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ABSTRACT observed over the range of the unknown angle and Doppler pa-
rameters. The resulting fit error residuals are used in the Akaike
This paper presents the development and performance evaluatiomnformation Criterion (AIC) to deduce the correct model order and
of a methodology for distinguishing between mainlobe and side- thereby reject “false” sidelobe detections.
lobe detections that arise in adaptive radar systems operating in
adverse environments. Various adaptive detection test statistics
such as the adaptive matched filter (AMF), the generalized like-
lihood ratio test (GLRT) and adaptive coherence estimate (ACE),
and combinations of these, have been previously analyzed with re- . . . .
spect to their sidelobe rejection capabilities. In contrast to theseWe begin by considering two We!l-knovyn adaptive detection meth-
methods which are based on detecting a single target with knownOds.’ AMF and GLRT, as a starting point for our new method de-
direction and Doppler, the present method uses model order deter-sc'”b.ed below and also for performance comparison purposes. We
mination techniques applied to the AMF or GLRT data observed consider arV-element array and seek to determine the presence of

over the range of unknown angle and Doppler parameters. The de_?hnetor tmorltla s_ll_%nals ':‘hag olbser\éatlo? vec(:jtc;: (or sna:c_)s& m)t ltid
termination of model order, i.e., the number of signals present in € test cell. 1he methodology developed here applies to the gen-

the data, is made by using least-squares model fit error residualseral STtAP probltem v]:/here th? datatvgci;ocandbe ahconc?ter;ated
and applying the Akaike Information Criterion. Comprehensive space-time vector ot array element dala and coherent pulse sam-

computer simulation results are presented which demonstrate subples: howeve_r, the computer simulation results presented in section
stantial improvement in sidelobe rejection performance compared3 use only simulated spatial array data so our development here

to previous methods. will be n_1ain|y presented in that context. _
P Consider then that the AMF [3] and GLRT [1] metrics have
been computed as a function of angle (azimuth) and result in the

2. MAXIMUM-LIKELIHOOD MODEL ORDER
DETERMINATION USING AMF OR GLRT

1. INTRODUCTION following test:
~ 2
A variety of constant false-alarm rate (CFAR) adaptive detection de” R‘lx‘ 2 Hy
statistics have been developed and analyzed for radar target de- Jawr(0) = = == ‘w(e)Hx‘ 2 Kaavr, (1)
tection in adverse environments [1]-[8]. Adaptive beamforming, d(9)"R-"d() Ho

adaptive filtering and, generally, joint space-time adaptive process- . . . .
ing (STAP) methods are being increasingly considered for airborne whered(9) is thg §|gnal steering vectgr for anglgl.e., the _array
radar detection of low-Doppler targets immersed in ground clutter F€SPOnSe vectoR is the sample covariance matrix of the interfer-
and subiject to directional noise jamming. An important issue that €NC€ plus noise (whose true covariance matriR)sbased on an
needs to be considered is the sidelobe performance of these adagauxiliary set ofK" data vectors;, i = 1,... , K which share the
tive detection algorithms. “False” sidelobe detections can arise S&Me interference plus noise only covariance matrix with the test
due to undernulled interferences, intrinsically high sidelobes gen- datax

erated by the adaptive beamforming space-time algorithms used K

with limited data snapshots, and other reasons. This can result in R = 1 inX_H @)

an unacceptably high false alarm rate. Previous works have fo- K = v

cused on determining the sidelobe rejection performance of the

adaptive matched filter (AMF) test [3],[6], the generalized likeli- and Kaawr is the threshold which can be determined numerically
hood ratio test (GLRT) of Kelly [1], the adaptive coherence estima- for a given false alarmd. The hypothesis Hdenotes signal plus

tor (ACE) test and a cascade of AMF/ACE test [4] or AMF/GLRT noise and the null hypothesigldenotes noise only. An alternate
test [8]. It is to be noted that all of these previous methods are form is shown on the right side of (1) where an array weight vector
pased on applying gdaptnvz_a detection _crlte_rla developed for_ detect-w(e) can be defined as (6) — f{*ld(e)/ /d(e)Hﬁ—ld(e) .

ing a single target signal with known direction and Doppler in cor-

related noise. In contrast to this, the present work uses multiple Equation (1) represents the adapted array output for the test vec-
maximum-likelihood model order fits to the AMF or GLRT data tor x normalized by the output interference plus noise power.



