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ABSTRACT

In thispaperanalgorithmto blindly compensateero-mem-
ory nonlineardistortionsof speechwaveformsis derived
andanalyzedThis methodfindsamaximum-likelihoodes-
timate of the distortionwithout a priori knowledgeof the
microphonecharacteristichy using the expectation-max-
imization algorithm. The autorgyressie signalmodel co-
efficients are solved jointly with the nonlinearity estimate
createdby anextendedKalmanfilter. Also, anew family of
nonlinearfunctionsis developedor usewith thisalgorithm,
althoughthemethodcanestimatehe shapeof any paramet-
ric zero-memorynonlinearity Thesenonlineardistortions
candegradespeecltrecognitionrates,yetlower the percep-
tual quality only slightly. The compensatiomlgorithmim-
provesautomaticspeechrecognitionof distortedspeector
avarietyof suchnonlinearities.

1. INTRODUCTION

It is well known that speectrecognizerdrainedunderone
setof conditionsdo not performwell whenusedunderother
conditions.Thetrainingdatais usuallyrecordedn quieten-
vironmentswith high-qualitymicrophones.The new ervi-
ronmentusuallyhasa very complicatedstructureincluding
noise,reverberation,and nonlineareffects. The nonlinear
corruptioncanbecreatedatseveralplacesncludingtheam-
plifiers andmicrophonesin addition,the characteristicef
this new ervironmentmay not be known prior to recogni-
tion.

Many methodshave beendevelopedto modelandcom-
pensatefor linear reverberationand additive noise. How-
ever, nonlineareffects on speechrecognitionapplications
have beenlessthoroughlyinvestigated. Methodshave in-
cludednonlinearcompensatioffior spealer recognitionap-
plications[1] [2] andfor generalGaussiarinput data[3].
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In thesestudies polynomialmodelstrainedon steredtrain-
ing data [1] [3] and non-parametriczero-memorymod-
els basedon the cumulative densityfunction of the speech
[2] were tested. In this paper a generalmethodfor es-
timating compressie and expansve nonlinearitiesusing a
parametricmodelwith single-microphonelataat recogni-
tion timeis derived. By usinga structuresimilar to iterative
Wienerfiltering [4], the algorithm producesa maximum-
likelihood estimateof the nonlinearityparameters A new
family of functionsfor parameterizingnonlinearitieds cre-
atedfor this algorithm. Also, the effect of compensating
variousnonlinearitieon speechrecognitionaccuray is dis-
cussed.

2. NONLINEARITY MODEL

To estimatethe distortionon the speecha modelis neces-
sary Theobsenationy[n] is givenby

yln] = fa,p(s[n]), 1)

wheres[n] is theinput waveform,and f, s (x) is amemo-
rylessnonlinearityparameterizethy o and3. This nonlin-
earitymustbe constrainedothat
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It is alsopreferablefor the derivativesof the function and
its inverseto have a continuousclosedform. The function
shouldalsocornvergeto a linear function for somea. The
nonlinearitygivenby
—3W(aB|z|?)
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zedl® a<0
satisfiestheseconstraints. The W(-) termis Lamberts W
function[5], whichis the functionalinverseof ze* andcan
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Figurel: Examplesof the nonlinearity
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Figure2: Block diagramof iterative algorithm

be approximatedisingthe sumof a polynomialanda poly-
nomialof log(1 + x) givenby

N M
W(z) =~ Z izt + Z Bi(log(1 + z))7. 4)
i=0 j=1

This nonlinearityfunctionhasseveraladvantageskFirst,
its inversecan be written simply as fo:b(w) = f_ap(®).
In addition, the derivativeswith respecto z, «, andj3 can
all bewritten in closedform andare continuousacrosshe
domain,includinga equalto zero. Severalexamplef pos-
siblefunctionsareincludedin Figure 1. Within theseplots,
themagnitudeof o rangedrom 0.0 to 5.0, with thefunction
becomindesslinearasthe magnitudeof « increases.

