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ABSTRACT

Perceptual harmonic cepstral coefficients (PHCC) are proposed
as features to extract from speech for recognition in noisy
environments. A weighting function, which depends on the
prominence of the harmonic structure, is applied to the power
spectrum to ensure accurate representation of the voiced speech
spectral envelope. The harmonics weighted power spectrum
undergoes mel-scaled band-pass filtering, and the log-energy of
the filters output is discrete cosine transformed to produce
cepstral coefficients. Lower spectral clipping is applied to the
power spectrum, followed by within-filter root-power amplitude
compression to reduce amplitude variation without compromise
of the gain invariance properties. Experiments show significant
recognition gains of PHCC over MFCC, with 23% and 36%
error rate reduction for the Mandarin digit database in white and
babble noise environments.

1. INTRODUCTION

Noise robust feature extraction poses one of the greatest
challenges in the design of high performance automatic speech
recognition systems. While most feature extraction techniques
attempt to capture information on the vocal tract transfer
function from the gross spectral shape of the input speech, the
accuracy and robustness of the speech representation may
deteriorate dramatically due to the spectral distortion caused by
the additive background noise. The well-known mel-frequency
cepstral coefficients (MFCCs) [1], though adopted by most ASR
systems for its superiority in clean speech recognition, do not
cope well with noisy speech. The aternative perceptual linear
prediction (PLP) coefficients [2] promise improvement over
MFCC in noisy conditions by incorporating perceptual features
of the human auditory mechanism. Nevertheless, it is believed
that the existing front ends are sub-optimal, and the discovery of
New noise-immune or noise-insensitive features is anticipated.

One main difficulty in conventional spectrum-based feature
extraction algorithms is concerned with the vocal tract transfer
function whose accurate and robust description is crucia to
effective speech recognition. In the MFCC approach, a smoothed
version of the short-term speech spectrum is computed from the
output energy of a bank of filters. While such a procedure is fast
and efficient, it is inaccurate as the voca tract transfer function
information is known to reside in the spectral envelope, which is
mismatched with the smoothed spectrum, especialy for voiced

This work was supported in part by the National Science
Foundation under grant no. 11S-9978001, EIA-9986057, the
University of California MICRO Program, Conexant Systems,
Inc., Lernout & Hauspie Speech Products, Lucent Technologies,
Inc., Medio Stream, Inc., and Qualcomm, Inc.

and transitional speech. Moreover, the spectrum envelope tends
to have much higher SNR than smoothed spectrum under the
same noise conditions, which leads to a more robust
representation of the vocal tract transfer function. Hence, speech
features derived from the spectral envelope are expected to
provide better performance in noisy environments compared
with traditional front ends based on smoothed spectrum [3].

Another difficulty encountered in conventional feature extraction
agorithms is that of appropriate spectral amplitude
transformation for higher recognition accuracy and robustness.
The log power spectrum representation in MFCC is clearly
attractive because of its gain-invariance properties and the
approximate Gaussian distributions it thus produces. Root power
representation is used in PLP for psychophysical considerations,
at the cost of compromising the level-invariance properties and
hence robustness.

Recently, we proposed a new approach to overcome the above
shortcomings [4]. Rather than average the energy within each
filter, the harmonic cepstral coefficients were derived from the
spectrum envelope sampled at the harmonic locations for voiced
and transitional speech. They were similar to MFCC for
unvoiced sounds and silence. The intensity-loudness power-law
was applied within each filter, along with logarithmic energy
across filters, to reduce the spectral amplitude variation within
each filter without degradation of the gain-invariance properties.
The resulting features formed the perceptual harmonic cepstral
coefficients (PHCC) representation. Experiments under clean
speech environment showed that PHCC significantly
outperformed conventional MFCC for both voiced and unvoiced
speech [4].

In this paper, the PHCC front end is extended for speech
recognition in noisy environments by incorporating several “anti-
noise” techniques. A weight function is designed for the
computation of the harmonic weighted spectrum to mitigate the
distortion of harmonic structures caused by background noise.
The power spectrum is lower clipped before root-power
compression to reduce the noise sensitivity associated with small
spectral values. The root-power function is adjustable to the
noisy environment characteristics. Experiments with the
Mandarin digit database under varied noisy environments show
that PHCC does provide significant improvement over
conventional MFCC under noisy conditions.