In order to control the sidelobe response of the adaptive ar- whereRy /% is the square-root of the Hermitian positive-definite

ray, the weight vectorw(6) is often computed asv(f) =
R1d..(0) / V/don (6)" R d.1 (6) , whered,, (6) = d(6) ©

wr andwr is an appropriate taper or shading function, and
denotes the element-by-element Schur product.
The GLRT testis

J, [ Ha
wr®) % e, 3)

Jorr() = —8M8M8M——
(6) 1+ £x7R~'x Ho

where K is the threshold which can be determined for a given
false alarm Ba. The Jawr (6) or Jeirr(#) are evaluated at some

discrete set of points in the anglewhich covers the range of ex-
pected target angles. Note that as far as variation #vithcon-
cerned,JeLrr(0) is merely proportional ta/aur (#) since the de-

nominator in (3) does not depend explicitly on the search variable

6. An example of theJamr (#) function for a single target is shown

matrix Ry ! and||-|| denotes the Euclidean norm of a vectoet
Z = R, '/?Y, the “whitened” data vector arf,, = Ry '/*H.
Then,

Ju(a,©,) = ||1Z — Hy(0s)al)”. (10)
For a given®,, JuL is minimized with respect ta when
-1
a= [Hfj (@s)Hw(@S)} HY(0.)Z. (11)

Substitution ofa as given by (11) into (10) yields the weighted
least-squares residudl. as
Ju(8,0,) = ||(I-P()) Z||*, (12)

whereP(©,) = H,,(0,) [HY (0,)H,,(0,)] " HY (0,) isthe

in Figure 1. Note that if all peaks above the threshold, which has orthogonal projection operator adids the identity matrix. Equa-

been set for a probability of false alarmgaPof 10~¢, were to be

tion (12) can be further minimized with respectdq yielding the

considered detections the figure shows that there should be six demaximum-likelihood estimat®,. However, it is noted that this is
tections of which five of them would be false alarms (solid line). a nonlinear optimization problem which may be computationally
Even if a Chebyshev taper with50dB sidelobe level is used, there  expensive to solve form > 2. For the class of sidelobe detec-
are still two false detections (dashed line). The shading is only tion problems considered here, the targets are likely to be sepa-
partly effective in the presence of interferences, in this case onerated from each other by more than a beamwidth and the locations

jammer at—30 degrees.

Now assume that the test data vector containrget signals,
m =0,1,..., M where the maximum numbéd may be known
from system considerations. Then,

x =Dsa+n, 4)

whereD, = [d(6s1), -+ ,d(fsm)] is @N x m matrix of target
steering vectors anal is anm x 1 vector of complex amplitudes
of them signals. The complex value of thiwur (6) function rep-
resents the application of the weight vecte(d) to the vectorx
resulting in the expression

y(0) = w(0)"x = w(0)"Dsa+v(0), ()
wherev(8) = w(8)"n. We assume thaj(6) has been evaluated

at Kp distinct pointsfy, ... , 0k, , wherem < Kp < N. These
points would include the peaks of thiawr (¢) function. We have

Y1 w(61)"Dsa v(61)
: = : + : , (6)
YKp W(HKP')HDSa 0(9;(;,)
or, compactly,
Y =Ha+v, (7)

whereH = W7 D;, andW = [w(61),--- ,w(fx,)], andv =
[v(61),- - ,v(8xp)]T. The covariance matrix of is

R, = E[vv"] = W/'RW. (8)

of the peaks of the/avr (8) function (which can be readily com-
puted) provide reasonably accurate estimat®.pfnd are used to
evaluate (12).