3. ALGORITHM
The speechdatais assumedo be autorgressve and sta-

tionary in blocks of 25 ms. Therefore,the signal can be
modeledas

s[n] = Zaks[n — k] + w[n]. (5)

By performingthe nonlinearityon both sidesof the equa-
tion and assuminghat the residualremainsa white noise

processthe obsenationsareexpressedy

yln] = fx (Z af ! (yln — k])) +oln]  (6)

wherep is thevocaltractmodelorder, a;, arethelinearpre-
diction coeficients, fx () is the nonlinearity and ! ()
is its inverse.The notationusedfor the nonlinearityis now
parameterizedy the vector x. For the nonlinearity de-
scribedabove, x is equalto (a 8)*. The goal of the al-
gorithm is to jointly estimatethe nonlinearity x, andthe
linear predictioncoeficients,ay,, from the obsenations.

This joint estimationproblemcan be castinto the in-
completedataform solvedby theexpectation-maximization
(EM) algorithm. The obsereddatais y andthe complete
data,z, is the actualspeechwaveform, s, andthe nonlin-
earity parameterx. The completedatahasa pdf equalto
p(z|0), wheref containsthe modelparametershatinclude
the LP coeficientsa,, theresidualvariances2, the nonlin-
earity meanx, andthe nonlinearitycovarianceP,. Since
s andx are independentind shareno model parameters,
the processingf p(x|f) andp(s|f) canbe doneseparately
at eachiteration. The sufficient statisticsfor describingthe
distribution p(z|@) arers, the pth orderautocorrelatiorse-
quenceof s, andthe meanandcovarianceof x.

During the expectationstep,the sufficient statisticsare
estimatedThe conditionalautocorrelations

N

Z s[i]s[i — k]

i=k

rs(k) = E

Y 61‘| ) (7)

whereg; is the estimationof § atthe endof iterationi. By
assuminghatthevarianceof x is sufficiently small,

N
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Next, theconditionalexpectatiorof thenonlinearityparam-
eters,

x=FE [x|y76i] ’ (9)

is the minimum meansquareestimatorof x. This canbe
approximatedy using the extendedKalmanfilter (EKF).
The nonlinearobsenationequationgivenby Equation 6 is
linearizedat eachsampleto derive the EKF [6].

In the maximizationphasethe LP coeficients, a, ;+1
ando?, ,, arecalculatedy usingtheautocorrelatiomethod
ontheconditionallyestimated-s.

The algorithmfor estimatingthe nonlinearityfor a sin-
gleblockis givenin Tablel. In the singleblock algorithm,
%; and §;[n] arethe estimatesof the nonlinearityand the
speechsignal after iterationi. Theseare generatedising
ar,; ando?, theestimated_PC coeficientsat thisiteration.



This algorithmhasno dependencen the nonlinearmodel
used althoughall experimentsn this paperusethe nonlin-
earitydescribedn Section2. Sincethe nonlinearitieshave
their largesteffect on the high-enegy segments this algo-
rithm is performedon the M highestenegy blocks of the
signalto be compensated.

Single block estimation and compensation algorithm:

Initialize
200)= (5 ) = (5 ) dulil = ot
Iterates =1,...

1) Autocorrelationmethod:
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2) ExtendedKalmanFilter,n =0,... ,N —1:
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%i(n+1) =%;(n) + K(n)v(n),

P(n+1)=(I-K(n)Js(n)) P(n),

Jr(n) = % <fx (Z an,ifx ' (yln — k])))
k=1

3) Estimatewaveform:;
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Tablel: Singleblock compensatiomlgorithm

Let §)[n] andx(*) be the final estimatesof the sig-
nal and nonlinearityin block k, respectiely. Becausehe
all-pole modeldoesnot fit somephonessuchasnasalsand
nasalizedsowels,theiterationdoesnot alwayscorvergeto
reasonable/alues. Theseblocks are discardedo createa
final working set.

To choosehe parametersa measuref the nonlinearity
mustbedefined.Sincethequantityof interestis thenonlin-
earity's effect on the waveform at the extrememagnitudes,
this measurey, is givenby

_ max|§®)[n]|
& = max [y [n]] (10)

Finally, the nonlinearityassociatedvith the medianvalue
of thismeasuremeris chosen

g = glomegianet) (11)
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Figure3: Estimationof Erf nonlinearity

The nonlinearityis assumedo be slowly varying, so this
estimatecanbe usedto compensatacrosshe entirewave-
formto get

8[n] = fz ' (y[n)). (12)

Relevantrecognitionparameterssuchasthemel-frequenyg
cepstrakoeficients,canbe computedrom this estimate.

