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ABSTRACT

Although many wavelet-based pitch detection methods have been
proposed in the literatures, there still remains a need to investigate
new wavelet-based methods for more accurate and more robust
pitch determination. In this paper, an improved wavelet-based
method is developed for extraction of pitch information in noisy
speech. At each decomposition in the wavelet transform, an
aliasing compensation algorithm is applied to approximate and
detail signals, in which the distortion of aliasing due to
downsampling and upsampling operations of the wavelet
transform is eliminated. In addition, this paper utilizes the concept
of spatial correlation function used in signal denoising to improve
the performance of pitch detection in noisy environment. It is
shown in various experimental results that this new type of method
has a considerable performance improvement compared with
other conventional methods and wavelet-based methods.

1. INTRODUCTION

The extraction of pitch information is one of the most essential
tasks in many speech processing applications. Generally, the pitch
information refers to both the pitch period and the instants of
glottal closure (GCI) in voiced speech. A well-designed pitch
detection algorithm can be used to improve performance in a
variety of systems, including a low bit-rate speech coding system
[1], aPSOLA based text-to-speech (TTS) system [2], and a speech
recognition system [3]. It is therefore no wonder that there are
multiform pitch detection algorithms have been proposed in the
literatures. However, due to the non-stationarity and quasi-
periodicity of the speech signal as well as the interaction between
the glottal excitation and the vocal tract, the development of more
accurate and more robust pitch determination algorithms still
remains an open problem [4].

In recent years, the multiresolution analysis with wavelet
transforms received considerable attention due to its tremendous
potential for dealing with non-stationary signal, such as speech.
An effective approach to pitch determination using wavelet
transform was proposed by Kadambe et al. [5]. Most of the
subsequent wavelet-based pitch detection algorithms are
originally inspired by the work presented in [5]. Essentially, the
basic procedure of wavelet-based pitch detection algorithms
consists of

(a) use of a wavelet transform to decompose the input speech
signal into certain subband signals called approximate or
detail signals;

(b) an exhaustive search of maximum values (GCI’s) from the
approximate or detail signals obtained in (a);

(c) correction of the locations of GCI’s detected in (b).

Even though it was shown that the wavelet-based methods are
superior to the traditional pitch detection techniques [5]-[6], they
still can not meet the requirements of robustness and accurateness.
There are two important issues which need to be improved in the
classic wavelet-based pitch detection algorithms. First, the cost of
a direct search of GCI’s from the approximate or detail signals is
too high, and its performance is usually degraded by background
ambient noise. Second, there are some unwanted aliasing
components in the approximate and detail signals, and they may
affect the results of pitch detection.

The pitch detection algorithm presented in this paper overcomes
the above two problems. Although the basic framework of the
proposed algorithm is similar to that of the classic wavelet-based
pitch detection algorithms, there are some significant differences
in comparison with them. Unlike the classic wavelet-based
method, the proposed algorithm utilizes a spatial correlation
function [7] to sharpen and enhance GCI’s while suppressing
noise and other small sharp features. With this improved
technique, the robustness of the proposed pitch detection method
is increased substantially from previous approaches. This paper
also applies an aliasing compensation algorithm [8] for
eliminating the distortion of aliasing due to downsampling and
upsampling operations of the wavelet transform from the
approximate and detail signals. Without the interference from the
aliasing, the accuracy of the proposed method can be further
improved. To illustrate this, the proposed method is applied to
both the synthetic and natural speech signals under additive non-
stationary noises. It yields a considerable performance
improvement compared with other conventional methods and
wavelet-based methods.

The remainder of this paper is organized as follows. In Section 2,
the wavelet transform with aliasing compensation will be
described briefly. Then, the detailed description of the proposed
wavelet-based pitch detection algorithm will be given in Section 3.
In Section 4, the various experimental results are illustrated.
Finally, Section 5 concludes the paper.

2. WAVELET TRANSFORM WITH
ALIASING COMPENSATION

The wavelet transform discussed in this paper is implemented via
filter banks structure. A fast discrete algorithm [9] is shown in Fig.



1 where A(n) and " (n) are low-pass filters, whereas g(n) and
g(n) are high-pass filters. Also, the symbols | 2 and 12 shown in

Fig. 1 denote the downsampling by 2 and the upsampling by 2,
respectively.
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Fig. 2. Two-channel orthogonal wavelet filter banks with
aliasing compensation.

