DESIGN OF SPACE-TIME TRELLISCODESFOR FULL SPATIAL DIVERSITY

Zoltan Safar and K.J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland at College Park
College Park, MD 20742

ABSTRACT

Space-time codes have been devel oped to answer the need for high
data rates in future wireless communication systems. In thiswork,
we propose a systematic code construction method that provides
full diversity advantage for any number of transmit antennas, any
number of encoder states, and any constellation. Our approach is
to exploit the properties of the state transitionsin thetrellisto force
the desired structure on the channel symbol difference matrix. The
design rules do not specify the space-time codes completely, leav-
ing room for further optimization for coding advantage.

1. INTRODUCTION

In wireless communications, diversity techniques are widely used
to combat the adverse effects of the radio propagation environ-
ment. For example, channel coding, aform of time diversity, adds
redundancy with a certain algebraic structure that can be exploited
to detect and correct transmission errors. Spatia diversity corre-
sponds to redundancy in the spatial domain: building a system
with multiple transmit and/or receive antennas can improve the
quality of the wireless link by making use of the larger number of
propagation paths between the transmitter and the receiver.

Space-time (ST) trellis codes represent a combination of for-
ward error correction, transmit diversity and modulation. Refer-
ences[1] and [2] derived the performance criteriathat characterize
the ST codes with two quantities: the diversity advantage, which
describes the asymptotic error rate decrease as a function of the
signal to noise ratio (SNR), and the coding advantage, which de-
termines the vertical shift of the error performance curve. The
authors of [2] proposed design rules for two transmit antennas to
achieve the maximum diversity advantage. They aso derived a
lower bound on the complexity of the encoder and the decoder for
the desired diversity advantage and data throughput. This lower
bound states that in order to achieve a diversity advantage of K
and to transmit one B-ary source symbol per state transition, the
encoder and the decoder must have at least N,,,;,, = BX ! states.

Therepetition coded delay diversity scheme of [3] wasthefirst
systematic design rule for arbitrary number of transmit antennas.
Using thismethod, ST codes achieving full diversity advantage can
be designed for arbitrary constellations and encoders with N,
states. They also introduced the idea of zero symmetry to constrain
computer search for ST codes with more than two antennas.

The authors of [4] transformed the design problem into binary
domain. They proposed design methods for an arbitrary number of
transmit antennas and an arbitrary number of states, but only for
BPSK and QPSK constellations. Moreover, the design methods of

[3] and [4] for full diversity advantage uniquely determine the ST
codes, not leaving room to improve the coding advantage.

In this paper, we propose a systematic design method based
on an aternative approach: we exploit the structure of thetrellisto
design ST codes that provide full diversity advantage for arbitrary
number of transmit antennas, arbitrary power of two number of
encoder states (aslong asit satisfiesthe lower bound) and arbitrary
constellations. Our method can betreated as ageneralization of the
results of [2] and [3]. The design rules for full diversity advantage
do not specify the ST codes completely, offering the possibility to
further optimize for coding advantage.

The paper is structured in the following way. In Section 2, we
will describe the system model and introduce the notation used in
this paper. The design criteriaderived in [1] and [2] will be briefly
restated in Section 3. The development of our design method will
also be described in this section. Section 4 will provide the simu-
lation results, and some conclusions are drawn in the last section.

2. SYSTEM MODEL

Consider a wireless communications system with K transmit and
L receive antennas. The input bit stream is divided into b bit
long blocks, forming B-ary (B = 2°) source symbols. The ST
encoder works as a finite state machine with N states: it takes
the current source symbol, b, (b: € {0,1,...,B — 1}) at dis-
crete time ¢, and governed by this input and the current state, .S,
(St € {0,1,..., N —1}) , it movesto the next state, S;+:. During
this state transition, the encoder outputs K B-ary channel symbol
indices. We denote by i* (S;, b;) the channel symbol index for an-
tennak ,k =0,1,..., K — 1, generated during the state transition
from S; when the current source symbol is b;. We will also use
the channel symbol index vector, defined as:

i(Se,be) = [°(St,be), 8" (Se,be), oy i 1Sty b0) 1

These channel symbol indices are mapped onto channel symbols
(or constellation points) by the modulators and transmitted through
the transmit antennas. In the sequel, c¢(z) will represent the con-
stellation point corresponding to channel symbol index i. (For
example, in case of B-ary PSK, ¢(i) = exp(j2wi/B), where
j = +/—1.) All the constellations are assumed to be normalized so
that the average energy of the constellation is one (if the channel
symbols are equally likely). c(i* (S, b;)) will denote the constel-
lation point output by antenna k when the current state is S, and
the current input is ;. In vector notation:

C(St, bt) = [c(iO(St, bt)), C(il(St, bt)), ceey C(iKﬁl(St, bt)) ]T.



