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ABSTRACT

This paper presents the development and performance evaluation
of a methodology for distinguishing between mainlobe and side-
lobe detections that arise in adaptive radar systems operating in
adverse environments. Various adaptive detection test statistics
such as the adaptive matched filter (AMF), the generalized like-
lihood ratio test (GLRT) and adaptive coherence estimate (ACE),
and combinations of these, have been previously analyzed with re-
spect to their sidelobe rejection capabilities. In contrast to these
methods which are based on detecting a single target with known
direction and Doppler, the present method uses model order deter-
mination techniques applied to the AMF or GLRT data observed
over the range of unknown angle and Doppler parameters. The de-
termination of model order, i.e., the number of signals present in
the data, is made by using least-squares model fit error residuals
and applying the Akaike Information Criterion. Comprehensive
computer simulation results are presented which demonstrate sub-
stantial improvement in sidelobe rejection performance compared
to previous methods.

1. INTRODUCTION

A variety of constant false-alarm rate (CFAR) adaptive detection
statistics have been developed and analyzed for radar target de-
tection in adverse environments [1]-[8]. Adaptive beamforming,
adaptive filtering and, generally, joint space-time adaptive process-
ing (STAP) methods are being increasingly considered for airborne
radar detection of low-Doppler targets immersed in ground clutter
and subject to directional noise jamming. An important issue that
needs to be considered is the sidelobe performance of these adap-
tive detection algorithms. “False” sidelobe detections can arise
due to undernulled interferences, intrinsically high sidelobes gen-
erated by the adaptive beamforming space-time algorithms used
with limited data snapshots, and other reasons. This can result in
an unacceptably high false alarm rate. Previous works have fo-
cused on determining the sidelobe rejection performance of the
adaptive matched filter (AMF) test [3],[6], the generalized likeli-
hood ratio test (GLRT) of Kelly [1], the adaptive coherence estima-
tor (ACE) test and a cascade of AMF/ACE test [4] or AMF/GLRT
test [8]. It is to be noted that all of these previous methods are
based on applying adaptive detection criteria developed for detect-
ing a single target signal with known direction and Doppler in cor-
related noise. In contrast to this, the present work uses multiple
maximum-likelihood model order fits to the AMF or GLRT data

observed over the range of the unknown angle and Doppler pa-
rameters. The resulting fit error residuals are used in the Akaike
Information Criterion (AIC) to deduce the correct model order and
thereby reject “false” sidelobe detections.

2. MAXIMUM-LIKELIHOOD MODEL ORDER
DETERMINATION USING AMF OR GLRT

We begin by considering two well-known adaptive detection meth-
ods, AMF and GLRT, as a starting point for our new method de-
scribed below and also for performance comparison purposes. We
consider anN -element array and seek to determine the presence of
one or more signals in an observation vector (or snapshot)x called
the test cell. The methodology developed here applies to the gen-
eral STAP problem where the data vectorx can be a concatenated
space-time vector of array element data and coherent pulse sam-
ples; however, the computer simulation results presented in section
3 use only simulated spatial array data so our development here
will be mainly presented in that context.

Consider then that the AMF [3] and GLRT [1] metrics have
been computed as a function of angle (azimuth) and result in the
following test:

JAMF(�) =
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whered(�) is the signal steering vector for angle�; i.e., the array
response vector,bR is the sample covariance matrix of the interfer-
ence plus noise (whose true covariance matrix isR), based on an
auxiliary set ofK data vectorsxi; i = 1; : : : ; K which share the
same interference plus noise only covariance matrix with the test
datax
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andK�AMF is the threshold which can be determined numerically
for a given false alarm PFA. The hypothesis H1 denotes signal plus
noise and the null hypothesis H0 denotes noise only. An alternate
form is shown on the right side of (1) where an array weight vector

w(�) can be defined asw(�) = bR�1d(�)�q
d(�)H bR�1d(�) :

Equation (1) represents the adapted array output for the test vec-
tor x normalized by the output interference plus noise power.



In order to control the sidelobe response of the adaptive ar-
ray, the weight vectorw(�) is often computed asw(�) =

bR�1dsh(�)�q
dsh(�)H bR�1dsh(�) ; wheredsh(�) = d(�)�

wT andwT is an appropriate taper or shading function, and�
denotes the element-by-element Schur product.

