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ABSTRACT

Source localization using passive sensor arrays has been an active
research problem for many years. Most near-field source local-
ization algorithms involve two separate estimations, namely, rela-
tive time-delay estimations and source location estimation. In this
paper, a one-step maximum-likelihood parametric source localiza-
tion algorithm is proposed based on the maximum correlation be-
tween time shifted sensor data at the true source location. The
performance of the algorithm is evaluated and shown to approach
the Cramér-Rao bound asymtotically in simulations.

1. INTRODUCTION

Source localization and tracking using a passive array of sen-
sors support many applications in underwater acoustics, navi-
gation, geophysics, electronic warfare, and surveillance. Most
near-field source localization algorithms [1]-[4] include two steps,
namely, estimating relative time-delays between sensor data and
then source location based on the time-delay estimates. Usually,
the cross-correlation between sensor data has been used to extract
the time-delay information, but have not been exploited to directly
estimate the source location.

In this paper, we propose a maximum-likelihood parametric al-
gorithm which directly estimates the source location without time-
delay estimation by exploiting the cross-correlation of the sensor
data. An optimization metric is derived from the cross-correlations
of all sensors, which is also shown to be optimal in the maximum-
likelihood sense, and the resulting form involves only the FFT
of the sensor data and appropriate weighting for the given loca-
tion. This approach not only avoids estimating time-delays but
also avoids computing the cross-correlations directly. Since the
maximum value of the metric ideally resides at the source loca-
tion, the estimation becomes a peak finding problem. The metric
may be computed on a coarse grid of points, and many iterative
schemes can be used to find the true peak. For source tracking, the
estimate of the previous frame may serve as the initial estimate of
the next frame.

The paper is organized as follows. In section 2, the proposed
parametric source localization algorithm is introduced. Then, the
derivation of the Cram´er-Rao bound is given in section 3. In sec-
tion 4, simulated examples are given to show the effectiveness of
the proposed algorithm. Finally, we draw our conclusions.
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2. MAXIMUM-LIKELIHOOD PARAMETRIC SOURCE
LOCALIZATION ALGORITHM

The proposed maximum-likelihood parametric algorithm exploits
the cross-correlations between the wideband sensor data evaluated
in the frequency-domain. It is inspired by fact that source location
information is contained in the linear phase shift of the sensor data
spectrum. LetR be the number of sensors,L be the number of
data samples in a block,N be the zero-padded DFT length, where
N � L + �; � = max(tpq); p; q = 1; : : : ; R; tp = jrs � rpj =v
is the time-delay from the source located atrs to thepth sensor
located atrp; tpq = tp � tq = (jrs � rpj � jrs � rq j) =v is the
relative time-delay between thepth and theqth sensors, andv is the
speed of propagation in length unit per sample. The received sen-
sor array data can be modeled byx(n) = [x1(n); : : : ; xR(n)]

T =

[s1(n); : : : ; sR(n)]
T+�(n); wheresp(n) = aps0(n�tp); s0(n)

is the source signal,ap is the signal gain level at thepth sensor, and
�(n) is the zero mean white Gaussian distributed system noise
with variance�2: The frequency representation of the received
sensor array data can be given by

X(k) = S(k) + �(k); for k = 0; : : : ; N � 1; (1)

where X(k) = [X1(k); : : : ; XR(k)]
T ; S(k) =

[S1(k); : : : ; SR(k)]
T ; Sp(k) =

PL�1
n=0 sp(n)e

�j2�nk=N =

S0(k)ape
�j2�ktp=N ; and �(k) is zero mean complex white

Gaussian distributed with varianceL�2: Note �(k) approaches
Gaussian distribution even if�(n) is any arbitrary i.i.d. sequence
by the Central Limit Theorem. The circular time shift of the DFT
is equivalent to the linear time shift given that the zero-padding
length is larger than the maximum time-delay, i.e.,N � L � �:

The weighted cross-correlation function of thepth and theqth
sensors is defined by

cpq(�) =

L�1X
n=0

wpqxp(n)xq(n� �)

=
1

N

N�1X
k=0

Cpq(k)e
j2��k=N

=
1

N

N�1X
k=0

wpqXp(k)X
�

q (k)e
j2��k=N ; (2)

where the weightwpq = apaq; ap = ap
.qPR

p=1 a
2
p is the nor-

malized gain at thepth sensor,Cpq(k) = wpqXp(k)X
�

q (k) is the
weighted cross-power spectral densities, and superscript� denotes



the complex conjugate operation. The cross-power spectral den-
sity representation avoids directly computing the cross-correlation
functions, which may have significant computational savings.

