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ABSTRACT

This paper deals with the tracking of speech segments in audio
documents. We use a cepstral-based acoustic analysis and gaussian
mixture models for the representation of the training data. Three
ways of scoring an audio document based on a frame-level like-
lihood calculation are proposed and compared. Our experiments
are done on a database composed of television programs including
news reports, advertisements, and documentaries. The best equal
error rate obtained is approximately 12%.

1. INTRODUCTION

In this paper, we deal with the difficult problem of tracking speech
segments in audio documents containing speech, music, speech +
music, and noise segments. This problem has already been ad-
dressed in the literature for instance in [1, 2, 3, 4]. It is a very
important problem for audio indexing, as speech and music track-
ing is usually one of the first steps to index an audio document.

We propose here a tracking method using a cepstral-based acous-
tic analysis and a gaussian mixture modeling (GMM), and we test
three ways of scoring an audio document which are all based on
a frame-level log-likelihood calculation. We also compare GMMs
with diagonal or full covariance matrices. The goal here is to test
several system configurations to find what are the sensitive tuning
parameters for such a system.

Our algorithms are tested on a database composed of various tele-
vision programs in French including news reports, advertisements,
and documentaries.

2. METHODS

2.1. Gaussian Mixture Models (GMM)
A gaussian mixture model is represented by:

p(x) =

nX

i=1

�i � Ni(x;�i;�i);

where x is a feature vector, n the number of gaussian probability
density functions (pdf’s) in the mixture, �i the weight associated
with the pdf i, and Ni a gaussian pdf with mean �i and covariance
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matrix �i. The weights �i satisfy the two following properties:

�i 2]0; 1[ for 1 � i � n and
nX

i=1

�i = 1:

Given a sequence of feature vectors, a GMM is trained using the
expectation-maximization (EM) algorithm [5, 6].

2.2. Tracking Algorithms
To track speech segments in an audio document, two training
models are required: one model representing speech data, noted
S, which corresponds in our experiments to sponly and spmu data
(see section 3.1); and one model representing non-speech data,
noted �S, which corresponds in our experiments to muonly data
(see section 3.1).

The first phase of the tracking algorithm consists in calculating for
each feature vector the likelihood obtained with model S and the
likelihood obtained with model �S:

p(xtjS) =

nX

i=1

�
(S)

i
� Ni(xt; �

(S)

i
;�

(S)

i
);

and

p(xtj �S) =
nX

i=1

�
( �S)

i
� Ni(xt; �

( �S)

i
;�

( �S)

i
):

We now propose three ways of scoring based on these likelihood
calculations.

2.2.1. Smoothed Log-Likelihood Ratio (SLLR)
The first scoring is a smoothed log-likelihood ratio (SLLR). A log-
likelihood ratio is calculated for each feature vector of the audio
document:

R(xtjS; �S) = log p(xtjS)� log p(xtj �S)

The log-likelihood ratio is then smoothed over a sequence of
several consecutive feature vectors to attenuate its sharp
variations. The smoothing is done by calculating the arithmetic
mean of several consecutive vectors around the vector under
consideration, after applying to this sequence a Hamming window
w = fw�t0 ; :::; wt0

g of length 2t0 + 1:

s1(t) =

t0X

�=�t0

w� � R(xt+� jS; �S)

t0X

�=�t0

w�
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a) Scoring: SLLR. 1 gaussian pdf.
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b) Scoring: SLLR. 2 gaussian pdf’s.

Fig. 1. Results for gaussian pdf’s with full covariance matrices and
for various durations of the smoothing window (962ms, 1723ms,
2485ms, 3246ms, 4008ms, 4770ms, 5531ms, and 6293ms).
Scoring: SLLR.

Finally, s1(t) is compared to a threshold �1 and the correspond-
ing feature vector is classified as speech if s1(t) is higher than the
threshold, as non-speech otherwise.

