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ABSTRACT

This paper presents an efficient way to implement flexible
multirate signal processing systems with high
oversampling ratio and adjustable fractional or irrational
sampling rate conversion ratio. One application area is a
multi-standard communication receiver which should be
adjustable for different symbol rates utilized in different
systems. The proposed decimation filter consists of
parallel CIC (cascaded integrator-comb) filters followed
by a linear interpolation filter. The idea in this paper is to
use two parallel CIC filters to calculate the two needed
sample values for linear interpolation. These samples
occur just before and after the final output sample. This
corresponds to a system where the linear interpolation is
done at the higher input sampling rate.  

1. INTRODUCTION

In multistandard receivers, the hardware should be
configurable or programmable for the reception of
different types of signals having different symbol rates.
After the AD-conversion, utilizing the common delta-
sigma AD-conversion principle and high oversampling
ratio, the sampling rate is reduced to be a (low) integer
multiple of the symbol rate. The problem is that the
needed decimation factor can be a difficult fractional
number or even an irrational number and, for instance, FIR
filters used for integer or fractional decimation cannot be
efficiently utilized. Another problem is that there can be
disturbing channels that are much stronger (e.g. 80-100
dB) than the desired channel. Therefore, the frequency
bands which cause aliasing in decimation should have
good attenuation. In addition to these requirements, the
overall implementation should be simple because this
decimation filter is used in the digital front-end of mobile
receivers where the sampling rate is high [1].
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)(zH N
I )(zH N

CR↓
FoutFin

Fig. 1.  CIC (cascaded integrator-comb) decimation filter.

Based on these requirements (low complexity and
irrational decimation factor), this paper introduces a
decimation filter structure which consists of two parallel
CIC (cascaded integrator-comb) filters [2], followed by
linear interpolation. This structure is easy to implement,
e.g., in VLSI circuits, because the CIC filter does not need
any multiplications and the linear interpolation requires
only one multiplication. The idea is to use two parallel
CIC filters that gives samples just before and after the final
output sample. Therefore, the linear interpolation is done
at the higher input sampling rate.

2. DECIMATION BY INTEGER FACTOR

Cascaded integrator-comb (CIC) filters are commonly
used for decimation and interpolation by integer ratio
providing efficient anti-image and anti-alias filtering [2].
These filters have a simple regular structure without
multipliers. CIC decimation filter (see Fig. 1) consists of N
cascaded digital integrator stages operating at high input
data rate Fin, followed by N cascaded comb or
differentiator stages operating at low sampling rate Fin / R.
Its frequency response is given by
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where ω=2π f /Fin is the normalized input frequency.

3. DECIMATION BY NON-INTEGER FACTOR

When the decimation factor is a non-integer number, the
filters intended for integer or simple fractional decimation
can not be directly used. One solution is to use
polynomial-based interpolation filters. Among them, linear
interpolation filter has a simple implementation structure,
only one multiplication is needed [3].
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Fig. 2.  The hybrid analog/digital model.

Because interpolation is basically a reconstruction
problem, polynomial-based interpolation can be analyzed
using the hybrid analog/digital model shown in Fig. 2, [3].
In this model, the interpolated output samples y(l) are
obtained by sampling the reconstructed signal ya(t) at the
time instants t = (nl + µl ) Tin. Here nl is any integer,
µl ∈[0,1) is the adjustable fractional interval, and Tin is the
sampling interval of the input signal x(n).