A natural way of defining an optimization metric is the sum of
the weighted cross-correlations with the relative time-delays for
parameter�; which can be given by

J(�)

=

RX
p=1

RX
q=1

cpq(tpq(�))

=
1

N

N�1X
k=0

RX
p=1

apXp(k)e
j2�ktp=N

RX
q=1

aqX
�

q (k)e
�j2�ktq=N

=
1

N

N�1X
k=0

jB(k;�)j2 ; (3)

andB(k;�) = w(k)HX(k) =
PR

p=1 apXp(k)e
j2�ktp=N is the

beam-steered beamformer output in the frequency-domain, where
the array weightwp(k) = ape

�j2�ktp=N and superscriptH de-
notes complex conjugate transpose. The source location can be
estimated based on where (3) is maximized for the given set of
locations. By only considering the positive frequency bins or a
subset of the bins with significant spectral densities, we obtain the
normalized metric that is given by

JN(�) �

PN=2
k=0 jB(k;�)j2

Jmax
� 1; (4)

whereJmax =
PN=2

k=0

hPR
p=1 apjXp(k)j

i2
, which is useful to ver-

ify estimated peak values. To avoid further computational com-
plexities, recursive gradient or other more advanced techniques [5]
may be applied to find the true peak. The initial location estimate
can be given by the peak of a coarse grid or froma priori informa-
tion. For source tracking, the initial location estimate can also be
given by the estimate of the previous frame. The gradient of the
normalizedJN(�) is given by

rrsJN(�) =
�4�

JmaxNv

N=2X
k=0

k Im [B�(k;�)C(k;�)] ; (5)

where C(k;�) =
PR

p=1 apXp(k)e
j2�ktp=Nup; and up =

(rs � rp) = jrs � rpj is a unit vector indicating the direction of
the source from thepth sensor. One simple iterative gradient algo-
rithm can be formulated by

r
(i+1)
s = r(i)s + �[rrsJN(r

(i)
s )]; (6)

where� is the step size which depends on the shape ofJN(rs) and
initial estimater(0)s : Other advanced methods may be used without
specifying a step size. When the speed of propagation is unknown,
we may expand the unknown parameter space to include it, i.e.,
� = [rTs ; v]

T :
The proposed parametric algorithm can be shown to be optimal

in the maximum-likelihood sense. From the signal model in (1),
the log-likelihood function for thekth frequency bin can be given
byLk(�) = �

�
1=L�2

�
kX(k)� S(k)k2 : Then, the maximum-

likelihood source localization solution with unknown source signal

can be given by

max
rs;S0

L(�) = min
rs;S0

N�1X
k=0

kX(k)� S(k)k2 ; (7)

which is equivalent to findingminrs;S0(k) kX(k)� S(k)k2 for
all k bins. Definef(k) = kX(k)� S(k)k2 : For any source loca-
tion rs, the minima off(k) with respect to the source signal must
satisfy

@f(k)

@S0(k)
= �

RX
p=1

apX
�

p (k)e
�j2�ktp=N +

RX
p=1

a2pS
�

0 (k) = 0;

(8)

which yields the maximum-likelihood solution for the source sig-
nal at truers given by

bSML
0 (k) =

1qPR
p=1 a

2
p

B(k;�): (9)

By substitutingbSML
0 (k) back intof(k), we obtain

min
rs

f(k) = min
rs

�
�2Re

�
jB(k;�)j2

�
+ jB(k;�)j2

	
= max

rs

jB(k;�)j2 ; (10)

which is equivalent to the proposed parametric algorithm. There-
fore, the proposed parametric algorithm is optimal in the
maximum-likelihood sense. It can also be shown to be optimal for
additional unknown parameters such as the speed of propagation.

3. CRAMÉR-RAO BOUND FOR SOURCE
LOCALIZATION

The Cramér-Rao bound is most often used as a theoretical lower
bound for any unbiased estimator. Most of the derivations of the
Cramér-Rao bound for source localization found in the literature
are in terms of relative time-delay estimation error. In this section,
we derive a more general Cram´er-Rao bound directly from the sig-
nal model. By developing a theoretical lower bound in terms of
signal characteristics and noise level, we not only bypass the in-
volvement of the intermediate time-delay estimator, but also offer
useful insights to the physics of the problem.

By stacking up theN frequency bins of the signal model
in (1) into a single column, we can re-write the sensor data
into a NR � 1 space-temporal frequency vector asX =

G(�) + �; whereG(�) =
�
S(0)T ; : : : ;S(N � 1)T

�T
; � =

[�(0); : : : ; �(N � 1)]T ; andR� = E[��H ] = L�2INR. The
log-likelihood function of the complex Gaussian noise� is given
by L(�) = �

�
1=L�2

�
kX�G(�)k2 : The Fisher information

matrix can be given by

F = 2Re
h
H

H
R
�1
� H

i
=
�
2=L�2

�
Re
h
H

H
H

i
; (11)

whereH =
h
@S1(0)
@rs

; @S1(1)
@rs

; : : : ; @SR(N�2)
@rs

; @SR(N�1)
@rs

iT
; as-

sumingrs is the only unknown. In this case,Frs = �A; and
� =

�
2=L�2v2

�PN�1
k=0 (2�k jS0(k)j =N)2 is the scale factor that



is proportional to the total power in the derivative of the source sig-
nal,

A =

RX
p=1

a2pupu
T
p (12)

is thearray matrix. TheA matrix provides a measure of geomet-
ric relations between the source and the sensor array. Poor array
geometry may lead to degeneration in the rank of matrixA: It is
clear from the scale factor� that the performance does not solely
depend on the SNR, but also the signal bandwidth and spectral
density. Thus, source localization performance is better for signals
with more energy in the high frequencies.

