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ABSTRACT

The time-of-arrival estimation error produced by mul-
tipath interference in a navigation receiver causes a strong
degradation of the positioning accuracy. We present a syn-
chronisation technique, operative in a navigation receiver
under multipath interference, that takes into account its spe-
cial conditions: low signal-to-noise ratio, DS-CDMA sig-
nals with long spreading codes, and very low data rates. The
paper begins introducing the signal model of a deterministic
antenna array. In this context, the system-specific features
translate into the assumtion that all times of arrival must be
inside a delay interval in which a truncated series approx-
imation of the reference signal is valid. The introduction
of this series in the signal model leads to an implementa-
tion based on a bank of correlators. Finally, the associated
minimization problem is solved using three minimization
algorithms: ESPRIT, IQML and a modification of Newton’s
Method. The latter calculates the maximum Likelihood es-
timator with a low computational burden.

1. INTRODUCTION

In a GPS or GNSS navigation receiver, the multipath in-
terference produces a bias in the time-of-arrival estimation
delivered by the DLL (Delay-Lock Loop), that results in a
degradation of the positioning accuracy. The simple mofi-
cations of the receiver, like reducing the early-late spacing
or changing the antenna pattern, do not eliminate this effect,
(see [1]). Under these circumstances, the DLL precision is
good enough to detect the data due to the long spreading
codes, but is too coarse for positioning. For example, in
the GPS C/A signal, the DLL precision is approximately
of 1 chip, and one data symbol is composed of 1023 chips,
while 1 chip corresponds to 300 meters in pseudorange (dis-
tance) accuracy. Several features of the navigation receiver
allow to simplify the synchronisation problem. First, we can
assume that the data modulation has been removed using
the estimation provided by the DLL. With this, the synchro-
nization consists in estimating the time of arrival of a known

signal with the interference of several delayed replicas. Sec-
ond, any signal replica with a delay greater than approxi-
mately 1.5 chips is eliminated, due to the cross-correlation
properties of the spreading code. Thus, we can fix a de-
lay interval around the DLL timing estimation in which all
times of arrival are contained. Third, if we use a sampling
frequency close to or above the Nyquist rate, (like 2 sam-
ples/chip), the navigation signal varies slowly in the delay
interval. All this implies that the reference signal is quite
regular in the delay interval, and can be approximated us-
ing a truncated series. The selection of the functions in the
series depends on the complexity of the resulting minimiza-
tion problem. If we use sincs or undamped exponentials, the
technique would be similar to a technique applied at the out-
put of a matched filter. In this paper, we develop the signal
model of a deterministic antenna array, which approximates
the navigation signal using a series of integral powers in-
stead, because they provide a good approximation when the
reference signal varies slowly in the delay interval, and the
resulting optimization problem has a smaller size.

2. SIGNAL MODEL

Consider an array of sensors with arbitrary geometry and
equal directional patterns. A direct wave and several de-
layed replicas s(t��1); s(t��2); : : : ; s(t��n) impinge the
antenna array. The signal at the i-th sensor, (i = 1; : : : ;m),
is

yi(t) =

nX
k=1

aiks(t� �k) + ni(t); (1)

where the known reference signal s(t) contains the spread-
ing code and no data modulation. The remaining elements
are:

aik Coefficient that depends on the i-th sensor pattern,
and on the complex amplitude and direction of ar-
rival of the k-th impinging signal.

�k Delay of the k-th signal replica.
ni(t) Complex White Gaussian noise process with vari-

ance �2 and uncorrelated among antennas.



The receiver takes N samples, relative to its own time
reference, at epochs t = t1; : : : ; tN . In what follows, we
denote with (�)T and (�)H the transpose and Hermitian op-
erations respectively.

The samples can be arranged in a matrix Y, in which
time varies column-wise and the sensor row-wise, (i.e. (Y) li
is the sample at time tl from the i-th sensor). The k-th wave
adds to this observation matrix s(�k)aTk , where

ak � [a1k; a2k; : : : ; amk]
T,

s(�) � [s(t1 � �); s(t2 � �); : : : ; s(tN � �)] T

are the time and spatial signatures respectively. So, Y can
be written as

Y =
nX

k=1

s(�k)a
T
k +N = S(� )AT +N; (2)

with
� � [�1; �2; : : : ; �n]

T . Vector of delays.
S(� ) � [s(�1); s(�2); : : : ; s(�n)]. Time signatures.
A � [a1; a2; : : : ; am]. Spatial signatures.
N � fni(tl)gli. Noise matrix.