Let s1(n) be the input signal, then the output of the analysis filter
bank are
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where so(k) and wy(k) are called the approximation coefficients
and the detail coefficients, respectively, of the first level wavelet
decomposition of si(n). The output of the synthesis filter bank
shown in Fig. 1 is

5, (m) = a,(m) +d, (m) @

where a,(m) and d,(m) are called the approximate signal and
the detail signal, respectively, of the first level wavelet transform
of s1(n). The definitions of a (m) and d (m) are

a,(m) = 3 s, (k)h(m = 2k). 3)
d,(m) = 3 w,(k)g(m = 2£). @)

Since the aliases will arise from the downsampling and
upsampling operations, the filter banks discussed above are
designed to cancel these undesired aliasing components, and to

ensure that s (n) = 5 (m) . Under this requirement, these four
filters have to be related as [10]

g =(D"h(1=n), gmn)=(=1)"h(1=n). )
However, these aliasing terms still can not completely remove
from each subband of the synthesis filter bank (i.e., @, (m) and

d,(m) ) due to the imperfect magnitude response of filters [8].

Directly utilization of these approximate and detail signals,
regardless of aliasing effects, for pitch detecting may cause some

unexpected errors. Therefore, this paper utilizes an aliasing
compensation algorithm proposed in [8] to further eliminate these
unwanted aliasing components from the approximate and detail
signals. An example of one-level two-channel orthogonal wavelet
transform embedded the aliasing compensation algorithm is given
in Fig. 2 where § (m) and W, (m) are the aliasing compensated
approximate and detail signals, respectively. It is worth to note
that the aliasing compensation algorithm still remain the perfect

reconstruction property of wavelet transform (i.e., §, (m) +Ww, (m)
= a,(m)+d (m) = 5 (m) = s5,(n))[8]. In addition, this aliasing

compensation algorithm can be easily extended to higher level
wavelet decomposition with a pyramid structure [8]. Fig. 3 gives
an illustrative example of two-level orthogonal wavelet transform
with the aliasing compensation.
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Fig. 3. An illustrative example of two-level orthogonal
wavelet transform with aliasing compensation.
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3. THE PROPOSED PITCH
DETECTION ALGORITHM

Since the GCI is marked by a sharp discontinuity in the speech
signal, it can in some sense be related to the edge detection
problem. Based on the multiresolution analysis with wavelet
transform, the GCI will appear at the same point in the
approximation or detail signals over several successive
decomposition levels [5]-[6]. Although this property is very useful
for pitch detection, the cost of a direct search of GCI’s from the
approximate or detail signals is too high. Furthermore, its
performance is usually degraded by background ambient noise. To
overcome this problem, this paper applies a spatially selective
noise filtration (SSNF) technique proposed in [7] to pitch
detection. Cooperating with the aliasing compensation wavelet
transform described in the previous section, a modified spatial

correlation Corr, (k,m) is defined to sharpen and enhance GCI’s
while suppressing noise and small sharp features

-1
Corr,(k,m) =15,,,(m), m=12,--- N 6)
i=0

where § (m) denotes the approximate signals with aliasing

compensation, k is the index of decomposition level, m is the
translation index, N is the length of input signal, / < M -k +1,
and M is the total number of decomposition levels. Usually, / = 2.

The first step of using spatial correlation function to pitch
detection is to decide the decomposition index k. Due to the first
formant frequencies of human are generally below 1 kHz [5], the
decomposition index £ is determined by following equation

k = (g, (Fs /1 ki) ] 7



where Fs is the bandwidth of the input speech signal. Thus, the
aliasing compensated approximate signal §, (m) will contain most

of pitch information. Then, the power of the {Corrz(k,m)} is
rescaled to that of the {§k (m} and get {NewCorrz(k,m)} .

Above procedure can be expressed as follows.

NewCorr, (k,m) = Corr, (k,m)+ Ps(k) / PCorr(k) ®)

where
Ps(k) = 3§, (m)" , and )
PCorr(k) = 3 Corr, (k,m)z. (10)

The GCIs’ are identified in §, _(m) and NewCorr,(k,m) by
comparing the absolute values of § _(m) and NewCorr, (k,m) . If

NewCorrz(m)| > |§k (m)| , the position m will be accepted as a
GCI and saved in the vector G(m).

Finally, the accurate locations of GCI’s and the pitch period of
input speech signal are obtained by a pitch correction algorithm as
follows.

(1) Calculate the average distance Da between two adjacent
elements in G(m).

(2) Eliminate the GCI whose distance between its adjacent GCI’s
is shorter than 0.5Da or longer than 2Da from G(m).

(3) Repeat (1) and (2) until no unsuitable GCI is available.

