattime k£ = 0.

Definethesensoschedulingsequence = {u1, pa2, ... , un}
andsaythattheschedulingsequenceareadmissibléf px41 maps
Y, to{1,...,M}. Notethaty is asequencef functions.

We assuméhefollowing coststructure. If basecbntheobser
vationattime k, the decisionis madeto chooseur+1 = [ (i.e. to
choosethel-th sensomattime & + 1 wherel € {1,... ,L}), then
theinstantaneousostincurredattime & is

k(1) IXk = Xillp + ek (X, 1). 3)

Hereax(l), ! = 1,2...,L areknown positive scalarweights.
The"distance function D is assumedo beacorvex functionwith
D : R® = R. || X} — Xi||p denoteghe stateestimationerror

(with respecto the distancefunction D) attime k& dueto choos-
ing the sensorscheduleus, . .. ,u;. For exampleif D is thel,
norm,then|| X, — Xx||p denoteghe Euclideandistancebetween
X andits estimatef(k. In sucha casethe instantaneousostis
the meansquareerrorin the stateestimatewhenusingthe sensor
up+1. Finally, ¢ (Xg, ur) denotegheinstantaneousostof using
thesensom+1 whenthe stateof the Markov chainis X.

Our aim is to find the optimal sensorscheduleto minimize
the total accumulatectost J,, from time 1 to IV over the set of
admissiblecontrollaws:

N-1 N-1

5o =B{ 37 an(un I Xe — Kallo + 3 (Ko )}
k=0 k=0
+aN||XN—XN||D} (4)

Whel’euk+1 = Uk+1 (Yk) .

2.2. Information State Formulation

As is standardvith suchstochasticontrolproblems- in this sec-
tion, we convert the partially obsered stochasticontrol problem
to afully obsened stochastiaccontrol problemdefinedin termsof
theinformationstate

Let 7, denotdnformationstateattime k. with elementsry (i) =
P(X, = e;|Y%), i =1,2,...,S5. Also becauseve have assumed
that X, is a unit vector € {e1,...,en}, we straightforvardly
have 7, = Xj. Theinformationstater;, is a sufficient statistic
to describethe currentstateof aHMM (see[2]). Theinformation
stateupdatds computedstraightforvardly by theHMM statefilter
(alsoknown asthe“forwardalgorithm”[4]):

B(ukt1, Yet1(urt1)) A mx (5)
l‘lSB(’U/kH—l, Yk+1 (Uk+1)) Al

wherel s representsin S-dimensionalectorof ones.
Let P denotethe setof all informationstatesr. Thatis,

Tk4+1 =

P = {WGRS ‘lsm=1, 0<n@) <lforallie{l... ,S}}
(6)
Considetthe costfunctional(4). Define
ck(ukt1) = [cr(er, urt1) c(es, up+1)]’

Usingthe smoothingpropertyof conditionalexpectation the cost
functionalof (4) canbe rewritten in the form (see[2, Chapter5]

Xo =tgp details)

N-1

Ju = E{Cn (7n) + Z Cr(mr, ur+1)} (7)
k=0

whereuy+1 = pr+1(7k),
Cn(nn) = ang(mn)' 7N
Ok (7, ur+1) = ak (ur1)g(mr) mr + o (up1)me  (8)
Hereg(m) denoteshe S dimensional'distance”vector

lle2 — mel|p lles — mkllp]’

©)

We now have a fully obsered control problemin terms of

the informationstater: Find anadmissiblecontrollaw, p, which

minimizesthe costfunctionalof (7), subjectto the stateevolution
equationof (5).

g(mi) = [llex — millp



3. STOCHASTIC DYNAMIC PROGRAMMING

We usestochastidynamicframenork to optimally solve the HM-
M sensorschedulingoroblem. In this sectionwe first presenthe
backward dynamicprogrammingrecursion.The mainresultis to
give anexplicit solutionto this dynamicprogrammingecursion.
3.1. Dynamic Programming Formulation
Definethe“value-to-go”functionas

JIn(m) = E{Cn (7N )|mn = 7}

N-1

Hi41sm-

Ji(m) = min,ME {CN(TFN) + > Culmiy g (m)) | m =7

t=k

Thenthedynamicprogrammingecursiorproceeddackward-
sintimefromk = N to k = 0 asfollows:

JIn(nn) = Cn(7n)

andfork=N—-1,N—-2,...,0

Ji(me) = min
up41€{1,..-,

Upy1 '
B(ug+1, Om (ug+1)) A 7
+ Z Tet1 (1’B(Uk+1,0m(uk+l))A’7rk

L}[ Cr(Tk, Uk11)

m=1

IIB(Uk+1,Om(Uk+1))AIﬂ'k ], forallm, € P (10)
Finally, the optimal coststartingfrom the initial conditiong is
given by Jo(mo) andif ug,y; = pgyq(mx) minimisesthe right
handsideof (10) for eachk andeachr,, the optimal scheduling
policy is givenby ™ = {ui, i3, ... , i }-

As it standsthe abore dynamicprogrammingequationg10)
hasamajorproblem:Theinformationstater is continuousalued.
Hencethe above dynamicprogrammingequationg10) do not di-
rectly translateinto practicalsolutionmethodologiesince Jx ()
needso be evaluatedat eachr € P, anuncountablyinfinite set.
In [4], asuboptimaklgorithmwasobtainedby discretisingthein-
formationstatespaceP to afinite grid. Theaim of this sectionis
to shaw thatthis approximationis un-necessaryndeedthe above
dynamic programmingcan be explicitly solved — we shaw that
Ji () is convex andpieceviselinearin .

3.2. Finite Dimensional Optimal Scheduler

In this subsectiorwe considerthe casewherethe distancevector
g(w) definedin (9) is a piecavise linear and continuousfunction
of w. Examplesof suchpiecavise linear costfunctionsin thein-
formationstateincludethe casewhen D is a discretenorm. Also
piecavise linear costscanbe usedto approximatenonlinearcost
functionsof theinformationstateuniformly andarbitrarily closely

Let P4,..., Pr, denotethe partition of the informationstate
spacesimplex P over which g(r) is piece-wisdinear. The piece-
wise linearity implies that there exist R vectorsgi, gs2,... ,gr
suchthatg(w) canberepresenteds

R
g(m) = ZgTI(W € Pr)

r=1

wherel(-) denotegheindicatorfunction

_J1 ifwePr

I(m € Pr) = {0 otherwise

Dueto theconvexity andpieceviselinearity anequivalentand
morecorvenientrepresentatiofor our purposess

g (m)r= min g.w
re1,2...,R7"

Thefollowing theorenshavs thatthesolutionto theDP recur
sionis corvex piecavise linearandthuscompletelycharacterized
ateachtime k by afinite setof vectorg(piecaviselinearsegments).

}Theorem 3.1 Ateadtimeinstantk, thevalueto gofunctionJy ()

is corvex and piece-wisdinear. Ji (7) hastheexplicit representa-
tion

Je(7) = min~; 7w forallw € P (11)
i€y
wheeT'; is a finite setof S-dimensionalectos.

PROOF. The proof is by induction. At time N, from (10),
Jx(IN) = min, g7~ whichis of theform (11).

Assumeattime k+1 thatJy 1 () hastheformmin;er, , , 7/ j+17.
Thenit is easilyshavn thatthe valuefunctionattime & is piece-
wiselinear a

3.3. Optimal Algorithm

Theorem3.1 shaws that the solutionto the DP recursion(10) is
corvex piecaviselinearandcompletelycharacterizedteachtime
k by thefinite setof vectorsT'y, definedin (11). Thuswe needto
deviseanalgorithmfor computingthesetl';, ateachtimek. There
arenumerouginearprogrammingbasedalgorithmsin the POMD-
P literaturesuchasSondik’s algorithm[7] Chengs algorithm[5],
andthe Witnessalgorithm[3] thatcanbe usedto computethe fi-
nite setof vectorsl'y, see
http://www.cs.brevn.edu/research/ai/pomdp/indietml for atuto-
rial expositionwith graphics.
Notethattheentiredynamicprogramminglgorithmandhence

thecomputingthevalue-to-gdfunctionvectorsl';, areoff-line and
independentf thedata.Thevectorsetl'y, is usedduringreal-time
simulationsto give the optimal sensoischeduledependingon the
computednformationstaterny,

4. NUMERICAL EXAMPLE

Thescenarianvolvesanincomingaircraft.

State Space The statespacefor this problemcomprisesof how
far the aircraftis currentlyfrom the basestationdiscretizedinto
3 distinctdistances!; = 10, do = 5, ds3 = 1. Thetransition
probability matrix of X, is

08 02 0
A=101 08 0.1 (12)
0 02 08

Sensors Assumethattwo sensorsreavailable,i.e., L = 2.