The number of target signals is determined by applying the
procedure described above for model orders= 1,2,..., M
and choosing thatn for which the Akaike Information Criterion
[9],[10] given below is a minimum:

AIC(m) = — log(Likelihood functionja, ®,,m)
+ (number of independently
adjusted parameters in moglel

= Jw.(a,0,) + 3m, (13)

whereJML(a,C:)s) is given by (12) and the approximate estimate

O, discussed above is used. The method derived here is referred
to as the Multi-Target AMF (MT-AMF) method.

3. PERFORMANCE EVALUATION

The R of the GLRT test is given by [3]

(14)

P 1

FA,GLRT = m,
whereL =K +1— N, a =~/ (1+7), andy is the threshold
term of (3). The threshold for the AMF is determined by evaluating
the following integral using numerical integration and bisection
iterations as in [3]:

Under the assumption of Gaussian statistics for the interference

plus noise vecton, the maximum-likelihood estimates of the am-

plitude vectora and the angle®, = [0.1, - - , 8sm] are obtained
by minimizing the nonlinear weighted least-squares criterion

Ju(a,0,) = [Y —Ha]” R,' [Y — Ha]
2

= |re 1Y - Ha)|, ©)

1
fa(p; L+1,N —1)
P — 1
FA AMF /0 (1 + poawr) L dp, (15)

where

falsmm) = ¢ (mtm=D! oty _gymt (16)

n—1)l(m — 1)!
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is the central Beta density function, apds the loss factor which
considers the SNR loss due to finite number of snapshots in the —— Chebyshev -50d8 Shading
sample covariance matrix. The analytic form of the probability
of detection for a single source is also given in [3] which we ex-
cluded for brevity. Our Monte Carlo simulation results have been
confirmed to match these analytical curves.

We consider a linear equally spaced array of 10 elements with
half-wavelength spacing (nominal beamwidth = 12 degrees) for
all the simulations provided in this section. A noise jammer signal
of strength 40dB relative to thermal noise is placed 80 degrees
and the R is set to be 10°. The scanning angles are fror50 to
50 degrees in azimuth. A single source of varying SNR is placed at
broadside and the performance of the algorithms in single source
detection and false sidelobe rejections are compared. The AMF
detection only relies on the peaks above the given threshold, but \
the MT-AMF test takes the peaks and tests for model onder 1 S0 T T ey
and2. If m = 1 is decided, the overall peak is retained as an in-
dicator of a single signal and the other peaks are rejected. TheFig_ 1. Jame(0) function for a 20dB signal at broadsidd], = 10,
probability of detecting the mainlobe signal is plotted in Figure 2, K — 100, PFA= 10~°.
regardless of the number of peaks or model decisions, after 5000
Monte Carlo runs. We observe no loss in the detection for the MT-

AMF method. Then, the probability of false sidelobe detections

is plotted for the two algorithms in Figure 3. The AMF gives rise 5. REFERENCES
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AMF: SINGLE SOURCE DETECTION, N =10, P, = 10°°
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Fig. 2. Probability of detecting single mainlobe target signal using Fig. 5. Probability of detecting both sources withifil 0 degrees
AMF and MT-AMF. Note equal performances of the two methods. using AMF and MT-AMF. Note equal performances of the two.
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Fig. 3. Probability of false sidelobe detections using AMF and MT-
AMF. Note the substantial improvement of the MT-AMF method

Fig. 6. Probability of detecting both sources withial0 de-
grees using GLRT. Note the degraded performance, especially for
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Fig. 4. Probability of false sidelobe detections using tapered AMF Fig. 7. Probability of false sidelobe detections using GLRT. Note
weights (-50dB Chebyshev). Note significant improvement even good sidelobe rejection capability for small&rat the expense of
when taper is used. reduced detections of two sources (Fig. 6).