The GLRT test is
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whereK
 is the threshold which can be determined for a given
false alarm PFA. TheJAMF(�) or JGLRT(�) are evaluated at some
discrete set of points in the angle� which covers the range of ex-
pected target angles. Note that as far as variation with� is con-
cerned,JGLRT(�) is merely proportional toJAMF(�) since the de-
nominator in (3) does not depend explicitly on the search variable
�. An example of theJAMF(�) function for a single target is shown
in Figure 1. Note that if all peaks above the threshold, which has
been set for a probability of false alarm PFA of 10�6, were to be
considered detections the figure shows that there should be six de-
tections of which five of them would be false alarms (solid line).
Even if a Chebyshev taper with�50dB sidelobe level is used, there
are still two false detections (dashed line). The shading is only
partly effective in the presence of interferences, in this case one
jammer at�30 degrees.

Now assume that the test data vector containsm target signals,
m = 0; 1; : : : ;M where the maximum numberM may be known
from system considerations. Then,

x = Dsa+ n; (4)

whereDs = [d(�s1); � � � ;d(�sm)] is aN �m matrix of target
steering vectors anda is anm � 1 vector of complex amplitudes
of them signals. The complex value of theJAMF(�) function rep-
resents the application of the weight vectorw(�) to the vectorx
resulting in the expression

y(�) = w(�)Hx = w(�)HDsa+ v(�); (5)

wherev(�) = w(�)Hn: We assume thaty(�) has been evaluated
atKP distinct points�1; : : : ; �KP ; wherem � KP � N: These
points would include the peaks of theJAMF(�) function. We have2
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or, compactly,

Y = Ha+ v; (7)

whereH =W
H
Ds; andW = [w(�1); � � � ;w(�KP )]; andv =

[v(�1); � � � ; v(�KP )]
T : The covariance matrix ofv is

Rv = E[vvH ] =WH
RW: (8)

Under the assumption of Gaussian statistics for the interference
plus noise vectorn, the maximum-likelihood estimates of the am-
plitude vectora and the angles�s = [�s1; � � � ; �sm] are obtained
by minimizing the nonlinear weighted least-squares criterion

JML (a;�s) = [Y �Ha]H R�1
v

[Y �Ha]
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2 ; (9)

whereR�1=2v is the square-root of the Hermitian positive-definite
matrixR�1

v
andk�k denotes the Euclidean norm of a vector: Let

Z = R
�1=2
v Y; the “whitened” data vector andHw = R

�1=2
v H:

Then,

JML (a;�s) = kZ�Hw(�s)ak
2 : (10)

For a given�s, JML is minimized with respect toa when
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Substitution ofba as given by (11) into (10) yields the weighted
least-squares residualJML as

JML (ba;�s) = k(I�P(�s))Zk
2 ; (12)
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orthogonal projection operator andI is the identity matrix. Equa-
tion (12) can be further minimized with respect to�s yielding the
maximum-likelihood estimateb�s. However, it is noted that this is
a nonlinear optimization problem which may be computationally
expensive to solve form � 2. For the class of sidelobe detec-
tion problems considered here, the targets are likely to be sepa-
rated from each other by more than a beamwidth and the locations
of the peaks of theJAMF(�) function (which can be readily com-
puted) provide reasonably accurate estimate of�s and are used to
evaluate (12).

The number of target signals is determined by applying the
procedure described above for model ordersm = 1; 2; : : : ;M
and choosing thatm for which the Akaike Information Criterion
[9],[10] given below is a minimum:

AIC(m) = � log(Likelihood functionjba; b�s;m)

+ (number of independently

adjusted parameters in model)

= JML (ba;b�s) + 3m; (13)

whereJML (ba;b�s) is given by (12) and the approximate estimateb�s discussed above is used. The method derived here is referred
to as the Multi-Target AMF (MT-AMF) method.

3. PERFORMANCE EVALUATION

The PFA of the GLRT test is given by [3]

PFA,GLRT =
1

(1 + �)L
; (14)

whereL � K + 1� N; � = 
= (1 + 
) ; and
 is the threshold
term of (3). The threshold for the AMF is determined by evaluating
the following integral using numerical integration and bisection
iterations as in [3]:

PFA,AMF =

Z
1

0

f�(�;L+ 1; N � 1)

(1 + ��AMF)L
d�; (15)

where

f�(x;n;m) =
(n+m� 1)!

(n� 1)!(m� 1)!
xn�1(1� x)m�1 (16)



is the central Beta density function, and� is the loss factor which
considers the SNR loss due to finite number of snapshots in the
sample covariance matrix. The analytic form of the probability
of detection for a single source is also given in [3] which we ex-
cluded for brevity. Our Monte Carlo simulation results have been
confirmed to match these analytical curves.