2. PERCEPTUAL HAMONIC CEPSTRAL
COEFFICIENTS

A. Spectral envelope vs. smoothed spectrum

Modern speech recognition systems retrieve information on the
vocal tract transfer function from the gross spectral shape. The



speech signal is generated via modulation by an excitation signal
that is quasi-periodic for voiced sounds, and white noise for
unvoiced sounds. A typical approach, employed in MFCC and
PLP, is to compute the energy output of a bank of band-pass
mel-scaled or bark-scaled filters, whose bandwidths are broad
enough to remove fine harmonic structures caused by the quasi-
periodic excitation of voiced speech. The efficiency and
effectiveness of these spectral smoothing approaches led to their
popularity. However, there are several drawbacks that
significantly decrease their accuracy and robustness.

The first drawback is the limited ability to remove undesired
harmonic structures. In order to maintain adequate spectral
resolution, the standard filter bandwidth in MFCC and PLP is
usudly in the range of 200Hz-300Hz in the low frequency
region. It is hence sufficiently broad for typical male speakers,
but not broad enough for high pitch (up to 450Hz) female
speakers. Consequently, the formant frequencies are biased
towards pitch harmonics and their bandwidth is misestimated.

The second drawback concerns information extraction to
characterize the vocal tract function. It is widely agreed in the
speech coding community that it is the spectral envelope and not
the gross spectrum that represents the shape of the vocal tract
[5]. Although the smoothed spectrum is often similar to the
spectral envelope of unvoiced sounds, the situation is quite
different in the case of voiced and transitional sounds.
Experiments show that this mismatch substantially increases the
spectrum variation within the same utterance [4].

The third drawback is the high spectral sensitivity to background
noise. The conventional smoothed spectrum representation may
be roughly viewed as averaging the upper and lower envelopes.
It therefore exhibits much higher SNR than the upper spectrum
envelope alone in noisy conditions.

Although some of the loss caused by the imprecision and low
robustness of spectrum smoothing may be compensated for and
masked by higher complexity statisticad modeling, the
recognition rate eventually reaches saturation at high model
complexity. This motivated the development of the alternative of
Perceptual Harmonic Cepstral Coefficients (PHCC) as a more
accurate and robust spectral representation [4].

B. Computation of Perceptual Harmonic Cepstral Coefficient

PHCC computation is similar to that of MFCC except that it
attempts to closely approximate the perceptually compressed
spectral envelope sampled at pitch harmonics. The procedure
consists of the following steps:

1) The speech frame is processed by DFT to obtain the short-
term power spectrum;

2) The intensity-loudness power law is applied to the origina
spectrum to obtain the root-power compressed spectrum;

3) Robust pitch estimation and voiced/unvoiced/transition
(VIUVIT) classification are performed (We employ the
spectro-temporal auto-correlation (STA) [4][5] followed by
the peak-picking algorithm);

4) Class-dependent harmonic weighting is applied to obtain
the harmonics weighted spectrum (HWS). For voiced and
transitional speech, HWS is dominated by the harmonic
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Figure 1. Flowchart of Perceptual Harmonic cepstrum
Coefficient (PHCC) analysis

spectrum (i.e. upper envelope of the short-term spectrum).
For unvoiced sounds, HWS degenerates to the conventional
smoothed spectrum.

5) Mel-scaled filters are applied to the HWS and the log
energy output is computed and transformed into cepstrum
by the discrete cosine transform (DCT).

A flowchart of PHCC computation is shown in Figure 1. Next,
we will describe steps 3 and 4 in more detail.

C. The peak-picking algorithm

In the case of voiced speech frames, more accurate determination
of the harmonic frequencies is obtained by applying the peak-
picking algorithm to the power spectrum, which corrects minor
pitch estimation errors or non-integer pitch effects. The initial
estimated harmonics obtained from STA are refined by looking
for local maxima in a search interval that excludes neighboring
harmonics. Once the peaks are found, the power spectrum value
at pitch harmonicsis given emphasis by appropriate weighting as
will be explained below.

The peak-picking algorithm is also useful for transitional speech
frames as they contain some quasi-harmonic structures. Since
there are no well-defined initial harmonic frequencies, they are
set to fixed values (multiples of 100Hz were quite effective in
experiments).