The transmission medium is assumed to be flat (frequency
nonselective), quasi-static Rayleigh fading channel. The quasi-
static property means that the channel remains constant over a cer-
tain time, called the frame period, and changes independently from
one frame to the other.

Furthermore, some additional assumptions are made. First, the
receiver has knowledge of the path gains between the transmit and
the receive antennas. They are modeled as independent, complex,
zero mean, circularly symmetric Gaussian random variables with
unit variance. Second, the receiver is perfectly synchronized with
the transmitter.

At the receiver side, the received signals at each receive an-
tenna are demodulated, and the ST decoder produces the decoded
bit stream. The receiver noise is modeled as independent, com-
plex, zero mean, circularly symmetric Gaussian random variables.

3. DESIGN FOR DIVERSITY ADVANTAGE

Assume that the previously decribed transmitter sends T (T >

K) B-ary source symbols to the receiver. The ST encoder, while

encoding the data, goes through the following sequence of states:
So 20 8 My 5y b2y TR g T g

In words, the encoder starts in Sy, takes the first input b-tuple,

bo, moves to S1, and so on. As aresult of this state transition se-
quence, the encoder produces the channel symbol vector sequence:

C(So,bo),c(sl,bl), . ,C(STfl,bel).

The above vector sequence can be arranged into a K by 7' matrix,
C:

C= [C(So,bo),c(sl,bl), . ,C(STfl,bel) ]

The decoder, due to decoding errors, goes through a different
sequence of states,

be b b/ bl _o by
So—= 81— 8y = ... — Sr_, — S,

producing the erroneously decoded source symbol sequence {4 }
and the K by T' channel symbol matrix C':

C’ = [C(S(I))b{)))c(siybll)) . 7C(S’IT—lyblT—l) ]

We can define B, the channel symbol difference matrix as:
B=C-C' andaK by K matrix A as. A = BBZ. Thede-
sign criteria [1],[2] for the earlier described channel model were
derived to minimize the probability that the decoder erroneously
decodes C' if C was sent:

1. Design for full spatial diversity (rank criterion): The matrix
A (or equivalently, the matrix B) must be of full rank for any
distinct C and C’ matrices.

2. Design for coding advantage (determinant criterion): The
minimum determinant of A taken over al distinct C and C' ma-
trices must be as large as possible. If the minimum determinant is
7, then acoding advantage of /v has been achieved.

The design criteria described above do not provide a system-
atic method to construct ST trellis codes. In what follows, we pro-
pose design rulesthat guarantee that the resulting ST code achieves
full spatial diversity.

In the ST encoder, B channel symbol index vectors are as-
signed to each state, according to the branches emanating from

000,100,200,300
010,110,210,310
030,130,230,330
020,120,220,320
002,102,202,302
012,112,212,312
032,132,232,332
022,122,222,322
001,101,201,301
011,111,211,311
031,131,231,331
021,121,221,321
003,103,203,303

013,113,213,313
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Fig. 1. Example ST code for 3 antennas, QPSK

that state. The current source symbol selects one of them, and the
kth (k = 0,1,..., K — 1) index of the chosen vector determines
the constellation point for antenna k. Figure 1 depicts an example
ST code for 3 antennas and QPSK constellation (K = 3, N =
16,b = 2). In thiscase, if the current state is state 2 and the value
of the current source symbol is 3 (binary 11), the ST encoder se-
lects the 3rd channel symbol index vector, [3, 3, 0, and movesto
state 11. The 0th, 1st and 2nd antennas will transmit the channel
symbols corresponding to the indices 3,3 and 0, respectively.

Assumethat the encoder has N = RBX P! gtateswith R =
2", B=2%b>0,p>0and0 < r < b. Any power of two
N > Nuin can be put in this form. The state transition of the
encoder at time ¢ isgiven by:

St = (BSt_l +bt_1) mod N.

