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ABSTRACT

In thispaper, analgorithmtoblindly compensatezero-mem-
ory nonlineardistortionsof speechwaveforms is derived
andanalyzed.Thismethodfindsamaximum-likelihoodes-
timateof the distortionwithout a priori knowledgeof the
microphonecharacteristicsby using the expectation-max-
imization algorithm. The autoregressive signalmodelco-
efficientsaresolved jointly with the nonlinearityestimate
createdby anextendedKalmanfilter. Also, anew family of
nonlinearfunctionsis developedfor usewith thisalgorithm,
althoughthemethodcanestimatetheshapeof any paramet-
ric zero-memorynonlinearity. Thesenonlineardistortions
candegradespeechrecognitionrates,yet lower thepercep-
tual quality only slightly. Thecompensationalgorithmim-
provesautomaticspeechrecognitionof distortedspeechfor
a varietyof suchnonlinearities.

1. INTRODUCTION

It is well known that speechrecognizerstrainedunderone
setof conditionsdonotperformwell whenusedunderother
conditions.Thetrainingdatais usuallyrecordedin quieten-
vironmentswith high-qualitymicrophones.Thenew envi-
ronmentusuallyhasa very complicatedstructureincluding
noise,reverberation,andnonlineareffects. The nonlinear
corruptioncanbecreatedatseveralplacesincludingtheam-
plifiers andmicrophones.In addition,thecharacteristicsof
this new environmentmay not be known prior to recogni-
tion.

Many methodshavebeendevelopedto modelandcom-
pensatefor linear reverberationandadditive noise. How-
ever, nonlineareffects on speechrecognitionapplications
have beenlessthoroughlyinvestigated.Methodshave in-
cludednonlinearcompensationfor speaker recognitionap-
plications[1] [2] and for generalGaussianinput data[3].

This work wassupportedby the Texas InstrumentsLeadershipUni-
versityProgram.

In thesestudies,polynomialmodelstrainedon stereotrain-
ing data [1] [3] and non-parametric,zero-memorymod-
els basedon the cumulative densityfunctionof the speech
[2] were tested. In this paper, a generalmethodfor es-
timating compressive andexpansive nonlinearitiesusinga
parametricmodelwith single-microphonedataat recogni-
tion time is derived.By usingastructuresimilar to iterative
Wienerfiltering [4], the algorithmproducesa maximum-
likelihoodestimateof the nonlinearityparameters.A new
family of functionsfor parameterizingnonlinearitiesis cre-
atedfor this algorithm. Also, the effect of compensating
variousnonlinearitiesonspeechrecognitionaccuracy is dis-
cussed.

2. NONLINEARITY MODEL

To estimatethedistortionon thespeech,a modelis neces-
sary. Theobservation ��� ��� is givenby��� �������
	�� 
������ ������� (1)

where ��� ��� is the input waveform,and ��	�� 
������ is a memo-
rylessnonlinearityparameterizedby � and � . This nonlin-
earitymustbeconstrainedsothat�� � �
	�� 
���� �"!!!!$#&%�' �)(+* � � �-, (2)

It is alsopreferablefor the derivativesof the function and
its inverseto have a continuous,closedform. Thefunction
shouldalsoconvergeto a linear function for some � . The
nonlinearitygivenby�
	�� 
.��� �/� 0 �2143.5687:9 	"
 ; # ; 6=< �?>A@�21 	B; # ; 6 �?CA@ (3)

satisfiestheseconstraints.The D �FE$� term is Lambert’s W
function[5], which is thefunctionalinverseof � 1 # andcan
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Figure1: Examplesof thenonlinearity
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Figure2: Block diagramof iterativealgorithm

beapproximatedusingthesumof apolynomialandapoly-
nomialof GIH�J �F(LKM� � givenbyN ��� �LOQPR S %�' �

S � S KUTRV %XW � V � GIH�J �Y(LK+���Y� V , (4)

Thisnonlinearityfunctionhasseveraladvantages.First,
its inversecanbe written simply as � 3 W	�� 
 ��� �Z�[� 3 	�� 
 ����� .
In addition,thederivativeswith respectto � , � , and � can
all bewritten in closedform andarecontinuousacrossthe
domain,including � equalto zero.Severalexamplesof pos-
siblefunctionsareincludedin Figure1. Within theseplots,
themagnitudeof � rangesfrom @�, @ to \ , @ , with thefunction
becominglesslinearasthemagnitudeof � increases.

3. ALGORITHM

The speechdatais assumedto be autoregressive and sta-
tionary in blocks of 25 ms. Therefore,the signal can be
modeledas ��� ����� ]R^ %_W�` ^ ��� �:a+b��8KMcd� ��� , (5)

By performingthe nonlinearityon both sidesof the equa-
tion andassumingthat the residualremainsa white noise

process,theobservationsareexpressedby��� ��� �e�=fhgi]R^ %XWB` ^ � 3 Wf ����� �jakb����mleKMn�� ��� (6)

whereo is thevocaltractmodelorder, ` ^ arethelinearpre-
diction coefficients, � f ��� � is thenonlinearity, and � 3 Wf ��� �
is its inverse.Thenotationusedfor thenonlinearityis now
parameterizedby the vector p . For the nonlinearity de-
scribedabove, p is equalto � �i� �Yq . The goal of the al-
gorithm is to jointly estimatethe nonlinearity, p , and the
linearpredictioncoefficients, ` ^ , from theobservations.

