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ABSTRACT

Thispaperexaminesanapproachfor combiningtwo different
methodsfor detectingerrorsin theoutputof a speechrecognizer.
Thefirst methodattemptsto alleviate recognitionerrorsby using
anexplicit modelfor detectingthepresenceof out-of-vocabulary
(OOV) words.Thesecondmethodidentifiespotentiallymisrecog-
nizedwordsfrom a setof confidencefeaturesextractedfrom the
recognitionprocessusingaconfidencescoringmodel.Sincethese
two methodsareinherentlydifferent,anapproachwhichcombines
the techniquescan provide significantadvantagesover either of
the individual methods. In experimentsin the JUPITER weather
domain,wecompareandcontrastthetwo approachesanddemon-
stratetheadvantageof thecombinedapproach.In comparisonto
eitherof the two individual approaches,the combinedapproach
achievesover 25% fewer falseacceptancesof incorrectly recog-
nizedkeywords(from 55% to 40%) at a 98% acceptancerateof
correctlyrecognizedkeywords.

1. INTRODUCTION

TheSpoken LanguageSystemsGroupconductsresearchleading
to the developmentof conversationalspeechunderstandingsys-
temsfor human-machineinteraction.Thesesystemsmustnotonly
recognizethe wordswhich arespoken by a userbut alsounder-
standthe user’s query and respondaccordingly. The successof
suchsystemsis heavily dependenton the ability of the speech
recognitioncomponentto accuratelyrecognizethewordsspoken
by the user. The presenceof incorrectly recognizedwords may
causethe systemto misunderstanda user’s request,possiblyre-
sultingin theexecutionof anundesirableaction.

Unfortunatelytoday’s speechrecognition technologyis far
from perfect and errors in recognitionmust be expected. Un-
der thesecircumstancesit becomesdesirableto develop methods
which canidentify whena recognizer’s hypothesisis correctand
whenit maybein error. In orderto createmethodsto accomplish
this, it is importantto understandthe two primarydeficienciesin
a typical recognizer. First, themodelsusedin therecognitionpro-
cessmaybeinadequate,for any numberof reasons,for discrimina-
tion betweencompetinghypotheses.Second,recognizersaretyp-
ically developedfor closedsetrecognition(e.g.,recognitionusing
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apredeterminedfixedvocabulary)andarethusnotentirelyappro-
priate for openset recognitionproblemswhereunknown words,
partialwords,andnon-speechnoisesmaycorrupttheinput.

In thispaperweexaminetwo methods,whichwerepreviously
developedin our group,to help detectandalleviate the presence
of errorsin speechrecognitionhypotheses.In the first method,
anexplicit out-of-vocabulary (OOV) wordmodelis addedinto the
modelsetof therecognizerin orderto identify potentialunknown
words during recognition[1]. In the secondmethod,the recog-
nizer’s hypothesesare post-processedwith a confidencescoring
modelin orderto identify hypothesizedwordswhich maybemis-
recognized[5]. Both methodsattemptto identify the regionsof
an utterancewherethe recognizercannotfind reliable word hy-
potheseswithoutharmingtheregionswheretherecognizeris per-
formingcorrectly. However, becausethemodelingapproachesare
inherentlydifferent,they have differentadvantagesanddisadvan-
tages.Underthesecircumstancesa combinationof thetwo meth-
odsmight prove beneficial.In this paperwe seekto compareand
contrasttheperformanceof thetwo individual methods.This pa-
peralsopresentsa methodfor combiningthetechniquesandpro-
vides experimentalresultsdemonstratingthe performancegains
that canbe obtainedby thecombinedapproach.Resultsarepre-
sentedusingthe recognizerfor the JUPITER weatherinformation
system[13].

2. MODELING OOV WORDS

In devisingatechniquefor explicitly modelingOOV wordsduring
recognition,we start with a word-basedrecognizerwith a fixed
predefinedvocabulary of words.To modelOOV words,we create
a generic word modelwhich must allow for arbitrary phonese-
quencesduringrecognition.Onesimplegenericword modelis a
phonerecognizercovering thesetof all phoneticunits in thelan-
guage.Sincethis unit inventorycancover thephoneticsequences
containedin all possibleOOV words,it canbe usedasthe basis
for ourgenericwordmodel.

To allow for OOV words,theword-basedrecognizer’s vocab-
ulary is augmentedwith an OOV word whoseunderlyingmodel
is the genericword model. Figure1 shows how the word search
spacecanbeaugmentedwith thegenericword model.We simply
allow thesearchto transitioninto thegenericword model �������
at thecompletionof any word. Whenexiting � ����� , thesearchis
allowedto eitherendtheutteranceor enterany otherword model,
includingtheOOV word.