For linear interpolation, the impulse response of the
reconstruction filter ha(t) is a triangular function, and thus,
its frequency response is given by
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The digital implementation of the linear interpolation,
which needs only one multiplication, can be based on the
following equation:
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4. PROPOSED STRUCTURE FOR NON-INTEGER
DECIMATION

Because we consider here a system that can be used also
for irrational decimation, the overall decimation factor is
determined by
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where Fin = 1/Tin and Fout = 1/Tout are the input and output
sampling frequencies, whereas Rint is the integer part and
ε ∈ [0,1) is the decimal part of the overall decimation
factor. Figure 3 illustrates the proposed structure for the
decimation filter. The input signal x(n) is divided into
polyphase components xk(m) for k = 0, 1,· · ·, Rint −1 by
using delay line and parallel CIC filters having the
decimation factor of Rint. Only few of these Rint  parallel
CIC filters are to work at the same time, hence, the
number of parallel CIC filters is reduced. The sampling
rate at the output of the CIC filters is Fin /Rint. After this
integer decimation we still have to decimate by 1+ε /Rint in
order to have overall decimation by R. This final, possibly
irrational decimation is done using linear interpolation
between some of the two signal pairs xk(m) and xk⊕1(m),
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Fig. 3.  Model of proposed decimation filter.
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Fig. 4.  (a) The input and output samples of the proposed
decimation filter for R = 3.3. (b) The output samples of the
two parallel CIC filter branches x0(m) and x1(m).

where ⊕ denotes a modulo Rint summation.
The linear interpolation block in Fig. 3 is shifted by

one branch when needed, according to a certain condition
(to be discussed later on). Because of the modulus Rint
summation mentioned above, the next signal pair for linear
interpolation after xRint−2(m) and xRint−1(m) is xRint−1(m) and
x0(m). The fractional interval µl is recalculated for each
output sample y(l) for l = 0, 1, 2, · · ·.

The time interval between samples xk(m) and xk⊕1(m)
equals to Tin and, thus, the linear interpolation is done at
the high input sampling frequency Fin. This means better
image attenuation. The CIC filters attenuate the disturbing
channels and noise which would cause aliasing in linear
interpolation. In other words, the CIC filters and linear
interpolation take care of anti-aliasing and anti-imaging
property, respectively [1].

As an example, Fig. 4 shows input and output signals
as well as some of the polyphase signals for the deci-
mation factor of R = 3.3. After four first samples, the next
output sample y(4Tout) falls outside the interval x0(m) and
x1(m). When this occurs, the linear interpolation is shifted



by one interval (as indicated by an arrow in Fig. 3) and the
interpolation is done between signals x1(m) and x2(m).

4.1. The frequency response of the overall system

The overall frequency response of the decimation filter
structure in Fig. 3 is a product of the frequency responses
of the parallel CIC filters and linear interpolation filter.
Note that the former response is a periodical whereas the
latter is not. The frequency response of the parallel CIC
filter stage is simply the same as the response of one CIC
filter given by Eq. (1), where, however, R has to be
replaced by Rint. Since the linear interpolation is done at
the higher input rate Fin, its frequency response is given by
Eq. (2). Consequently, the overall zero-phase frequency
response of the proposed decimation filter, relative to the
input sampling frequency, is given by
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where ω = 2π f /Fin=2π f / (RFout).

4.2. Design examples

In this example, the bandwidth of the input signal is
fp=0.001Fin and decimation factor R=341/34. It is required
that the frequency bands that cause aliasing to the
frequency band of the input signal are attenuated at least
by As=80dB and the passband distortion is less than
δp=0.01 (0.086 dB).

These requirements are met by a proposed type of
decimation filter having CIC filter of order N=3. The
overall frequency response of the proposed decimation
filter, as well as the responses of the parallel CIC filters
and linear interpolation filter, are shown in Fig. 5. Figure 6
presents the bands that cause aliasing to the desired band.
As it can be seen, the minimum attenuation of these bands
is 84.4 dB. Because the over-sampling factor is still high
after decimation, the worst case passband distortion caused
by the proposed filter structure is only 0.06 dBs. Figure 7
shows the minimum attenuation of the aliasing bands in a
range of the fractional decimation factor ranging from 32
to 34. The minimum attenuation occurs at the edge of the
first aliasing band. As it can be seen from Fig. 7, the
minimum attenuation of the aliasing bands depends on ε.
If ε is close to unity, better attenuation is obtained by
expressing R as R=Rint−ε. The analysis and filter structures
can be easily extended for this negative value of ε as well.