This joint estimationproblemcan be castinto the in-
completedataform solvedby theexpectation-maximization
(EM) algorithm. The observeddatais r andthe complete
data, s , is the actualspeechwaveform, t , and the nonlin-
earity parameter, p . The completedatahasa pdf equaltoo � s2u v � , where v containsthemodelparametersthatinclude
theLP coefficients ` ^ , theresidualvariancew�x , thenonlin-
earity mean yp , andthe nonlinearitycovariancez # . Sincet and p are independentand shareno model parameters,
theprocessingof o � p-u v � ando � t8u v � canbedoneseparately
at eachiteration. Thesufficient statisticsfor describingthe
distribution o � s u v � are {}| , the o th orderautocorrelationse-
quenceof t , andthemeanandcovarianceof p .

During the expectationstep,the sufficient statisticsare
estimated.Theconditionalautocorrelationis{~| ��b��/������PR S % ^ ��� �����4� ��a+b�� !!!!! r � v

S�� � (7)

where v S is theestimationof v at theendof iteration � . By
assumingthatthevarianceof p is sufficiently small,{ | ��bB�-O PR S % ^ � 3 W�f�� ����� ������� 3 W�f�� ����� �Xakb���� , (8)

Next, theconditionalexpectationof thenonlinearityparam-
eters, yp ����� p-u r � v S ��� (9)

is the minimum meansquareestimatorof p . This canbe
approximatedby using the extendedKalmanfilter (EKF).
Thenonlinearobservationequationgivenby Equation 6 is
linearizedateachsampleto derive theEKF [6].

In the maximizationphase,the LP coefficients, �` ^ �
SI� W

andw�xS�� W , arecalculatedbyusingtheautocorrelationmethod
on theconditionallyestimated{~| .

Thealgorithmfor estimatingthenonlinearityfor a sin-
gle block is givenin Table1. In thesingleblock algorithm,�p S and �� S � ��� are the estimatesof the nonlinearityand the
speechsignal after iteration � . Theseare generatedusing�` ^ �

S
and w xS , theestimatedLPCcoefficientsat this iteration.



This algorithmhasno dependenceon the nonlinearmodel
used,althoughall experimentsin this paperusethenonlin-
earitydescribedin Section2. Sincethenonlinearitieshave
their largesteffect on the high-energy segments,this algo-
rithm is performedon the � highestenergy blocksof the
signalto becompensated.

Single block estimation and compensation algorithm:

Initialize�p ' � @ �/�[� �� '�� 'A� ��� (@ � � �� ' � ��������� ���
Iterate �_��(4� ,},~,
1) Autocorrelationmethod:]R � %XW �` ^ �

S {���m� ��b�a����/�ia {���F� ��b����Xb��i(4� ,~,}, � o �w xS � { �� � � @ ��K ]R � %XW �` ^ �
S { �� � ��b��

2) ExtendedKalmanFilter, �h� @ � ,~,~, ����aA( :� �����L�� ������m¡ q¢ �����¤£�¡ ¢ �����Y ������m¡ q¢ ������K w xS
¥ �¦������-����� ���Ba+� �f � 9�§ < g�]R^ %_W �` ^ �
S � 3 W�f � 9�§ < ����� �¨a+b��©� l ��p S ���ZK�(=�/� �p S ������K � �����ª¦�������� ����ZK�(&�/�«��¬­a � �����m¡ ¢ �����ª�� ��������¡ ¢ �����/� �� p g��=f®g ]R^ %XW �` ^ �

S � 3 Wf ����� �jakb8�©�Fl¯l !!!!! f % �f � 9�§ <
3) Estimatewaveform:�� S � ������� 3 W�f � 9 P < ����� ���©�
Until ° �p S ���±�²a �p S 3 W ���±� ° x.³µ´ or � >A¶

Table1: Singleblock compensationalgorithm

Let �� 9 ^ < � ��� and �p 9 ^ < be the final estimatesof the sig-
nal andnonlinearityin block b , respectively. Becausethe
all-polemodeldoesnot fit somephonessuchasnasalsand
nasalizedvowels,the iterationdoesnot alwaysconvergeto
reasonablevalues. Theseblocksarediscardedto createa
final working set.