4. EXPERIMENT

To provideatestingervironmentfor differentcompensation
algorithms,a connectedligit recognizemwasimplemented
using the automaticspeechrecognitionsoftware package
createdoy the Institutefor SignalandinformationProcess-
ing at MississippiState[7]. This systemwhichwastrained
usingtheTIDIGITS corpus,usescross-vord triphonemod-
elsasthebaseunit. EachhiddenMarkov modelconsistsof
threestateswhile eachcontinuousdensitystateuseseight
Gaussiamixtures. Thesemodelsusemel-frequenyg cep-
stral coeficient (MFCC) featurevectorssampledevery 10
ms. In addition, the front-endusescepstralmeannormal-
ization (CMN) to remove ary constantbiasin the feature
vectors. This systemproducesa word error rate (WER) of
0.9%0ntheTIDIGITS testset.

Thismethodhasbeentestedon speecttorruptedoy dif-
ferentnonlinearities. The functionin Figure3 is a nonlin-
earity basedon the error function. The approximationwvas
determinedusing the single block algorithm, shaving the
algorithm’s ability to approximatenonlineareffectsthatdo
notfit themodelexactly.

The algorithm was also testedfor speechrecognition
by usingdifferentsyntheticnonlinearitiesonthe TIDIGITS
data. For theseexperimentsthe parametersV/, L, p, and
N weresetto 20, 3, 8, and200, respectiely. Thedatawas
distortedusing fs,3(x), an error function-basedonlinear
ity, anda hardlimiter. Thesefunctionsareshavn in Figure
4. Thesignalsgeneratedby using f_5 3(z), the polynomial
0.2z +0.42° +0.42°, andasoftthresholdestedhemethod
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on expansve nonlinearities. Thesefunctionsare shovn in

Figure5. Theltakura-Saitmbjective quality measurements

for thesalifferentdatasetsareincludedin Table3. Because
the distortionlevels are extremely varied acrossthe wave-
form, boththeaveragemeanandmaximumdistancesvithin
thedistortedcorpusarecalculated.Theresultsof therecog-
nition experimentsarelistedin Table2. Sincethedistortion
is nonlinearthereis noconstanbiasin theMFCCs. For this
reason,the CMN algorithmimprovesthe recognitionrate
only slightly. Thecompensatiomethodeffectively reduces
the measuredlistortion and improvesrecognitionratesin
speechdistortedby thesmoothnonlinearitiesput is farless
effective at improving the limited andthresholdedspeech.
Thisis expected pecauseo zero-memorynversefunction
existsto reconstructhesesignals.

5. CONCLUSIONS

Zero-memorynonlinearitiescan have minor effectson the
objective measureof speechquality, yet significantly de-
gradethe error ratesof automaticspeechrecognitionsys-
tems.The presentedlgorithmenhancespeectwaveforms
distortedby one-to-onenonlinearitiesandimprovesrecog-

| Baseline Word Error Rate: 0.9% |

Nonlinearity Word Error Rate
Original | Compensated
f5.3(x) 2.7% 1.0%
0.2Erf(2.5z) 2.9% 1.1%
HardLimit 5.2% 4.6%
fos3(x) 3.7% 2.1%
Polynomial 6.1% 2.2%
Soft Thresh 9.6% 9.8%

Table2: Recognitionusingnonlinearitycompensation

Nonlinearity | Mean Distance | Max Distance

Orig | Comp | Orig | Comp
fs,3() 0.046| 0.014 | 0.436| 0.145
0.2Erf(2.5z) | 0.045| 0.028 | 0.452| 0.295
HardLimit 0.087| 0.103 | 0.838| 0.965
fo53(2) 0.129| 0.059 | 1.10 | 0.473
Polynomial | 0.172| 0.053 | 1.31 | 0.254
SoftThresh | 0.199| 0.207 | 2.05 | 2.05

Table3: Itakura-Saitadistanceof speech

nition rateswithout microphone-specifitraining data. Fu-
ture work includesthe investigationof additive andcornvo-
lutional noiseon this method,andtheinclusionof theseef-
fectsinto the estimationframenork.
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