We consider a linear equally spaced array of 10 elements with
half-wavelength spacing (nominal beamwidth = 12 degrees) for
all the simulations provided in this section. A noise jammer signal
of strength 40dB relative to thermal noise is placed at�30 degrees
and the PFA is set to be 10�6. The scanning angles are from�50 to
50 degrees in azimuth. A single source of varying SNR is placed at
broadside and the performance of the algorithms in single source
detection and false sidelobe rejections are compared. The AMF
detection only relies on the peaks above the given threshold, but
the MT-AMF test takes the peaks and tests for model orderm = 1
and2: If m = 1 is decided, the overall peak is retained as an in-
dicator of a single signal and the other peaks are rejected. The
probability of detecting the mainlobe signal is plotted in Figure 2,
regardless of the number of peaks or model decisions, after 5000
Monte Carlo runs. We observe no loss in the detection for the MT-
AMF method. Then, the probability of false sidelobe detections
is plotted for the two algorithms in Figure 3. The AMF gives rise
to high false sidelobe detections at high SNR, but the MT-AMF
greatly reduces the false sidelobe detections and its probability
also saturates as SNR increases. The false sidelobe detections of
the proposed method go down rapidly for increasingK and the
lower bound is forK =1, which is the multi-target matched fil-
ter. For tapered weight vectorw(�), we also compare the sidelobe
rejections performance, as depicted in Figure 4. Note that the use
of a taper with the conventional AMF method only reduces side-
lobe detections slightly at the cost of a slight decrease in mainlobe
detection probability (not shown). However, the use of model or-
der determination using AIC with tapered AMF data shows almost
the same dramatic improvement in reducing false sidelobe detec-
tions as before with the same mainlobe detection probability as the
conventional tapered AMF.

Then, two sources of equal strength are placed at broadside and
45 degrees. The probability of detecting both sources within a
�10 degrees angle constraint is plotted for the AMF and MT-
AMF algorithms, as depicted in Figure 5. We observe the same
detections between the conventional method and the proposed al-
gorithm. The two sources detections using the GLRT is plotted
in Figure 6. However, forK = 20; the GLRT yields extremely
poor performance in detecting both sources due to the normaliza-
tion factor in the denominator of (3). The derivation of the GLRT
is under the assumption of a single source; therefore, despite its
advantage in sidelobe rejections for lowerK, as depicted in Fig-
ure 7, and single source detections, it is not an appropriate model
for two sources.

4. CONCLUSIONS

In this paper, we have shown substantial false sidelobe rejec-
tion improvement using the proposed model order determination
method. The algorithm is efficient in computations and can be
easily implemented in existing adaptive radar systems.
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Fig. 1. JAMF(�) function for a 20dB signal at broadside,N = 10,
K = 100, PFA= 10�6.
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AMF: SINGLE SOURCE DETECTION, N = 10, P
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Fig. 2. Probability of detecting single mainlobe target signal using
AMF and MT-AMF. Note equal performances of the two methods.
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AMF: FALSE SIDELOBE DETECTIONS, N = 10, P
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 = 10−6
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K = 50 (AMF)        
K = ∞  (AMF)   
K = 20 (MT−AMF)     
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Fig. 3. Probability of false sidelobe detections using AMF and MT-
AMF. Note the substantial improvement of the MT-AMF method
in false sidelobe rejections at high SNR.
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AMF: FALSE SIDELOBE DETECTIONS, N = 10, P
FA

 = 10−6

K = 20 (AMF TAPERED)        
K = 50 (AMF TAPERED)        
K = ∞  (AMF TAPERED)   
K = 20 (MT−AMF TAPERED)     
K = 50 (MT−AMF TAPERED)     
K = ∞  (MT−AMF TAPERED)

Fig. 4. Probability of false sidelobe detections using tapered AMF
weights (�50dB Chebyshev). Note significant improvement even
when taper is used.
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Fig. 5. Probability of detecting both sources within�10 degrees
using AMF and MT-AMF. Note equal performances of the two.
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Fig. 6. Probability of detecting both sources within�10 de-
grees using GLRT. Note the degraded performance, especially for
smallerK.
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GLRT: FALSE SIDELOBE DETECTIONS, N = 10, P
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Fig. 7. Probability of false sidelobe detections using GLRT. Note
good sidelobe rejection capability for smallerK at the expense of
reduced detections of two sources (Fig. 6).