Entranceinto thegenericwordmodelis controlledby two pa-
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Fig. 1. Thehybrid recognitionconfigurationcontainingtheOOV
genericword model.

rametersduring recognition. The first is an OOV cost, � ����� .
This costis relatedto theprobability of observinganOOV word
andis usedto balancethecontributionof theOOV phonegrammar
to theoverallscoreof theutterance.For ourexperimentswevaried
thevalueof �	����� to quantify the behavior of the hybrid recog-
nizer. The secondparameteris simply the languagemodel. The
languagemodelof thehybrid recognizerremainsword-based,but
now includesanentryfor theOOV word. SincetheOOV word is
partof thevocabulary, the 
 -gramgrammartreatstheOOV word
just like any otherword in thevocabulary.

Augmentingthewordrecognizerwith thegenericwordmodel
shown in Figure1 is somewhatsimilar to usingfiller (or garbage)
modelsfor word-spotting[10,11]. However, therearetwo key dis-
tinctionswhichdifferentiateourapproachfrom usingfiller models
for word-spotting.First, theentireword vocabulary is usedin the
search,whereasthegenericword is intendedonly to cover OOV
words. Theseconddistinctionis thataccuratesub-word recogni-
tion is importantfor our OOV modelsinceit is possibleto useits
outputfor a secondstageof processingto identify thepronuncia-
tion (andpossiblythespelling)of theOOV word. In contrast,word
spotterstypically make nouseof theoutputof thefiller models.

3. WORD CONFIDENCE SCORING

In our system,word confidencescoresare computedas a post-
processingstageafter recognition[7,9,12]. To obtainthe confi-
dencescoreswe begin by extractinga setof confidencemeasures
for eachword from thecomputationsperformedduringtherecog-
nition process. In our systemten differentconfidencemeasures
arecomputed.Theseincludesuchmeasurementsas the average
normalizedlog-likelihoodacousticmodelscoreover all acoustic
observationsin a word, the minimum normalizedlog-likelihood
acousticmodelscorefor a word, the fractionof the � -bestutter-
ancehypothesesin whichahypothesizedwordappears,etc.These
featuresareconcatenatedinto a singleconfidencefeaturevector.

Thefeaturevectorfor eachindividualwordhypothesisis then
evaluatedusinga confidencescoringmodelwhichproducesa sin-

gleconfidencescorebasedontheentirefeaturevector. To produce
a confidencescorefor a word from theconfidencefeaturevector,
a simple linear discriminationprojectionvector is trained. This
projectionvector reducesthe multi-dimensionalconfidencefea-
ture vector for the hypothesisdown to a singleconfidencescore.
Mathematicallythis is expressedas

��
����� �� (1)

where
��

is the featurevector, �� is the projectionvector, and � is
the raw confidencescore.A thresholdon this scorecanbesetto
produceanaccept/rejectdecisionfor theword hypothesis.In our
experiments,this thresholdis variedto adjustthebalancebetween
falseacceptancesof misrecognizedwordsandfalserejectionsof
correctlyrecognizedwords.In [6], we describehow theraw score
canbe convertedinto a probabilisticscorewhich canbe usedin
laterprocessingby thelanguageunderstandinganddialoguecom-
ponentsof thesystem.

The projectionvector �� is trainedusinga minimumclassifi-
cationerror (MCE) trainingtechnique.In this techniquethepro-
jectionvector �� is first initialized usingFisherlineardiscriminant
analysis.After theinitialization of �� , a simplehill-climbing MCE
algorithmiteratesthrougheachdimensionin �� adjustingits val-
uesto minimize the accept/rejectclassificationerror rate on the
training data. The optimizationcontinuesuntil a local minimum
in errorrateis achieved.Thoughthis discriminatively trainedpro-
jectionvectorapproachis quitesimple,it hasperformedquitewell
for us.Never theless,futurework mayattemptto useamorepow-
erful accept/rejectclassifiersuchasa neuralnetwork [9,12].

4. COMBINING OOV WORD DETECTION
AND CONFIDENCE SCORING

In speechrecognitionresearch,it hasbeendiscoveredthatcombin-
ing the outputsof differentclassifiersand/orrecognizerscanim-
prove recognitionaccuracy androbustness[2,4,8]. Theseresults
are most compellingwhen the different classifiersutilize differ-
entobservationmeasurementsor modelingapproachesbut achieve
similar results.Underthesecircumstances,theexpectedgainfrom
combiningthe different classifiersis the greatest. This was the
motivation for attemptingto combineour two distinctly different
methodsfor detectingrecognitionerrors.