At this stage, we apply the following assumption: The
delays belong to an interval [�a; �b] in which the s(tl � �)
function can be approximated using the following truncated
series with negligible error:

s(tl � �) �

Ns�1X
p=0

cp(tl)�p(�); l = 1; : : : ; N: (3)

This equation can be rewritten in matrix form by collect-
ing the coefficients cp(tl) and the functions �p(�) in sepa-
rate matrices. Define:

cp � [cp(t1); : : : ; cp(tN )]T;

C � [c0; : : : ; cNs�1] ;

�(�) � [�0(�); : : : ; �Ns�1(�)]
T;

�(�) � [�(�1); : : : ;�(�n)] :

(4)

Then, from (3):

S(� ) = [C�(�1); : : : ;C�(�n)] = C�(� ): (5)

Equation (5) can be substituted into (2) to obtain

Y = C�(� )AT +N: (6)

This model equation shows that the signal replicas are
contained in the span of C, or equivalently, that the projec-
tion onto the span ofC is a sufficient statistic. We can make
this fact explicit by using the qr decomposition,C = QR,
where Q and C have the same size, QHQ = I, and R is
full-rank, square and upper triangular. Now, we multiply (6)
byQH to condense the information in a smaller matrixYq:

Yq � Q
HY = R�(� )AT +QHN: (7)

The columns of Q provide the correlators to be used in
a practical implementation.

3. MAXIMUM LIKELIHOOD ESTIMATOR

The Maximum Likelihood Estimator can be obtained op-
erating with the delays only, if we eliminate the A matrix
using the Conditional Maximum Likelihood equation, (see
[2]):

�̂ = argmax
�

tr

�
�
h
�HRHR�

i�1
�HRHYqY

H
qR

�
;

(8)

where “tr” is the trace operator, and we have omitted the
� dependency for clarity. This equation can be restated in
terms of a matrix�? that spans the orthogonal complement
to �, if such matrix is available:

�̂ = argmin� tr

�
�?

h
�H
?
R�1(R�1)H�?

i�1
�H
?
�

R�1YqY
H
q (R

�1)H
o
:

(9)

4. MINIMIZATION ALGORITHMS

In this section, we adapt the ESPRIT, IQML and Newton’s
algorithms in order to calculate �̂ in either (8) or (9) when
�p(�) = �p. The application of ESPRIT and IQML to a
sum of undamped exponentials can be found in [3] and [4],
respectively.

4.1. The ESPRIT algorithm

This algorithm exploits the shift invariance property of the
matrix�. We present an adaptation of the algorithm in [3].
Let us denote with two sub-indexes (�)rs the sub-matrix that
contains from the r-th to the s-th column, r � s. Since �
is a Vandermonde matrix, the rank of

�r+1;s+1 � ��r;s (10)

is reduced by one if � = �k for any k = 1; : : : ; n. Recall-
ing (7), we can repeat the same procedure with the matrix
R�1Yq, and look for an approximated rank reduction of

(R�1Yq)r+1;s+1 � �(R�1Yq)r;s: (11)

These � values are the generalized eigenvalues of the
pencil,�
(R�1Yq)r+1;s+1(R

�1Yq)
H
r;s; (R

�1Yq)r;s(R
�1Yq)

H
r;s

�
;

(12)

and provide the estimation �̂ . Reference [5] contains further
details on the definition and properties of the pencil of two
matrices.



4.2. The IQML algorithm

The Vandermonde structure of� can be used to form a real
polynomial b0 + b1� + : : : + bn�

n with roots �1; : : : ; �n.
Then, the vector bH � [b0; : : : ; bn] follows bH�1;n+1 = 0.
This allows us to obtain a matrix that spans the orthogonal
complement to �, by placing shifted replicas of b in con-
secutive columns, i.e.,

�? �

2
6664
b 0 : : : 0
0 b : : : 0
...

...
. . .

...
0 0 : : : b

3
7775 : (13)

Given the special structure of �?, we can see that the
product �H

?
v depends linearly on b for any vector v. So,

we can reorder the elements of v in a matrix Mfvg that
follows,

�H
?v =Mfvgb: (14)

Now, we can operate on (9) using this equation and the
properties of the trace to obtain the minimization problem
in terms of b:

�̂ = arg min
b real

bHKb; (15)

where

K �

mX
i=1

Mfyq;ig
H
h
�H
?
R�1(R�1)H�?

i�1
Mfyq;ig;

(16)
and yq;i is the i-th column of Yq. Note that K depends on
b through�?.

The IQML (Iterative Quadratical Maximum Likelihood)
algorithm iterates on b. Given the result of the q-th iteration
b(q), it calculates K first using b(q), and then b(q+1) by
minimizing (15), which is a quadratical problem when K
is fixed. The application of this algorithm with undamped
exponentials can be found in [4].

