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ABSTRACT

Space-time codes have been developed to answer the need for high
data rates in future wireless communication systems. In this work,
we propose a systematic code construction method that provides
full diversity advantage for any number of transmit antennas, any
number of encoder states, and any constellation. Our approach is
to exploit the properties of the state transitions in the trellis to force
the desired structure on the channel symbol difference matrix. The
design rules do not specify the space-time codes completely, leav-
ing room for further optimization for coding advantage.

1. INTRODUCTION

In wireless communications, diversity techniques are widely used
to combat the adverse effects of the radio propagation environ-
ment. For example, channel coding, a form of time diversity, adds
redundancy with a certain algebraic structure that can be exploited
to detect and correct transmission errors. Spatial diversity corre-
sponds to redundancy in the spatial domain: building a system
with multiple transmit and/or receive antennas can improve the
quality of the wireless link by making use of the larger number of
propagation paths between the transmitter and the receiver.

Space-time (ST) trellis codes represent a combination of for-
ward error correction, transmit diversity and modulation. Refer-
ences [1] and [2] derived the performance criteria that characterize
the ST codes with two quantities: the diversity advantage, which
describes the asymptotic error rate decrease as a function of the
signal to noise ratio (SNR), and the coding advantage, which de-
termines the vertical shift of the error performance curve. The
authors of [2] proposed design rules for two transmit antennas to
achieve the maximum diversity advantage. They also derived a
lower bound on the complexity of the encoder and the decoder for
the desired diversity advantage and data throughput. This lower
bound states that in order to achieve a diversity advantage of K
and to transmit one B-ary source symbol per state transition, the
encoder and the decoder must have at least Nmin = BK�1 states.

The repetition coded delay diversity scheme of [3] was the first
systematic design rule for arbitrary number of transmit antennas.
Using this method, ST codes achieving full diversity advantage can
be designed for arbitrary constellations and encoders with Nmin

states. They also introduced the idea of zero symmetry to constrain
computer search for ST codes with more than two antennas.

The authors of [4] transformed the design problem into binary
domain. They proposed design methods for an arbitrary number of
transmit antennas and an arbitrary number of states, but only for
BPSK and QPSK constellations. Moreover, the design methods of

[3] and [4] for full diversity advantage uniquely determine the ST
codes, not leaving room to improve the coding advantage.

In this paper, we propose a systematic design method based
on an alternative approach: we exploit the structure of the trellis to
design ST codes that provide full diversity advantage for arbitrary
number of transmit antennas, arbitrary power of two number of
encoder states (as long as it satisfies the lower bound) and arbitrary
constellations. Our method can be treated as a generalization of the
results of [2] and [3]. The design rules for full diversity advantage
do not specify the ST codes completely, offering the possibility to
further optimize for coding advantage.

The paper is structured in the following way. In Section 2, we
will describe the system model and introduce the notation used in
this paper. The design criteria derived in [1] and [2] will be briefly
restated in Section 3. The development of our design method will
also be described in this section. Section 4 will provide the simu-
lation results, and some conclusions are drawn in the last section.

2. SYSTEM MODEL

Consider a wireless communications system with K transmit and
L receive antennas. The input bit stream is divided into b bit
long blocks, forming B-ary (B = 2b) source symbols. The ST
encoder works as a finite state machine with N states: it takes
the current source symbol, bt (bt 2 f0; 1; :::; B � 1g) at dis-
crete time t, and governed by this input and the current state, St
(St 2 f0; 1; :::; N � 1g) , it moves to the next state, St+1. During
this state transition, the encoder outputs K B-ary channel symbol
indices. We denote by ik(St; bt) the channel symbol index for an-
tenna k , k = 0; 1; :::; K � 1, generated during the state transition
from St when the current source symbol is bt. We will also use
the channel symbol index vector, defined as:

i(St; bt) = [ i0(St; bt); i
1(St; bt); :::; i

K�1(St; bt) ]
T :

These channel symbol indices are mapped onto channel symbols
(or constellation points) by the modulators and transmitted through
the transmit antennas. In the sequel, c(i) will represent the con-
stellation point corresponding to channel symbol index i. (For
example, in case of B-ary PSK, c(i) = exp(j2�i=B), where
j =

p�1.) All the constellations are assumed to be normalized so
that the average energy of the constellation is one (if the channel
symbols are equally likely). c(ik(St; bt)) will denote the constel-
lation point output by antenna k when the current state is St and
the current input is bt. In vector notation:

c(St; bt) = [ c(i0(St; bt)); c(i
1(St; bt)); :::; c(i

K�1(St; bt)) ]
T :



The transmission medium is assumed to be flat (frequency
nonselective), quasi-static Rayleigh fading channel. The quasi-
static property means that the channel remains constant over a cer-
tain time, called the frame period, and changes independently from
one frame to the other.