OurOOV wordmodelingapproachoperatesduringtherecog-
nition searchprocessby allowing therecognizeritself to hypothe-
sizeagenericOOV wordmodelasanalternativeto aknown word.
On theotherhand,our confidencescoringapproachis appliedas
a post-processingtechniqueaftertherecognitionsearchis already
complete. A naturalway to combineboth methodsis to enable
OOV word detectionduring recognitionand then utilize confi-
dencescoringon the hypothesizedknown words (excluding the
OOV wordhypotheses)afterrecognitionis complete.

Usingthis two-stagecombinedapproachtherearetwo oppor-
tunitiesfor thesystemto detectpotentialerrors.During therecog-
nition stagethe OOV word detectionapproachreplacespotential
misrecognitionswith unknown wordmarkers.In thepostprocess-
ing stage,theconfidencescoringmoduleexaminestheremaining
word hypotheseswhich arein-vocabulary andrejectsthoseword
hypothesesin which it haslow confidence.
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Fig. 2. Comparisonof therejectionrateof errorscausedby OOV
wordsversusthefalserejectionrateof correctlyrecognizedwords.

5. EXPERIMENTS & RESULTS

5.1. Experimental Setup

Experimentspresentedhereutilize therecognizerfor theJUPITER

weatherinformationdomain[3]. This recognizerutilizesa setof
context-dependentdiphoneacousticmodels,whosefeaturerepre-
sentationwasbasedonthefirst 14MFCCsaveragedover8 regions
nearhypothesizedphoneticboundaries.Diphonesweremodeled
using diagonalGaussianswith a maximum of 50 mixtures per
model.Thewordlexiconconsistedof atotalof 2,009words,many
of which have multiple pronunciations.Word classtrigram lan-
guagemodelswereusedat the word-level. Phone-level bigrams
wereusedfor the internal phonetransitionsin the OOV model.
Thetrainingsetusedfor theseexperimentsconsistsof 88,755ut-
terancesusedto train both theacousticandthe languagemodels.
Thetestsetconsistsof 2,388spontaneousutterancescollectedby
JUPITER, 13%of which containOOV words. On this testsetthe
baselinerecognizerhasa word errorrateof 21.6%.

In ourexperiments,wefirst examinethecapabilityof theOOV
detectionmethodandthe confidencescoringmethodon the task
of detectingerrorscausedby unknown words. Secondwe com-
parethe two methodson the taskof detectingrecognitionerrors
in general.Finally, weexaminethemethodfor combiningthetwo
approacheson thetaskof keyword recognitionerrordetection.

5.2. Detecting OOV Words

The purposeof the OOV word detectionmodel is to detectthe
presenceof OOV wordswithoutharmingtherecognitionaccuracy
on correctlyrecognizedknown words. Similarly, it is hopedthat
theconfidencescoringmodulewill rejectword hypotheseswhen
the actualword is an unknown word without absorbingfalsere-
jectionsof correctly recognizedknown words. The performance
of the two methodson the taskof OOV word detectionis shown
in Figure 2. In this figure OOV word detection(i.e., the rejec-
tion of word hypothesiserrorscausedby unknown words)is plot-
tedagainstthe falserejectionrateof correctlyrecognizedwords.
As canbeseenin thefigure theOOV detectionmethodperforms
betterat the taskof detectingerrorscausedby OOV wordsthan

0 10 20 30 40 50 60 70 80 90 100
90

91

92

93

94

95

96

97

98

99

100

False Acceptance Rate (%)

C
or

re
ct

 A
cc

ep
ta

nc
e 

R
at

e 
(%

)

OOV/All Words
OOV/Key Words
Conf/All Words
Conf/Key Words

Fig. 3. ROC curvesfor OOV word detectionandconfidencescor-
ing methodsevaluatedon all wordsandon keywordsonly.

the confidencescoringmethod. This is not surprisingconsider-
ing thattheOOV detectionmethodis designedspecificallyfor this
taskwhile theconfidencescoringmethodis designedfor themore
generaltaskof detectingany typeof recognitionerror (including
substitutionof known wordsandinsertions).

5.3. Detecting Recognition Errors

As mentionedearlier, the confidencescoringmodel is designed
to be a genericdetectorof recognitionerrors. Its focus is not
specificallyon thedetectionof errorscausedby unknown words,
as examinedin the previous section. To test this capability, we
can examinethe receiver-operatorcharacteristic(ROC) curve of
the system. The ROC curve measuresthe relationshipbetween
thepercentageof correctlyrecognizedwordswhich areaccepted
(i.e., thecorrectacceptancerate)againstthepercentageof incor-
rectly recognizedword which areaccepted(i.e., the falseaccep-
tancerate).Ideallywe’d like to minimizethefalseacceptancerate
withoutharmingthecorrectacceptancerate.