To choosetheparameters,ameasureof thenonlinearity
mustbedefined.Sincethequantityof interestis thenonlin-
earity’s effect on thewaveformat theextrememagnitudes,
this measure,· ^ , is givenby· ^ �¹¸�º
» u��� 9 ^ < � ��� u¸�º"» u � 9 ^ < � ��� u , (10)

Finally, the nonlinearityassociatedwith the medianvalue
of this measurementis chosenyp � yp½¼&¾ª¿�À�Á¤ÂmÃ~Ä ¾ªÅÆ Ç Æ�È , (11)
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Figure3: Estimationof Erf nonlinearity

The nonlinearityis assumedto be slowly varying, so this
estimatecanbeusedto compensateacrosstheentirewave-
form to get ���� ������� 3 W�f ����� ���©� , (12)

Relevantrecognitionparameters,suchasthemel-frequency
cepstralcoefficients,canbecomputedfrom this estimate.

4. EXPERIMENT

To provideatestingenvironmentfor differentcompensation
algorithms,a connecteddigit recognizerwasimplemented
using the automaticspeechrecognitionsoftware package
createdby theInstitutefor SignalandInformationProcess-
ing atMississippiState[7]. Thissystem,whichwastrained
usingtheTIDIGITS corpus,usescross-word triphonemod-
elsasthebaseunit. EachhiddenMarkov modelconsistsof
threestates,while eachcontinuousdensitystateuseseight
Gaussianmixtures. Thesemodelsusemel-frequency cep-
stral coefficient (MFCC) featurevectorssampledevery 10
ms. In addition,the front-endusescepstralmeannormal-
ization (CMN) to remove any constantbias in the feature
vectors.This systemproducesa word error rate(WER) of
0.9%on theTIDIGITS testset.

Thismethodhasbeentestedonspeechcorruptedby dif-
ferentnonlinearities.The function in Figure3 is a nonlin-
earitybasedon theerror function. Theapproximationwas
determinedusing the single block algorithm,showing the
algorithm’s ability to approximatenonlineareffectsthatdo
not fit themodelexactly.

The algorithm was also testedfor speechrecognition
by usingdifferentsyntheticnonlinearitieson theTIDIGITS
data. For theseexperiments,the parameters� , ¶ , o , and� weresetto É
@ , Ê , Ë , and É�@�@ , respectively. Thedatawas
distortedusing �"Ì~� Í
��� � , an error function-basednonlinear-
ity, anda hardlimiter. Thesefunctionsareshown in Figure
4. Thesignalsgeneratedby using � 3 Ì~� Í
����� , thepolynomial@�,$É �-K @�, Î � Í K @�, Î � Ì , andasoft thresholdtestedthemethod
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Figure4: Compressivenonlinearitiestested
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Figure5: Expansivenonlinearitiestested

on expansive nonlinearities.Thesefunctionsareshown in
Figure5. TheItakura-Saitoobjectivequalitymeasurements
for thesedifferentdatasetsareincludedin Table3. Because
the distortionlevels areextremelyvariedacrossthe wave-
form,boththeaveragemeanandmaximumdistanceswithin
thedistortedcorpusarecalculated.Theresultsof therecog-
nition experimentsarelistedin Table2. Sincethedistortion
is nonlinear, thereis noconstantbiasin theMFCCs.For this
reason,the CMN algorithmimprovesthe recognitionrate
only slightly. Thecompensationmethodeffectively reduces
the measureddistortionand improvesrecognitionratesin
speechdistortedby thesmoothnonlinearities,but is far less
effective at improving the limited andthresholdedspeech.
This is expected,becauseno zero-memoryinversefunction
existsto reconstructthesesignals.

5. CONCLUSIONS

Zero-memorynonlinearitiescanhave minor effectson the
objective measureof speechquality, yet significantly de-
gradethe error ratesof automaticspeechrecognitionsys-
tems.Thepresentedalgorithmenhancesspeechwaveforms
distortedby one-to-onenonlinearitiesandimprovesrecog-

Baseline Word Error Rate: 0.9%

Nonlinearity Word Error Rate
Original Compensated�"Ì~� Í���� � 2.7% 1.0%@B, É�Ï/ÐªÑ � É�, \ ��� 2.9% 1.1%

HardLimit 5.2% 4.6%� 3 Ì�� Í4����� 3.7% 2.1%
Polynomial 6.1% 2.2%
SoftThresh 9.6% 9.8%

Table2: Recognitionusingnonlinearitycompensation

Nonlinearity Mean Distance Max Distance
Orig Comp Orig Comp�"Ì�� Í���� � 0.046 0.014 0.436 0.145@�,$É
Ï/ÐªÑ � É�, \ � � 0.045 0.028 0.452 0.295

HardLimit 0.087 0.103 0.838 0.965� 3 Ì~� Í
����� 0.129 0.059 1.10 0.473
Polynomial 0.172 0.053 1.31 0.254
SoftThresh 0.199 0.207 2.05 2.05

Table3: Itakura-Saitodistanceof speech

nition rateswithout microphone-specifictrainingdata.Fu-
turework includesthe investigationof additive andconvo-
lutional noiseon this method,andtheinclusionof theseef-
fectsinto theestimationframework.
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