Furthermore, some additional assumptions are made. First, the
receiver has knowledge of the path gains between the transmit and
the receive antennas. They are modeled as independent, complex,
zero mean, circularly symmetric Gaussian random variables with
unit variance. Second, the receiver is perfectly synchronized with
the transmitter.

At the receiver side, the received signals at each receive an-
tenna are demodulated, and the ST decoder produces the decoded
bit stream. The receiver noise is modeled as independent, com-
plex, zero mean, circularly symmetric Gaussian random variables.

3. DESIGN FOR DIVERSITY ADVANTAGE

Assume that the previously decribed transmitter sends T (T >
K) B-ary source symbols to the receiver. The ST encoder, while
encoding the data, goes through the following sequence of states:

S0
b0�! S1

b1�! S2
b2�! : : :

bT�2�! ST�1
bT�1�! ST :

In words, the encoder starts in S0, takes the first input b-tuple,
b0, moves to S1, and so on. As a result of this state transition se-
quence, the encoder produces the channel symbol vector sequence:

c(S0; b0); c(S1; b1); : : : ; c(ST�1; bT�1):

The above vector sequence can be arranged into a K by T matrix,
C:

C = [ c(S0; b0); c(S1; b1); : : : ; c(ST�1; bT�1) ]:

The decoder, due to decoding errors, goes through a different
sequence of states,

S00
b0
0�! S01

b0
1�! S02

b0
2�! : : :

b0
T�2�! S0T�1

b0
T�1�! S0T ;

producing the erroneously decoded source symbol sequence fb0tg
and the K by T channel symbol matrix C0:

C
0 = [ c(S00; b

0

0); c(S
0

1; b
0

1); : : : ; c(S
0

T�1; b
0

T�1) ]:

We can define B, the channel symbol difference matrix as:
B = C�C0 and a K by K matrix A as: A = BB

H . The de-
sign criteria [1],[2] for the earlier described channel model were
derived to minimize the probability that the decoder erroneously
decodes C0 if C was sent:

1. Design for full spatial diversity (rank criterion): The matrix
A (or equivalently, the matrix B) must be of full rank for any
distinct C and C0 matrices.

2. Design for coding advantage (determinant criterion): The
minimum determinant of A taken over all distinct C and C0 ma-
trices must be as large as possible. If the minimum determinant is

, then a coding advantage of K

p

 has been achieved.

The design criteria described above do not provide a system-
atic method to construct ST trellis codes. In what follows, we pro-
pose design rules that guarantee that the resulting ST code achieves
full spatial diversity.

In the ST encoder, B channel symbol index vectors are as-
signed to each state, according to the branches emanating from
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023,123,223,323

000
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Fig. 1. Example ST code for 3 antennas, QPSK

that state. The current source symbol selects one of them, and the
kth (k = 0; 1; :::; K � 1) index of the chosen vector determines
the constellation point for antenna k. Figure 1 depicts an example
ST code for 3 antennas and QPSK constellation (K = 3; N =
16; b = 2). In this case, if the current state is state 2 and the value
of the current source symbol is 3 (binary 11), the ST encoder se-
lects the 3rd channel symbol index vector, [3; 3; 0]T , and moves to
state 11. The 0th, 1st and 2nd antennas will transmit the channel
symbols corresponding to the indices 3,3 and 0, respectively.

Assume that the encoder has N = RBK+p�1 states withR =
2r , B = 2b, b > 0, p � 0 and 0 � r < b. Any power of two
N � Nmin can be put in this form. The state transition of the
encoder at time t is given by:

St = (BSt�1 + bt�1) mod N:

By unfolding the recursion, for 1 � t � K + p � 1, St can be
expressed as:

St = Bt
�
S0mod(RBK+p�t�1)

�
+

t�1X
m=0

Bt�1�mbm: (1)

Without loss of generality, we can assume that the first de-
coding error occurs at state S0, so the correct and erroneous paths
diverge at S0. As a consequence, we have S0 = S00 and b0 6= b00.
From Equation (1), we can conclude that for arbitrary p � 0 and
0 � r < b, the shortest length error path is at least K long (i.e.
for t = 1; 2; :::; K � 1, St 6= S0t). The paths diverging at S0 can
merge only at SK or later.