By unfolding the recursion, for 1 < ¢t < K +p — 1, S; can be
expressed as:

t—1
S, = B' (somod(RB“P‘f‘l)) +3 BT ()
m=0

Without loss of generality, we can assume that the first de-
coding error occurs at state Sy, so the correct and erroneous paths
diverge at Sp. Asaconsequence, we have Sy = S; and by # bp.
From Equation (1), we can conclude that for arbitrary p > 0 and
0 < r < b, the shortest length error path is at least K long (i.e.
fort =1,2,..,K — 1, S; # S;). The paths diverging at Sp can
merge only at Sk or later.

For now, we are concerned only about thefirst K long segment
of al error paths of length K or larger immediately after the first
error event has occured. Our goal is to construct the K by K
channel symbol difference matrix By, defined as

B1 = [C(So,bo) - C(S{), bb), e

sy e(Sko1,br 1) —e(Sk_1, b _1) ],



in such away that it is of full rank for any possible correct and
errorneous paths through the trellis. Our method is to make B,

upper triangular with nonzero diagonal elements. As we go state
transition by state transition inthetrellisfrom Sy to Sk, thedesign
ruleswill force the desired structure on the B; matrix.

The Sp — S; state transition is special since both the correct
and the erroneous paths start at the same state. Thegoal isto set the
0th entry of the 0th column of B, to anonzero value and to zero
out the rest of the entries in that column. This can be achieved by
the following conditions that form the first half of the design rules:

(18) TheOth indices of the channel symbol index vectors at the
same state must be different.

(1b) The remaining indices of the channel symbol index vec-
tors at the same state must be the same.

In our example, assumethat theby = 0 (top) path isthe correct
path and the b, = 3 (bottom) path isthe erroneously decoded path.
The channel symbol index vectors [0, 3,0]" and [3,3,0]” have
different Oth indices, but the 1st and 2nd indices are the same;
therefore, the Oth column of the By matrix will be [1 + 3,0, 0]%.

For therest of the statetransitions Sy — Siy1,t=1,2,..., K—
1, the objective is to set the ¢th entry of the ¢th column of B; to
anonzero value and to zero out al the entries below the ¢th entry
in that column. The method will be explained with the aid of the
definitions given below:

Definition 1 : A level ¢ group is a collection of &l possible
destination states that can be reached from agiven .S starting state
at state transition ¢ for any bo, b1, ... , bx—1 input sequence.

Definition 2 : A subgroup of a level ¢ group is a collection
of al possible destination states that can be reached from a given
So starting state through a given by starting branch in the trellis at
state transition ¢ for any b1, bo, . .. , b—1 input sequence.

Based on Equation (1) and the above definitions, we can es-
tablish the following factsfort = 1,2,... , K — 1:

1. Any level ¢ group startsat state i such that m mod B! = 0
and consists of B* consecutive states.

2. Any subgroup of alevel ¢ group starts at state m such that
m mod B'™! = 0 and consists of B! consecutive states.

3. Every level ¢ group consists of B disjoint subgroups.

4. Because both the correct and the erroneous paths start from
the same state (Sp = S5), S: and S; belong to the same level ¢
group.

5. Since by # by, St and S; belong to different subgroups of
the same level ¢ group.

Thefirst 3 facts describe the relationship between the encoder
states and the groups and subgroups at different levels. In the case
of the ST code of Figure 1, the level 1 groups consist of 4 consec-
utive states, starting at state 0, 4, 8 and 12. The subgroups consist
of only one state. The only level 2 group is comprised of al the
16 states, and its subgroups are made up of 4 consecutive states,
starting at state 0,4, 8 and 12.

Fact 4 states that if the mth indices of the channel symbol
index vectors at states belonging to any level ¢ group are the same,
then the mth entry of the tth column of By will be zero since,
at state transition ¢, both the correct and the erroneous paths go
through states that belong to the same level ¢ group. For example,
if wetakealook at the S, — S, state transition in Figure 1, state
8 and 11 belong to the same level 1 group, and the 2nd indices of
the channel symbol index vectors [0, 0, 1% and [1,2,1]" are the
same. AsacTonsequence, the 1st column of the B; matrix becomes
[1-342,0]7.

The last fact can be interpreted as follows: if the mth indices
of the channel symbol index vectors at states belonging to differ-
ent subgroups of the same level ¢ group are different, then the mth
entry of the tth column of B; will be nonzero since, at state tran-
sition ¢, the correct and the erroneous paths go through states that
belong to different subgroups of the same level ¢ group. To con-
tinue the example with the S; — S5 state transition, state 0 and
13 belong to different subgroups of the same (only) level 2 group.
The 2nd indices of the channel symbol index vectors [0, 0, 0T and
[0, 1, 3]7 are different, so the 2nd column of the matrix By will be
[0,1—j,1+4]%.