Figure 3 shows four different ROC curves. The solid ROC
curvesshow theOOV detectionmethodandtheconfidencescoring
methodwhenappliedto all wordshypothesizedby therecognizer.
Theselinesindicatethattheconfidencescoringmethodhasabetter
ROC curve than the OOV detectionmethodwhenappliedto all
hypothesizedwords.This resultis not surprisingconsideringthat
the confidencescoringmethodwasspecificallydesignedfor this
task,while the OOV detectionmethodwasdesignedspecifically
for detectingerrorscausedby OOV words.

However, the dashedlines in Figure3 show the ROC curves
for thetwo methodswhenonly examiningcertainkeywordswhich
areimportantfor correctunderstanding.Thesekeywordsarefrom
a list of 937propernamesof geographiclocationsknown by the
recognizer. For this test the two methodsperformalmostidenti-
cally. ThefactthattheOOV detectionmethodworksmuchbetter
on this keyword evaluationthanit did on theevaluationusingall
wordsis alsonotsurprising.Many of theout-of-vocabularywords
thatappearin theJUPITER taskarepropernamesof locations.Be-
causeof languagemodelingconstraintsit is relatively commonfor
thebaselinerecognizerto substituteaknown locationnamefor an
out-of-vocabulary locationname.
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Fig. 4. ROCcurvesonhypothesizedkeywordsonlyusingtheOOV
word detectionandconfidencescoringmethodsaswell asa com-
binedapproach.

5.4. The Combined Approach

Figure4 showstheROCcurvesfor keyworddetectionfor ourorig-
inal two methodsplusthecombinedmethod.In thecombinedap-
proach,theOOV modelingcomponentis first fixedat a particular
operatingpoint beforeconfidencescoringis utilized. Thedashed
anddottedline on the figure shows oneexampleROC curve for
the combinedapproachfor one initial OOV modelingoperating
point. In thisexample,theinitial OOV modelingoperatingpoint is
fixedata correctacceptancerateof 99.2%with a falseacceptance
rateof 71%. Fromthis point we canthengeneratetheremainder
of theROC curve by adjustingtheconfidencescoreaccept/reject
threshold. The solid line shows the optimal ROC curve for the
combinedapproachwhich is generatedby samplingresultsfrom
all combinationsof all operatingpointsfor thetwo differentmeth-
odsandextractingthe “envelope” of thesedual operatingpoints.
Thesecurvesdemonstratethesignificantimprovementthatcanbe
obtainedby thecombinedapproach.

To further illustrate the improvement that can be obtained,
supposewe wish to operateour systemat a correctacceptance
rateonkeywordsof 98%.At thisoperatingpoint, thefigureshows
that the combinedapproachcanreducethe falseacceptancerate
of misrecognizedkeywords by over 25% from eitherof the two
original methods(from 55% to 40%). Although not shown,
similar (thoughsmaller) improvementscan also be observed on
the moregeneraltaskof identifying recognitionerrorsacrossall
words.However, it is importantto notethatwefocusedonthekey-
wordsbecausethey aremostrelevant to theoverall understanding
rateof thefull system.

6. CONCLUSIONS & FUTURE WORK

This paperhaspresenteda methodfor combiningtwo techniques
for detectingrecognitionerrors. The first techniqueusesan ex-
plicit OOV modelfor detectingOOV words.Thesecondapproach
relies on a confidencemodel to predict recognitionerrors. The
combinedapproachusesOOV detectionin a first stageandthen
confidencescoringin a secondstage. In experimentscomparing
the two techniques,we found that the OOV modelingapproach

doesbetterat detectingOOV wordswhile theconfidencescoring
approachperformsbetterin detectingmisrecognitionsin general.
However, thecombinedapproachshows significantimprovement
over either of the two approaches,especiallyfor recognitionof
keywords.

Therearenumerouspossibleextensionsto this work thatwe
would like to examinein the future. Oneextensionis to develop
confidencemethodsspecificallyfor determiningwhetherahypoth-
esizedOOV word is indeedOOV. A comparisonof recognition
pathscontainingand not containinga hypothesizedOOV word
could provide suitableconfidencemeasuresfor making this de-
cision. This would allow us to build a confidencemodelspecif-
ically for OOV word detection. A secondpossibleextensionis
to examinedifferentmethodsfor combiningthe two approaches.
Runningparallel recognizersandusinga post-processingvoting
scheme(i.e.,ROVER [2]) is onepossiblealternative.
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