For now, we are concerned only about the firstK long segment
of all error paths of length K or larger immediately after the first
error event has occured. Our goal is to construct the K by K
channel symbol difference matrix B1, defined as

B1 = [ c(S0; b0)� c(S00; b00); : : :
: : : ; c(SK�1; bK�1)� c(S0K�1; b

0

K�1) ];



in such a way that it is of full rank for any possible correct and
errorneous paths through the trellis. Our method is to make B1
upper triangular with nonzero diagonal elements. As we go state
transition by state transition in the trellis from S0 to SK , the design
rules will force the desired structure on the B1 matrix.

The S0 ! S1 state transition is special since both the correct
and the erroneous paths start at the same state. The goal is to set the
0th entry of the 0th column of B1 to a nonzero value and to zero
out the rest of the entries in that column. This can be achieved by
the following conditions that form the first half of the design rules:

(1a) The 0th indices of the channel symbol index vectors at the
same state must be different.

(1b) The remaining indices of the channel symbol index vec-
tors at the same state must be the same.

In our example, assume that the b0 = 0 (top) path is the correct
path and the b00 = 3 (bottom) path is the erroneously decoded path.
The channel symbol index vectors [0; 3; 0]T and [3; 3; 0]T have
different 0th indices, but the 1st and 2nd indices are the same;
therefore, the 0th column of the B1 matrix will be [1 + j; 0; 0]T .

For the rest of the state transitions St ! St+1, t = 1; 2; :::; K�
1, the objective is to set the tth entry of the tth column of B1 to
a nonzero value and to zero out all the entries below the tth entry
in that column. The method will be explained with the aid of the
definitions given below:

Definition 1 : A level t group is a collection of all possible
destination states that can be reached from a given S0 starting state
at state transition t for any b0; b1; : : : ; bt�1 input sequence.

Definition 2 : A subgroup of a level t group is a collection
of all possible destination states that can be reached from a given
S0 starting state through a given b0 starting branch in the trellis at
state transition t for any b1; b2; : : : ; bt�1 input sequence.

Based on Equation (1) and the above definitions, we can es-
tablish the following facts for t = 1; 2; : : : ; K � 1:

1. Any level t group starts at statem such thatm mod Bt = 0
and consists of Bt consecutive states.

2. Any subgroup of a level t group starts at state m such that
m mod Bt�1 = 0 and consists of Bt�1 consecutive states.

3. Every level t group consists of B disjoint subgroups.
4. Because both the correct and the erroneous paths start from

the same state (S0 = S00), St and S0t belong to the same level t
group.

5. Since b0 6= b00, St and S0t belong to different subgroups of
the same level t group.

The first 3 facts describe the relationship between the encoder
states and the groups and subgroups at different levels. In the case
of the ST code of Figure 1, the level 1 groups consist of 4 consec-
utive states, starting at state 0; 4; 8 and 12. The subgroups consist
of only one state. The only level 2 group is comprised of all the
16 states, and its subgroups are made up of 4 consecutive states,
starting at state 0; 4; 8 and 12.

Fact 4 states that if the mth indices of the channel symbol
index vectors at states belonging to any level t group are the same,
then the mth entry of the tth column of B1 will be zero since,
at state transition t, both the correct and the erroneous paths go
through states that belong to the same level t group. For example,
if we take a look at the S1 ! S2 state transition in Figure 1, state
8 and 11 belong to the same level 1 group, and the 2nd indices of
the channel symbol index vectors [0; 0; 1]T and [1; 2; 1]T are the
same. As a consequence, the 1st column of theB1 matrix becomes
[1 � j; 2; 0]T .

The last fact can be interpreted as follows: if the mth indices
of the channel symbol index vectors at states belonging to differ-
ent subgroups of the same level t group are different, then the mth
entry of the tth column of B1 will be nonzero since, at state tran-
sition t, the correct and the erroneous paths go through states that
belong to different subgroups of the same level t group. To con-
tinue the example with the S2 ! S3 state transition, state 0 and
13 belong to different subgroups of the same (only) level 2 group.
The 2nd indices of the channel symbol index vectors [0; 0; 0]T and
[0; 1; 3]T are different, so the 2nd column of the matrixB1 will be
[0; 1� j; 1 + j]T .