The smoothing is entirely defined by the number l = 2t0 + 1 of
vectors used for the arithmetic mean calculation. Several values of
l were tested for each experiment reported.

2.2.2. Mixture Model (MM)
Let p(xtj�;S; �S) define the mixture between the likelihood of xt
given the model S and the likelihood of xt given the model �S. We
have:

p(xtj�;S; �S) = � � p(xtjS) + (1 � �) � p(xtj �S)

with
� 2 [0; 1]:

We can then define two other ways of scoring a feature vector xt.
The first one, that we will call MM, consists in estimating �̂ which
maximizes the quantity p(xt�t0 ; :::;xt+t0 j�;S; �S) in the sense of
the maximum likelihood:

s2(t) = �̂ = argmax
�2[0;1]

p(xt�t0 ; :::;xt+t0 j�;S; �S);

with

p(xt�t0 ; :::;xt+t0 j�;S; �S) =

t0Y

�=�t0

p(xt+� j�;S; �S):

�̂ can be estimated using the EM algorithm.

Finally, s2(t) is compared to a threshold �2 and the corresponding
feature vector is classified as speech if s2(t) is higher than the
threshold, as non-speech otherwise.

2.2.3. Generalized Likelihood Ratio (GLR)
We can also define the generalized likelihood ratio as:

s3(t) =

sup
�2[0;1]

p(xt�t0 ; :::;xt+t0 j�;S; �S)

t0Y

�=�t0

p(xt+� j �S)

Finally, s3(t) is compared to a threshold �3 and the corresponding
feature vector is classified as speech if s3(t) is higher than the
threshold, as non-speech otherwise.

3. EXPERIMENTS AND RESULTS

3.1. Database
For our experiments, we used a subset of a database provided by
the French national institute for audiovisual (INA) in the frame-
work of the European research project DIVAN. This subset was
composed of 6 CD-ROMS, noted CD1 to CD6, containing var-
ious extracts of television programs including news reports, ad-
vertisements, and documentaries. We labeled the whole subset in
function of four sound categories: sponly corresponding to speech
with no background, spmu corresponding to speech with a musi-
cal background, muonly corresponding to music only, and other
corresponding to various kind of noises. Table 1 gives the total
durations of each category for each CD-ROM.

CD sponly spmu muonly other Total

CD1 19’25” 7’42” 6’10” 2’15” 35’34”

CD2 0’48” 7’17” 5’38” 0’58” 14’43”
CD3 9’09” 0’52” 1’20” 0’59” 12’23”
CD4 8’32” 1’40” 1’44” 1’20” 13’17”
CD5 12’19” 1’34” 1’03” 0’28” 15’25”
CD6 10’43” 2’25” 1’10” 0’30” 14’48”

Table 1. Total durations of each category for each CD-ROM of the
database.

The CD-ROMS CD2 to CD6 were used for the training phase. We
trained three models for the three categories sponly, spmu, and
muonly. The model for speech data was obtained by combining
the model for sponly and the model for spmu with equal weights.
The model muonly was used as the model for non-speech data.
Finally, the tracking was done on CD1 without the segments of the
category other.



3.2. Acoustic Analysis
Each audio segment, sampled at 22.05 kHz, was decomposed in
frames of 10 ms extracted every 10 ms. A Hamming window
was applied to each frame. The signal was pre-emphasized with a
coefficient 0.95. For each frame, a fast Fourier transform was com-
puted and provided 256 square modulus values representing the
short term power spectrum in the 0-11025 Hz band. This Fourier
power spectrum was then used to compute 24 filterbank coeffi-
cients, using triangular filters placed on a linear frequency scale.
We took the base 10 logarithm of each filter output and multi-
plied the result by 10, to form a 24-dimensional vector of filter-
bank coefficients in dB. Then, we computed cepstral coefficients
c1 to c16 [7], augmented by their � coefficients (calculated over 5
vectors) [8], and by the � energy (calculated also over 5 vectors).
We finally obtained 33-dimensional feature vectors.