1. acti ve: This active sensor(e.g. radar)yields accuratamea-
surement®f thedistanceof theaircraftbut renderghe basemore
visibleto theaircraft. Thustheact i ve sensoilis merelyaHMM



statefilter.

2. pr edi ct : Employ no sensor predictthe stateof theaircraft.

Thusthepr edi ct sensoiis merelyaHMM statepredictor

At ary time instantk, ur € {active,predict} denoteswhich

oneof theabove two sensorss used.

Obsewation Symbols Whenusingtheact i ve sensorthe ob-

senation symbolsat eachtime k consistsof distancemeasure-
mentsto the basestationd:, d2, ds. In additionthereis an ad-

ditional obseration symbol; not hi ng which resultswhen the

pr edi ct sensoiis used(i.e. noobsenrationis made).In termsof

the notationof Sec.2 thenumberof possibleobserationsymbols
iSM =4andO;1 =d1,02 =d2,03 =d3,04 = nothing.

We assumehatthe distancetheact i ve sensoreportsis n-
ever more than 1 discretelocation away from the true distance.
Theact i ve sensordetectsthe true distancewith probability p.
Thepr edi ct sensoonlyrecordgheobsenationnot hi ng with
probability 1. In particulardefiningthe N x M matrix of symbol
probapilitiesB(uk) = [Byj(ux)] = P{yr(ur) = O;| Xk = e},
we assign

~ p 1—p 0 0
B(uy = active) = [1—-p/2 p 1-p/2 0
0 1—p p 0
B 0 0 01
B(up =predict)= (0 0 0 1
0 0 01
Costs Our costfunctioncompriseswo components.
1. SensorCosts:
active .
co(Xk = €, up+1 = active) = 3 + poetive
%
predi ct i
¢(Xr = ei, up+1 = predict) = 1 + pprEd' ot
i

We assumep®®!' Ve = 8, pPredict — 5 meaningthatthe operat-
ing costof usingtheact i ve sensoiis higherthanthepr edi ct
sensar Also the costincurredis inverselyproportionalto the dis-
tanceof theaircraft. This reflectsthe factthatwhenthe aircraftis
closeto the base-stationthe threatis greater We chosethe gains
Tactive =9 andrpredi ct _ 5.

2.StateEstimationError Cost: For the stateestimationerror cost
componentwe considerthe I costax(1 — X' X). We chose
ar = 10.

Results With the abore setup,we usedthe POMDP program
availablefrom thewebsite
http://www.cs.brevn.edu/research/ai/pomdp/indietml| to optimal-
ly solvetheHMM sensoischedulingoroblem.

All oursimulationsvererunonaPentium-2400MHz person-
al computer usingthe“IncrementalPruning”algorithmdeveloped
by Cassandragt.al. in 1997 (This is currentlythe fastestknown
algorithmfor solvingPOMDPs se€[3]).

We ranthe POMDP programfor the above parametersver a
horizonof N = 7 for differentvaluesof p (probability of detec-
tion). In all casesno apriori assumptiorwasmadeon the initial
distance(state)of thetarget— thuswe chosetheinformationstate
(filtered density)attime 0 asmo = [1/3, 1/3, 1/3]’, see(1). We
approximatedhe > costfunction by a uniform piecevise linear
triangularinterpolationconsistingof 9 triangularpatches.

Figurel shawvsthecostsincurredfor theoptimalsensosched-
uleversugp. Also shawvn arethecostincurredif only theact i ve
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Fig. 1. Finite Horizon Costs

or pr edi ct sensoilis usedalone. It canbe inferredfrom Fig.1
thatwhenthe probability of detectionis low (0.5 < p < 0.65) us-
ingthepr edi ct sensomlonedoesbetterthanusingtheact i ve
sensarThereasoris thatfor low probabilityof detectiontheac-
ti ve sensoHMM filter) yieldsinaccuratestateestimatesThis
togetherwith thefactthattheact i ve sensothasa higheroper
atingcostthanthepr edi ct sensormeanghatfor low p it costs
lessto usinga HMM predictorand not incur ary costobtaining
extremelyinaccurateneasurementdotethatin all casestheop-
timal sensoischeduléncursthe smallestcost.
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