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ABSTRACT In this paper, we begin the investigation of a new tech-
nique for estimating image blur iimited-controlenviron-
ents. The limited-control environment falls between the
two aforementioned extremes and is useful in surveillance
and/or video forensics applications [7]. In such applica-
tions, an event of interest may be recorded by a fixed imag-
ing system, such as a surveillance camera, that is available

In this paper, we propose a method to estimate the blur of
fixed imaging system, without control of camera position or
lighting, using an inexpensive target. Such a method is ap-
plicable, for example, in the restoration of surveillance im-
agery where the imaging system is available, but with only
limited-control of the imaging conditions. We extend a pre-

ousl d tric bl del and . lik for limited testing in its native environment. As it may
VIouSly proposed parametric biur model and maximum fiKe- 1, o, yogirape to improve the recorded image(s) using image
lihood technique to estimate a more general family of blur

functi Th : s f iate ch eri restoration techniques, the goal of the work presented here
unctions. 1he requirements for-an appropriate characten-is o o5t method to estimate the blur of a fixed imaging

zation target are also discussed. Experimental results with ystem, without control of camera position or lighting, us-

artificial and real data are presented to validate the propose ng an inexpensive target (or targets). Such a method is the

approach. primary contribution of this paper. Additionally, we extend
the blur models and maximum likelihood estimation tech-

1. INTRODUCTION nigue suggested in [2] to allow for a broader class of para-

metric blur functions.

Image restoration [1] is the process of estimating an image  The remainder of this paper is organized as follows. In

from an observation that has undergone some degradatiorsection 2, we present the parametric blur model, based upon

such as blur and/or additive noise. To perform any sort of that in [2], that we have adopted for our work. In Section 3,

image restoration, knowledge of the degradation or blur is we discuss the maximum likelihood estimation of the blur

required. Knowledge of the blur can be obtained in at least parameters and then, in Section 4, we describe briefly the re-

two ways, which we refer to ddind estimation angherfect- qguirements for the characterization target. We present some

controlestimation. In the blind estimation scenario [2, 3, 4], experimental results from artificial and real data in Section 5

the blur is estimated directly from the degraded image(s). In and make some closing comments in Section 6.

the perfect-control setting, the imaging system used to cap-

ture the given image is characterized through some experi- 2 BLUR MODEL

mental process. This option, of course, is often infeasible or

impractical. Obviously the imaging system cannot be sub- | general, the blur of an optical imaging system can be very
jected to a characterization process if it is unavailable and/orgificult to model. An accurate blur model based upon phys-
unknown. Even if the imaging system is available, however, jca| optics requires such parameters as depth of the imaged
current methods for characterization [5, 6] are often imprac- gpjects, lens aberrations, and spectral distribution of the in-
tical as they require expensive targets, nearly ideal light- cident light [8]. A more tractable approach is to employ
ing, control of camera and/or target placement, and analysisparametric blur models based upon geometric or diffraction-
by a skilled individual. These two alternatives — blind and |imjted assumptions. Such an approach is suggested in [8]
p_erfect-control — represent two extremes of the blur estima- 55 3 reasonable alternative to the more cumbersome physi-
tion problem. cal optics model and has been used successfully in the im-
Prepared by the Oak Ridge National Laboratory, Oak Ridge, TN, age processing literature [2, 9].
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Blur driven by Gaussian-distributed, white noise. As we have

f(-) a() some control over the input to the imaging system in the
H(u) ) limited-control environment, we can simplify further and
Input Observation assume that the input is purely Gaussian noise with un-
known variances2. Such an input can be approximated
v(-) | Noise using a prefabricated target, as discussed in Section 4 be-

low. The termu(-) represents additive white noise of un-
) ] _ _ o known variancer2. We letg(n) represent théV x N ob-
Fig. 1. Simple model of imaging system assuming linear, served samples of the imagéx). Using the well-known
shift-invariant blur and additive noise. block circulant approximation [10] to the covariance matrix
of g(n) (lexicographically ordered), and following the form
tions and extensions. Specifically, in [2] out-of-focus cir- of [2], the maximum likelihood parametefiscan be found
cular aperture blur and circularly symmetric Gaussian blur by minimizing the negative of the likelihood function (LF)
are considered independently. We, however, allow for sep-
arable, elliptically symmetric Gaussian blur and addition- L(0, 0 Zlog 1 |Gk)P (6)
ally consider both out-of-focus and Gaussian blur simulta- £:) N2 Sy(k;0)’
neously. The Gaussian is used to approximate any blur in