D. Harmonic weighted spectrum (HWS)

Spectral envelope representation as above has been previousy
proposed and is currently used in harmonic speech coding [6],
where the spectrum amplitude sampled at pitch harmonics is
vector quantized. However, the number of harmonics varies
significantly from speaker to speaker. This aso implies that
some processing must be applied to the harmonic spectrum prior
to its applicability to speech recognition. We use the harmonics
weighted energy output of mel-scale filters instead of the
harmonic spectrum directly.



In the case of voiced speech, the most important information
available about the spectral envelope is captured by the spectrum
sampled at pitch harmonic frequencies. If the spectrum between
pitch harmonics is smooth, interpolation methods can be used to
retrieve the spectrum spline, abeit with high sensitivity to pitch
estimation errors. Instead, we propose a different approach called
harmonic weighted spectrum (HWS) estimation. Given S, (W)

the magnitude spectrum of input speech, HWS is defined as

H\NS(W) =W, (W)’Sf (W) @
1W,, w is pitch harmonic

where —
W, ) %L otherwise

As shown in Figure 1, the filter log-energy is calculated from the

HWS and followed by DCT to generate the cepstral coefficients.

In our clean speech simulations, Wy, was set to 100 for voiced
sounds and 10 for transitional sounds. The HWS of voiced
speech reflects the spectrum spline at harmonic points. In the
case of unvoiced speech, HWS is simply the power spectrum.
The HWS of transitional speech represents the power spectrum
with emphasis on quasi-harmonic points. Therefore, when
combined with mel-scaled band-pass filtering, HWS can be
effectively used to extract parameters that characterize the
spectral envelope for the three classes of speech frames.

E. Within-filter amplitude compression

It is widely recognized that auditory properties can be exploited
to improve automatic speech recognition. Perhaps the most
notable example is the common use of band-pass filters of
broader bandwidth at high frequencies, according to the
frequency resolution of the human ear. MFCC implements this
by mel-scaled spacing, and PLP employs critical-band spectral
resolution.  Another important aspect, the perceptua
transformation of the spectrum amplitude, is handled in radically
different ways by the leading front-end systems. PLP applies the
equal-loudness curve and the intensity-loudness power law to
better exploit knowledge about the auditory system [7], but
requires scale normalization, which was experimentally found to
have a critical impact on the overall recognition performance.
MFCC sacrifices some perceptual precision and circumvents this
difficulty by approximating the auditory curve with alogarithmic
function that offers the elegant level-invariance properties.

In an attempt to “enjoy the best of both worlds’, we apply the
intensity-loudness power-low (here we use cubic-root amplitude
compression for clean speech) within each filter and compute the
log energy over dl filters. Hence,

Sw) = [sw)) % @
E =log(E) 1£iEM

where Sg) is the compressed spectrum and E is the log energy

for band-pass filter i. The resulting spectrum representation can
significantly reduce the amplitude variation within each filter,
without degradation of the gain-invariance properties and, since
the filter energy levels are still represented in logarithmic scale,
without recourse to normalization.

3. EXTENSION OF PHCC TO NOISY
ENVIRONMENTS

Although PHCC was initially proposed as a more accurate front
end for clean speech recognition [4], it can also be extended to
noisy speech recognition. To achieve this goal, several anti-noise
modifications are applied to our previously proposed PHCC
method.

A. Modified weight function for the HWS

The advantages of spectral envelope representation over
conventional smoothed spectrum representation are less obvious
in noisy environments. On the one hand, the harmonic spectrum
estimation discards the variations in the valleys between
harmonic locations caused by the background noise, which leads
to more robust spectral representation. On the other hand, the
original harmonic structure in voiced and transitional speech
may be blurred significantly by the input additive noise,
especially in high frequency regions. A solution to these
problems calls for a more effective weight function for the HWS.

Here we propose a modified weight function for HWS estimation
in noisy environments. A new parameter, harmonic confidence,
isdefined as

a

H = max R(t)

where R(t) is the spectro-temporal autocorrelation criterion
defined in [4][5].

The harmonic weight of (1) is now modified to

w, () = i max(Le(Ha‘h)*g), ifw £ w,ispitchharmonic
" %L otherwise

where wr is the cut-off frequency. In the modified HWS
computation, the harmonic-based spectral envelope is
emphasized in the low frequency zone below w;, whose
harmonic structure is more robust to additive noise. The
conventional smoothed spectrum is retained in the high
frequency zone above wy. In addition, the weight value depends
on the harmonic confidence H,, to account for the effect of noise
signals, where h is the harmonic confidence threshold, and gis
the weight factor. In our experiment, wr, h and g are set to 2.5
kHz, 0.5 and 10, respectively.