(4) Locate the final existed GCIs’ positions and calculate the
average distance between two adjacent GCIs’ as the estimated
pitch period.

4. EXPERIMENTAL RESULTS

In this section, it will first discuss the performance of the proposed
method on synthetic and natural speech data. The robustness of
proposed method is then examined for additive white Gaussian
noises. In all the illustrations to follow, the speech signals were
sampled at 8 kHz with 8-bit resolution, and Daubechies’ length-8
wavelet [10] is used.

4.1 Illustration of the Method for Synthetic Speech Data

The synthetic speech data considered in this paper consist of five
kinds of voiced phonemes, namely, /a/, /e/, /i/, /o/ and /u/. Fig. 4(a)
shows a synthetic speech signal /a/ whose pitch period is constant
and is equal to 10ms. The locations of GCIs’ are illustrated in Fig.
4(b). The estimated pitch period is 9.92ms. Table 1 gives the
experimental results of this new method on other synthetic speech
data.

The error rate Err used in Table 1 is defined as
Err = (|T - 1]/ T) x100% (11)

where 7 is the estimated pitch period and the 7 is the true pitch
period.

(@)

sampling point
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Fig. 4. (a) Clean synthetic speech signal /a/, (b) the detected
locations of GCIs’.

Table 1. The experimental results of the synthetic speech data

Pitch Period 5 ms 10ms | 15ms [ 20ms | 25 ms
Speech Data Estimated pitch period (ms)

/a/ 4.94 9.92 14.95 19.85 | 24.90

e/ 4.89 9.86 1491 19.90 | 24.92

/i/ 4.93 9.91 14.89 19.88 | 24.88

/o/ 5.00 9.95 14.82 19.81 24.84

/u/ 491 9.92 14.92 19.84 | 24.92
Average Err 1.27 % 0.88 % | 0.68% | 0.72% | 0.43%

4.2 Illustration of the Method for Natural Speech Data

@
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()
Fig. 5. Illustration of the method for a continuous speech “Any
time...”: (a) Speech waveform; (b) the estimated
locations of GCI’s.

Fig. 5 illustrates the experimental result of proposed method on
the initial part of the utterance “Any time ....” spoken by a male
voice. Figs. 5(a) and (b) show the speech waveform and the
estimated locations of GCIs’, respectively.




4.3 Robustness of the Method

Finally, the robustness of the proposed method is evaluated under
additive noisy conditions. A white Gaussian noise was added to
the clean speech, and the performance is evaluated at SNR’s 30,
25, 20, 15, 10, 5, and 0dB, respectively. To illustrate this, Fig. 6
shows the experimental results of the natural speech signal of Fig.
5(a) at a SNR of 5dB.

sampling point
(c)
Fig. 6. (a) Natural speech of Fig. 5(a) with 5dB Gaussian
white noise, (b) the waveform of {NewCorr2 (k, m} ,

(c) the estimated locations of GCIs’.

The robustness of the proposed method is also compared against
the other present pitch detection methods including in the spectral,
time and wavelet domains, and the results are given in Table 2.
The definition of Err used in Table 2 is given in (11) where the
true pitch period of natural speech is determined via time-domain
method [3] with manual correction under clear condition. From
these experimental results, one can find that the pitch information
can be accurately and effortlessly extracted by using the proposed
method.

Table 2. Performance of the proposed method at different SNR’s

SNR (dB)| 30 |25 [20 |15 |10 | 5 0

Methods Average Err (%)

Wavelet-basedin[5] [ 1.2 | 1.4 | 2.7 [49 | 7.5 |12.4(23.6

Wavelet-basedin[6] [ 1.1 | 1.3 |24 [42 |69 |86 [17.8

Cepstrum-basedin[4] | 1.4 | 1.6 [ 3.2 | 5.7 | 8.6 [16.832.2

Time-domain in [3] 0.7 (1.2 2.6 | 53 [10.4[28.7 149.6

Proposed method 1.0 | 1.1 [2.0 [3.1 |44 [6.2 [10.1

5. CONCLUSIONS

An improved wavelet-based pitch detection algorithm was
presented. In this paper, the aliasing compensation wavelet
transform and the spatially selective noise filtration technique
were proposed to improve the accuracy and the robustness of the
conventional wavelet-based pitch detection algorithm. The
performance of the proposed algorithm was evaluated on synthetic
and natural speech signals. Compared to other time, spectral and
wavelet domain pitch detection methods, it was shown that the
proposed method has the better performance under noisy
conditions.
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