4.3. The Modified Newton’s Method

The classical Newton’s Method, updates the approximation
� q with the formula � q+1 = � q + H�1q gq, where Hq is
the Hessian and gq the gradient of the cost function in (8).
This method fails if�Hq is not positive definite. In order to
avoid this problem, we load the diagonal using the iteration
� q+1 = � q + (H�1q + �qI)gq, where �q is chosen to make
�(H�1q + �qI) positive definite.

5. SIMULATION RESULTS

The three algorithms described in the previous section have
been simulated in a multipath scenario in which a direct sig-
nal and one multipath replica impinge the antenna array. We

summarize the technical details for each parameter in the
signal model:

� s(t). DS-CDMA signal composed of a Gold code
with length 1023. The pulse shape is a root-raise co-
sine with roll-off factor � = 0:2. The sampling rate
is 2 samples/chip.

� aik. Spatial signatures corresponding to the angles
of arrival relative to the broadside of �1 = 30o for
the direct signal, and �2 = 80o for the multipath
replica. The antenna array is linear with sensors sep-
arated �=2. The direct signal at the output of the sen-
sors is 10dB stronger. The carrier phases of both sig-
nals are chose randomly in each trial of the simula-
tion.

� nit. The signal-to-noise ratio in the samples after av-
eraging the correlation during N code periods is ap-
proximately S=N(dB) = �23+ 10 log10(N). This is
a typical value of the GPS C/A signal, in which aver-
aging N = 200 code periods produces S=N = 0dB.
(See [1]).

� �1; �2, [�a; �b]. Signal delays equal to 0:1 and 0:4
chips respectively. The delay interval is [�2; 2] chips.

� n;m;Ns. The number of signal replicas is known
(n = 2), the number of sensors is m = 10, and the
approximation degree is Ns = 14.

� tl; N . The sample epochs are taken with a rate of 2
samples/chip during an integer number of code words.

The truncated series approximation in (3) has been ob-
tained from an initial high order Taylor series of s(tk��) for
all k = 1; : : : ; N . Then, the Chebyshev polynomials have
been used to generate a lower order approximation with an
error that is uniformly distributed in [�a; �b], which is very
close to the optimal Remez approximation. In this proce-
dure, we have followed the chapter dedicated to the evalua-
tion of functions in [6].

5.1. Accuracy performance

Figure 5.1 shows the Root Mean Square delay error for dif-
ferent signal-to-noise ratios. We can see that the IQML and
the Modified Newton’s Method perform much better that
the ESPRIT algorithm. The Modified Newton’s Method is
always slightly better than the IQML method, because the
latter uses the constraint set fb : bi realg, while the exact
constraint set is fb : b0+ b1� + : : :+ bn�

n with real rootsg.
In the simulation, the ESPRIT estimation was used to ini-
tialize the IQML algorithm and the Modified Newton’s
Method.
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Fig. 1. Root Mean Square error of the direct signal delay
estimator,

p
Ef(�1 � �̂1)2g.

5.2. Computational Burden performance

Figure 5.2 shows the computational burden of the three al-
gorithms. We can see that ESPRIT has almost a constant
burden, while the Modified Newton’s Method is about 8
times faster that the IQML. This is because the IQML al-
gorithm must recalculate in each iteration the K matrix in
(16). In the Modified Newton’s Method, the calculation of
the value, the gradient and the Hessian of the cost func-
tion using the analytical expressions is very efficient; in
the current simulation, it takes only about three times the
number of flops required to calculate the value of the cost
function alone. All algorithms require a higher number of
iterations to converge for lower signal-to-noise ratios, and
consequently a higher computational burden.

6. CONCLUSION

We have introduced a signal model that takes into account
the special features of a satellite navigation system. Its
specific feature is the introduction of a truncated series ex-
pansion that approximates the reference signal. The model
leads to an implementation based on a bank of correlators.
The simulations have compared the performances of the
ESPRIT, IQML and Modified Newton’s algorithms when
applied to solving the associated minimization problem.
The results show that the Modified Newton’s Method ac-
tually calculates the Maximum Likelihood estimator, and
the IQML algorithm achieves almost the same root mean
square error. In terms of complexity, ESPRIT has an almost
constant computational burden, while the Modified New-
ton’s Method shows a much smaller (8 times) burden that
the IQML algorithm, due to the efficient calculation of the
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Fig. 2. Computational burden in number of floating point
operations.

gradient and the Hessian of the cost function.
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