3.3. Evaluation
Results of the various systems were measured by a DET curve [9].
This representation is a way of showing all the possible operating
points of a system (false alarm rate vs. miss rate) corresponding to
various thresholds in a scale which makes the result curves rather
linear, when the distributions of scores for speech and non-speech
segments are both gaussian. For this task, the false alarm rate and
the miss rate were defined as follows:

RFA =
Number of non-speech vectors labeled as speech

Number of non-speech vectors

RMI =
Number of speech vectors labeled as non-speech

Number of speech vectors

3.4. Type of Covariance Matrices
In this section, we report results obtained with the smoothed log-
likelihood ratio (SLLR) score for various number of gaussian pdf’s
with full covariance matrices (Fig. 1) or diagonal covariance
matrices (Fig. 2).

The best results obtained with diagonal covariance matrices
correspond to 64 gaussian pdf’s. We tested 128 gaussian pdf’s
but the results degrade, which is probably due to the lack of data
to estimate the parameters of the GMMs.

The best results obtained with full covariance matrices correspond
to 1 gaussian pdf. We tested 4 gaussian pdf’s, but the results
degrade, probably also because of the lack of data to estimate the
parameters of the GMMs.

GMMs with full covariance matrices perform slightly better than
GMMs with diagonal covariance matrices (12 % of equal error
rate vs. 14 %). This may be due to the fact that the correlations
between various cepstral coefficients characterize very well one of
the two classes of sounds that we want to discriminate (probably
the music class).

A long smoothing window (between 4 and 6 seconds) performs
better than a shorter one (around 1 or 2 seconds), but the right value
to use depends on the configuration of the system. We tried longer
windows but the results degrade again. It is also very interesting
to notice that, in the full case, most of the DET curves converge to
the same values when the false alarm rate increases.

3.5. Type of Scoring
Fig. 3 gives the results for the three types of scoring using 1 gaus-
sian pdf with a full covariance matrix. When the duration of the

smoothing window is small, the SLLR score does not give as good
performance as the two other scores. But when the duration of the
smoothing window is between 1 and 5 seconds, the three scores
perform very similarly, and give an equal error rate of approxi-
mately 12 %. If the duration of the smoothing window is increased,
the performances degrade again.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented experiments on speech tracking in au-
dio documents using gaussian mixture models. Three scoring meth-
ods based on a frame-level likelihood calculation were proposed
and compared. And various configurations of the GMMs were
tested. The best result was obtained with a GMM composed of
one gaussian pdf with a full covariance matrix. In that configura-
tion, the optimal duration for the smoothing window was between
1 and 5 seconds, and the three scores performed similarly, giving
an equal error rate of approximately 12 %.

This work can be extended in several directions. First, we intend
to build a new model for non-speech data including noise data in
order to be able to apply speech tracking on the complete data
(including noise segments). We also want to apply our tracking
algorithm for music tracking complementary to speech tracking.
Finally, it would be interesting to study the distribution of the seg-
ment durations to correlate this distribution with the optimal dura-
tion for the smoothing window.
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a) Scoring: SLLR. 16 gaussian pdf’s.
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b) Scoring: SLLR. 32 gaussian pdf’s.
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c) Scoring: SLLR. 64 gaussian pdf’s.

Fig. 2. Results for gaussian pdf’s with diagonal covariance
matrices and for various durations of the smoothing window
(962ms, 1723ms, 2485ms, 3246ms, 4008ms, 4770ms, 5531ms,
and 6293ms). Scoring: SLLR.
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a) Scoring: SLLR. 1 gaussian pdf.
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b) Scoring: MM. 1 gaussian pdf.
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Fig. 3. Results for 1 gaussian pdf with a full covariance matrix
for the various scores and for various durations of the smoothing
window (100ms, 250ms, 500ms, 1000ms, 2000ms, 5000ms, and
10000ms).