B. Pre-compression spectral masking

One major shortcoming of logarithm-based approaches
(including MFCC and PLP) is that the logarithm function is
unbounded as its argument tends to zero. It is thus very sensitive
to smal input values. This may greatly deteriorate the
representation robustness, as these low energy parts hold the
worst SNR under noisy environments. A common hoise
reduction technique is to apply a lower bound to the original
spectrum (so-called “masking” [8]) before the logarithm
operation. We found that this technique may be beneficialy
applied to the within-filter amplitude compression.

If s(w) is the original spectrum, the masking operation can be
defined as



Sw) = max (Sw).c)

where c¢ is a very small value, which may either be a fixed
number or vary depending on noise conditions.

C. Root-power representation

Another modification to improve the performance of PHCC
representation in noisy environments consists of replacing the
intensity-loudness power-low of (2) by

8w) =[Sw)|"

where ¢ is the root-power factor. While it was previously set to
afix value in clean speech recognition, it may now be adjusted to
the noise environment.

4. EXPERIMENT RESULTS

To test the performance of PHCC, experiments were first carried
out on a database of speaker-independent isolated Mandarin
digits collected in white and babble noise environment. The
recognition task consists of 11 pronunciations representing 10
Mandarin digits from 0 to 9, with 2 different pronunciations for
the digit “1” ([i] and [ia0]). The database includes 150 speakers
(75 male and 75 female) with one utterance per speaker. Of the
150 speakers, 60 male and 60 female speakers were selected at
random for training, and the remaining 30 speakers were set
aside for the test set.

In our experiment, 26-dimension speech features were used,
including 12 cepstra (MFCC or PHCC) parameters, log energy,
and their dynamics (time derivatives). We used an analysis frame
of width 30ms and step of 10ms, and a Hamming window. 9-
state continuous-density HMM was used with single Gaussian
pdf per state. The experiment results for PHCC and MFCC are
summarized in Table 1 and 2.

Table 1 shows that the error rate decreased by nearly 50% in
clean speech environment and by 23% to 36% in white noise
environment, and demonstrates consistent superiority of PHCC
over MFCC at differing noise levels. Table 2 shows that similar
improvement of PHCC is achieved in babble noise environment.
The main source of errors in recognizing Mandarin digits is the
confusion between vowels such as [a] and [€]. This is where the

Front-end Clean 20dB 10dB 0dB
MFCC 21% 4.8% 16.9% 45.6

PHCC 11% 29% 13.0% 291

Tablel. Test-set error rates of PHCC and MFCC for
speaker-independent isolated Mandarin digit recognition
under white noise environment

Front-end Clean 20dB 10dB 0dB
MFCC 21% 41% 133% | 352%

PHCC 11% 2.3% 105% | 27.4%

Table2. Test-set error rates of PHCC and MFCC for
speaker-independent isolated Mandarin digit recognition
under babble noise environment

spectral  envelope based PHCC substantially outperforms
conventional MFCC, hence the significant and consistent gains
observed in clean speech and noisy environments. The
improvement in noisy environment is also attributed to modified
weight function for HWS, and the within-filter root-power
amplitude compression following low-bound masking procedure.

5. CONCLUSION

The perceptual harmonic cepstral coefficients (PHCC) were
previoudy proposed as accurate features for clean speech
recognition. The spectral envelope is represented based on the
harmonic spectrum, which is a weighted version of the power
spectrum that emphasizes pitch harmonics. The method also
employs within-filter cubic root amplitude compression and
logarithmic level-scaled band-pass filtering to exploit both the
psychophysica and gain-invariance advantages of PLP and
MFCC, respectively. The PHCC front-end is modified for noise
speech recognition. The weighting function depends on the
prominence of harmonic structure in the frequency domain,
instead of on the voice/unvoice/transition classification. The
weakness of harmonic structures in the high frequency spectrum
is also considered in the weighting function design. A lower-
clipping of the power spectrum is enforced prior to amplitude
compression to enhance SNR , and hence noise robustness.
Experiments on Mandarin digit speech recognition in noisy
environments show significant performance gains of PHCC over
MFCC. Future work will focus on the extension of PHCC to
perceptual harmonic linear prediction.
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