the scene that may arise from sources other than focus eryhereg. ,(k; 0) represents samples of the (analytically com-
ror. We adopt the separable Gaussian because some imagsyted) power spectrum of(x) and whereG(k) is the dis-
ing systems tend to have more blur in one direction than thecrete Fourier transform (DFT) of(n). Recalling that the

other (e.g., the real data mentioned in Section 5). The pomtmputf( -) in Fig. 1 is purely white noise, we can write
spread function (PSF) for the out-of-focus circular aperture

's given by . Sy(us0) = of [ H(u: 0)* + o7 ()
he(x; B) = — (x| @) -
where H (u; §) was given in (5). We note thafi(-)|? =
where H?(-) sinceH (-) is purely real.
(Ix]) = L, X[ <R, 2 To minimize (6) effectively, we must compute the gradi-
0, |x|>R. ents ofL(-) with respect to each of the unknowns. Recalling
The PSF for the elliptically symmetric, separable Gaussian thaté = {2, 71,72}, we have
is
OL() 1 1 |Gk)P
1 —x? —z3 = Z( - <33 ) .
g3 71,72) = 217172 eXp( 2v3 ) exp( 273 ) 3) 99: e Selki6) - N S55(k:6)
H(k; 0
The blur for the overall imaging system is given by the con- QO'JQ:H(k; 19)M (8)

volution of (1) and (3): 00,

h(x; B, 71,72) = he(3; R) + hy(x;71,72). () forthe blur parameters and

Letting 0 represent the collection of blur parameters to be  OL(-) 1 1 |G(k)[? 2 (k: 0 9
estimated{ R, y1,72}, we can rewrite (4) in the Fourier do- agfc - Z(Sg(k; ) ng(k; 9)) (k;6), (9)
main as '
(wih) = —— i (2xRJu) e
H(u;0) = ——J1(27R|u))- . 2
7Ru| " OL(:) ZZ( 11 |Gk ) (10)
o2 Sy(k;0) N2 S2(k;0)

exp(—2m*77u?) exp(—2m*73u3)  (5)
for the signal and noise power, respectively. To complete (8),

we must evaluate the partials &f(-) with respect to each
of the blur parameters, yielding

whereJy(-) is thek'"-order Bessel function of the first kind.
Given the model of (5), the goal of blur estimation is then
to estimate the parametels v, and~s.

OH() 1

g = 7 oP(-2mud) exp(~2n*3u3) -

Referring to the imaging system model in Fig. 1, the in- (JO(27TR|u|) — Jo(27R|u|) —
put, f(x), is characterized in [2] by an autoregressive model

3. PARAMETER ESTIMATION

%‘u‘wwmu\)) (11)



and in the field by having several targets with varying block
sizes available. To account for illumination variation (and
OH() _ Ji(27R|u]) perform mean removal), we fit the captured image with a
07; TR|u| separable quadratic. The quadratic is subtracted from the
2 9 2 2 9 2 2 2 captured image prior to processing.

(_ZW Yity exp(=2m ) exp(—2myy u2)) (12) In ongoing work, we intend to correct illumination vari-
ation and nonlinear contrast modification by including a uni-
form gray bar and a black-to-white gradient bar, one each in
both the horizontal and vertical directions, on the target im-
age. The uniform gray bars will be used to estimate and
correct illumination variation; the gradient bars will be used
to estimate and correct contrast modifications.

fori =1,2.