Putting the previously described pieces together, we can state
the second half of the design criteria:

(2a) Fort = 1,2,...,K — 1, the tth indices of the channel
symbol index vectors at states belonging to the same subgroup of
any level ¢ group must be the same, and they must be different
from the t¢th indices of the channel symbol index vectors at states
belonging to any other subgroup of that group.

(2b) Fort = 1,2,... ,K — 2, the (t + 1)&, (¢t + 2)nd,...,
(K — 1)st indices of the channel symbol index vectors at states
belonging to the same level ¢ group must be the same. (Note that
criterion (2b) isomitted fort = K — 1.)

Having made the matrix B; full rank, the final task is to show
that the channel symbol difference matrix B corresponding to the
transmission of al T' source symbols is aso of full rank. The
matrix B can be decomposed as:

B =[B4,B:],

where B; isas defined above and Bz isa K by (T' — K) matrix.
Since B isarbitrary, this description includes the cases when the
correct and the decoded paths diverge and merge several times.
From linear algebra, it is well known that if By is of full rank,
then B is also of full rank. Consequently, the design rules will
produce codes that provide full diversity advantage.

4. SIMULATION RESULTS

Toillustrate the performance of the codes designed using the above
described method, we show some simulation results. The simu-
lated communication system had one receive antenna. The source
symbols were transmitted in frames of length 130, and the Viterbi
algorithm with decoding depth of 20 state transitions was used to
decode the received signals. For each frame, the path gains be-
tween the transmit antennas and the receive antenna were modeled
as independent, complex, zero mean, circularly symmetric Gaus-
sian random variables with unit variance.

Since the frame error probability depends on the length of the
frame and it does not seem very informative, we present probabil-
ity of bit error curves as functions of the average signal to noisera-
tio (SNR) per source symbol at the receive antenna. In the sequel,
the expression coding gain will refer to the difference (in dB) of
transmit energies to achieve the same probability of bit error value.

The repetition coded delay diversity of [3] isa specia case of
our design rules. Figure 2 shows the performance of this scheme
for different number of transmit antennas (K = 2,3,4 and N =
4,16, 64, respectively) and QPSK modulation (b = 2). It can be
observed that the codes indeed provide different spatial diversity
advantages since the steepness of the bit error rate curvesis differ-
ent.
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Fig. 2. Delay diversity ST codes, QPSK
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Fig. 3. ST codes for 4 antennas, QPSK

The two other figures compare the performance of the de-
lay diversity construction and our approach. Our codes were op-
timized for coding advantage. Figure 3 depicts the results for
4 transmit antennas (K = 4, N = 64) and QPSK modulation
(b = 2). The two probability of bit error curves are shifted ver-
sions of each other, as expected. The minimum determinants of the
delay diversity scheme and our method are 1 = 16 and > = 32,
respectively. These numbers predict arelative coding advantage of

K/v2/71 = 1.19, so the observed approximately 0.5 dB coding
gain over the delay diversity scheme is not surprising.

Figure 4 showsthe bit error rate curves of a3 transmit antenna
system (K = 3, N = 64) with 8PSK modulation (b = 3). At low
SNR, the two error performance curves are close to each other,
and they behave according to the expectations only at middle and
high SNRs. This phenomenon may be due to the fact that at low
SNR, the large number of transmission errors and the small min-
imum distance of the constellation prevent the Viterbi algorithm

Bit error probability
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Fig. 4. ST codes for 3 antennas, 8PSK

with finite decoding depth from working properly. Moreover, the
definition of coding advantage [2] is based on an upper bound on
the Q(z) Gaussian tail probability function, and this bound is not
tight at low SNR. The minimum determinant of the delay diversity
schemeis~: = 0.2010, and the minimum determinant of our ST
codeisy> = 0.6863, so the relative coding advantage becomes
X/72/71 = 1.51. The simulation also shows that the perfor-
mance improvement is more pronounced: at higher SNR, more
than 1 dB coding gain can be achieved.

5. CONCLUSION

Having observed the group/subgroup structure of the state transi-
tions, we proposed systematic design rulesfor ST trellis codes that
achieve full spatial diversity. The simulation results demonstrate
that the remaining freedom in the design space can be used to im-
prove the performance. As the size of the constellation increases,
the additional optimization for coding advantage becomes more
important.
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