When the source signal is also unknown, i.e.,� = [rTs ;S
T
0 ]

T ;
the newH matrix is given by

H =

2664
@S1(0)

@rTs

@S1(0)

@ST
0

...
...

@SR(N�1)

@rTs

@SR(N�1)

@ST
0

3775 ; (13)

andS0 = [S0(0); : : : ; S0(N � 1)]T : The Fisher information ma-
trix can then be explicitly given by

Frs;S0 =

�
�A B

B
T

D

�
; (14)

whereB andD are not explicitly given for brevity. By applying
the block matrix inversion lemma, the leading 2�2 submatrix of
the inverse Fisher information block matrix can be given by

�
F
�1
rs;S0

�
11:22

=
1

�
(A�Z)�1; (15)

where thepenalty matrixdue to the unknown source signal is de-
fined by

Z =
1PR

p=1 a
2
p

 
RX
p=1

a2pup

! 
RX
p=1

a2pup

!T

: (16)

The Cramér-Rao bound with unknown source signal is always
larger than that with known source signal. It can be easily shown
since the penalty matrixZ is always a non-negative definite ma-
trix. TheZ matrix acts as a penalty term since it is the average
of the square of weightedup vectors. The estimation variance is
larger when the source is far away since theup vectors are similar
in directions to generate a larger penalty matrix. When the source
is inside the convex hull of the sensor array, the estimation vari-
ance is smaller sinceZ approaches zero. The Cram´er-Rao bound
for the distance error bound from the true source location can be
given by

�2d = �2xs + �2ys �
�
F
�1
rs;S0

�
11

+
�
F
�1
rs;S0

�
22
; (17)

whered2 = (bxs�xs)
2+(bys�ys)

2: By further expanding the pa-
rameter space, the Cram´er-Rao bound for source localization given
unknown source location, unknown source signal, and unknown
speed of propagation can also be derived in the similar manner.

4. SIMULATION EXAMPLES

For all simulation examples, we use simulated array data generated
by an acoustic waveform of a tank signature. The speed of prop-
agation is known to be 345 (m/sec). For a randomly distributed
array of five acoustic sensors depicted in Figure 1, the Nelder-
Mead direct search algorithm (Matlab’sfmins.m) is applied to es-
timate the source location from an initial estimate that is within
the vicinity of the true source location. TheJN(rs) curve for a
source inside the convex hull of this array is depicted in Figure 2
under 20dB SNR, and a high peak shows up at the source loca-
tion. The shape ofJN(rs) depends on the geometry of the source
and sensors. When the source moves away from the sensors, the
peak broadens and results in more range estimation errors since it
is more sensitive to noise. As depicted in Figure 3, the range es-
timation error is likely to occur in the source direction. In Figure
4, the source tracking scenario is depicted. The performance of
the ML algorithm is compared to the conventional Least-Squares
algorithm and the Cram´er-Rao bound. Circular arrays of 5 and
7 sensors are considered in the comparison. At high SNR region
and short range we observe the asymptotic approaching behavior
for both algorithms, as depicted in Figure 5, but the ML out per-
forms the LS algorithm. The Cram´er-Rao bound for the known
source signal and speed of propagation, unknown speed of propa-
gation, and unknown source signal cases using 7 sensors are plot-
ted in Figure 6. The unknown source signal has been shown to be
a much more significant parameter factor than the unknown speed
of propagation.

5. CONCLUSIONS

In this paper, a one-step maximum-likelihood parametric source
localization algorithm is proposed. It maximizes the cross-
correlations of the array signals and also the beam-steered beam-
former output. It has been shown to be efficient with respect to
the Cramér-Rao bound via simulations. It can also be extended
to estimate more unknown parameters such as the speed of prop-
agation and unknown sensor locations. For multiple sources case,
the maximum-likelihood algorithm needs to be expanded to higher
dimensions, which results in greater complexities.
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Fig. 1. Converging ML source localization example
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Fig. 2. The 3-D plot ofJN(rs) for a near source
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Fig. 3. The image plot ofJN(rs) for a distant source
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Fig. 4. Source tracking scenario
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Fig. 5. Source tracking performance comparison
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Fig. 6. Cramér-Rao bound comparison for source tracking