5. IMPLEMENTATION

Linear interpolation is done between two samples (see Fig.
3). Therefore, only two CIC filter branches are needed in
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Fig. 5. Frequency response of the CIC decimation filter,
linear interpolator filter, and the overall response.
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Fig. 6. Aliasing bands of the overall structure.
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Fig. 7.  The maximum value of the aliasing bands for
positive and negative ε .

the implementation plus some extra branches for preparing
the future samples. The number of extra branches depends
on the order of the CIC filter N and the fractional part of
the decimation rate ε. Furthermore, the integrator part with
the transfer function HI

N(z) can be shared among the
branches. This principle is shown in Fig. 8.
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Fig. 8.  Implementation structure for the proposed deci-
mation filter.

The commutators COM1 and COM2 are used to select
the correct input branch for the B comb sections and for
the linear interpolation, respectively. In general case, for
any ε, the number of needed comb filter branches is
B=N+2. Two of them are used for calculating the output
samples and the remaining N branches are used for
initializing the state-variables of the branches needed later.

In Fig. 9(a), the control logic algorithm is presented for
the proposed structure. The first step in this algorithm is
the initial set up of the index value l as well as the
fractional interval µ0 = 0  The next step is the interpolation
which is expressed by

( ))(),(,)( 10 mumuIly lµ= , (6)

where I( )denotes the linear interpolation between the
samples u0(m) and u1(m) with the fractional interval of µl.
After interpolation, l is incremented by one and the
fractional interval can be computed by

εµµ ⊕= −1ll , (7)

with the initial condition µ0 = 0 . In Eq. (7), the modulo
summation indicates that only the decimal part of the
result is used. According to Eq. (7), the calculation of µl
can be implemented by using an adder with fixed point
arithmetic. The shifting in the interpolation has to be
performed whenever an overflow occurs while calculating
µl. Therefore, the overflow bit cl of the adder can be used
as a shifting condition. The shift block in Fig. 9 means that
the interpolation is shifted by one branch (see Fig. 3). This
shifting operation is implemented using the commutators
COM1 and COM2 as it is shown in Fig. 8. The
commutator COM1 has Rint inputs and B outputs. The
commutator COM2 has B inputs and two outputs. In order
to describe the function of the commutators we use
variables for the outputs of the commutators. There are B
variables for the outputs of COM1 denoted by OUTi

1 for
i=0,1… B−1 and two variables for COM2 denoted by
OUTi

2 for i=1 and 2. The values of these variables
determine what input sample is connected to the ith output.
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(initial set up)
for i=0 to B-1
   iOUTi =1 ;
end

02
0 =OUT , 12

1 =OUT ;
p=0;

(shifting)
if cl  then
   BOUTOUT

intRpp ⊕= 11 ;

   1Bpp ⊕= ;

   12
0

2
0 BOUTOUT ⊕= ;

   12
1

2
1 BOUTOUT ⊕= ;

end.

(b)
Fig. 9.  (a) The state flow diagram of the control logic. (b)
Algorithm for switching of COM1 and COM2. Here ⊕ i
denotes modulo i summation.

The switching algorithm for COM1 and COM2 is given in
Fig. 9(b). When shifting occurs, only one output of
COM1, numbered by p, should be switched to the another
input. Hence, only the value of the variable OUTp

1 is
changed. In COM2, when shifting occurs, both output
branches should be switched to the another input. This is
done because the order of the interpolator inputs must be
preserved.

6. CONCLUSIONS

We have proposed the structure for an arbitrary ratio deci-
mation that consists of parallel CIC filters and linear
interpolation. The whole structure has only one multiplier.
Further, the linear interpolation is performed at the lower
sampling rate. However, the performance of the proposed
structure corresponds to the system where the linear inter-
polation is done at the higher input sampling rate.
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