Putting the previously described pieces together, we can state
the second half of the design criteria:

(2a) For t = 1; 2; : : : ; K � 1, the tth indices of the channel
symbol index vectors at states belonging to the same subgroup of
any level t group must be the same, and they must be different
from the tth indices of the channel symbol index vectors at states
belonging to any other subgroup of that group.

(2b) For t = 1; 2; : : : ; K � 2, the (t + 1)st, (t + 2)nd,...,
(K � 1)st indices of the channel symbol index vectors at states
belonging to the same level t group must be the same. (Note that
criterion (2b) is omitted for t = K � 1.)

Having made the matrix B1 full rank, the final task is to show
that the channel symbol difference matrix B corresponding to the
transmission of all T source symbols is also of full rank. The
matrix B can be decomposed as:

B = [B1;B2 ];

where B1 is as defined above and B2 is a K by (T �K) matrix.
Since B2 is arbitrary, this description includes the cases when the
correct and the decoded paths diverge and merge several times.
From linear algebra, it is well known that if B1 is of full rank,
then B is also of full rank. Consequently, the design rules will
produce codes that provide full diversity advantage.

4. SIMULATION RESULTS

To illustrate the performance of the codes designed using the above
described method, we show some simulation results. The simu-
lated communication system had one receive antenna. The source
symbols were transmitted in frames of length 130, and the Viterbi
algorithm with decoding depth of 20 state transitions was used to
decode the received signals. For each frame, the path gains be-
tween the transmit antennas and the receive antenna were modeled
as independent, complex, zero mean, circularly symmetric Gaus-
sian random variables with unit variance.

Since the frame error probability depends on the length of the
frame and it does not seem very informative, we present probabil-
ity of bit error curves as functions of the average signal to noise ra-
tio (SNR) per source symbol at the receive antenna. In the sequel,
the expression coding gain will refer to the difference (in dB) of
transmit energies to achieve the same probability of bit error value.

The repetition coded delay diversity of [3] is a special case of
our design rules. Figure 2 shows the performance of this scheme
for different number of transmit antennas (K = 2; 3; 4 and N =
4; 16; 64, respectively) and QPSK modulation (b = 2). It can be
observed that the codes indeed provide different spatial diversity
advantages since the steepness of the bit error rate curves is differ-
ent.
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Fig. 2. Delay diversity ST codes, QPSK
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Fig. 3. ST codes for 4 antennas, QPSK

The two other figures compare the performance of the de-
lay diversity construction and our approach. Our codes were op-
timized for coding advantage. Figure 3 depicts the results for
4 transmit antennas (K = 4; N = 64) and QPSK modulation
(b = 2). The two probability of bit error curves are shifted ver-
sions of each other, as expected. The minimum determinants of the
delay diversity scheme and our method are 
1 = 16 and 
2 = 32,
respectively. These numbers predict a relative coding advantage of
K

p

2=
1 = 1:19, so the observed approximately 0.5 dB coding

gain over the delay diversity scheme is not surprising.
Figure 4 shows the bit error rate curves of a 3 transmit antenna

system (K = 3; N = 64) with 8PSK modulation (b = 3). At low
SNR, the two error performance curves are close to each other,
and they behave according to the expectations only at middle and
high SNRs. This phenomenon may be due to the fact that at low
SNR, the large number of transmission errors and the small min-
imum distance of the constellation prevent the Viterbi algorithm
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Fig. 4. ST codes for 3 antennas, 8PSK

with finite decoding depth from working properly. Moreover, the
definition of coding advantage [2] is based on an upper bound on
the Q(x) Gaussian tail probability function, and this bound is not
tight at low SNR. The minimum determinant of the delay diversity
scheme is 
1 = 0:2010, and the minimum determinant of our ST
code is 
2 = 0:6863, so the relative coding advantage becomes
K
p

2=
1 = 1:51. The simulation also shows that the perfor-

mance improvement is more pronounced: at higher SNR, more
than 1 dB coding gain can be achieved.

5. CONCLUSION

Having observed the group/subgroup structure of the state transi-
tions, we proposed systematic design rules for ST trellis codes that
achieve full spatial diversity. The simulation results demonstrate
that the remaining freedom in the design space can be used to im-
prove the performance. As the size of the constellation increases,
the additional optimization for coding advantage becomes more
important.
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