Given the DFT of the observed digital image(k), the
likelihood functionL(-) from (6) is minimized with respect
to the five unknown parametersR, 1, 72, o7, ando;

— using a constrained nonlinear minimization routine (the
fmincon function from MATLAB’s Optimization Tool-
box). Initial experimental results indicated some sensitivity
to initial conditions, so a two-step initialization procedure is 5. EXPERIMENTAL RESULTS

performed. In the first step, initial guessesdgrando?, are

computed. In the second step, these initial guesses are uselgh this section, we present experimental results from both
to computeL(-) over a7 x 7 grid of equally spaced points  artificial and real data. Artificial data was generated by first
(over the range of expected/allowable values, noted below)creating a Gaussian white noise image with known variance,
by assuming that; = .. The minimizer over this 49 point 53, of size 128 x 128 pixels. This noise image was then
setis then selected as the starting point for the optimization.blurred by a PSF of the form presented in Section 2 with

To constrain the optimization, the unknown parameters known parameter§R, v, 72 }. Gaussian, white noise with
are allowed to take values in the following rangeB: € known varianceg?, was then added to the blurred image
(0,10}, {71,72} € (0,10], and{c%, 07} € (0,00). The al-  to simulate the observation noise. The DFT of the noisy,
lowable blur parameterr{, 1, 72) ranges are representative  blurred image was then used @gk) in (6). Real data was
of what is reasonably expected in our application of interest. obtained using a consumer video camera, a PC with video

capture capabilities, and a noise target such as that described
4. CHARACTERIZATION TARGET in Section 4. To provide blurry images, the autofocus fea-
ture of the camera was disabled and the camera was man-
As mentioned at the beginning of the previous section, the ually defocused by varying degrees. The DFT of one cap-
goal of the target is to provide white, Gaussian-distributed tured frame was then used @gk) in (6). Examples of the
noise as input to the imaging system. White noise ensureg€al images are shown in Fig. 2.

that the power spectrurfi,(-) takes the form of (7). The Some results obtained from the artificial data are sum-
Gaussian distribution is required to satisfy the assumptionsmarized in Table 1. The algorithm performed similarly with
used to generate the likelihood function of (6). various blur parameters. It should be evident from Table 1

The target we employ is composed of constant intensity that the algorithm performs quite well, even down to SNRs
blocks, where the intensity of each block is selected from a as low as 20dB. Around 15dB and less, however, the algo-
discrete, approximately Gaussian distribution doe, 1.0] rithm demonstrated decreased robustness. This decreased
(0.0 corresponds to black, 1.0 corresponds to white). In therobustness at low SNRs might be a limiting factor in low-
ideal — but impractical — scenario, each block on the targetquality surveillance imagery.
would correspond to one pixel, with no overlap. Instead, we  In Table 2, we summarize results obtained from the real
only require that the area of each target block correspond todata. Although the good results obtained from the artificial
less than the area of one pixel. In this situation there will be data give confidence in the results from the real data, we also
some correlation because adjacent pixels will generally beperformed an additional subjective test. The blurs estimated
observing portions of the same target blocks. This correla-from the defocused images were applied to images obtained
tion, however, is limited to 8 x 3 window and is neglected.  using autofocus. The resulting, digitally blurred images cor-

We note that decreasing the area of each target blockresponded well to the same images obtained with optical
with respect to the area of each pixel would decrease theblurring by manual defocus. This indicates, albeit subjec-
aforementioned correlation, but would also tend to decreasetively, that the estimated blur is representative of the true,
the effective SNR. As the number of target blocks observedoptical blur. Ongoing work is aimed at quantifying more
by each pixel increases, the effective spread ©f about conclusively the accuracy and consistency of these results.
its mean (i.e.a]%) decreases. Therefore, we would like the We now make a few comments regarding the data from
target blocks to be smaller than, but on the same order of, Table 2. First, note that the Gaussian blur parameters in-
the area imaged by each pixel. This can be accomplisheddicate more blur in thes (horizontal) direction than in the



| R| m| 7 | SNR(B) |
SNR 40dB
True 6.2 09| 18 40.00
Estimated| 6.20 | 0.932| 1.81 40.25
SNR 30dB
True 6.2 09| 1.8 30.00
Estimated| 6.15| 0.917| 1.79 29.91
SNR 20dB
True 6.2 09| 1.8 20.00
Estimated| 6.21 | 0.961| 1.91 20.53
SNR 15dB
True 6.2 09| 18 15.00
Estimated| 6.94 | 0.764 | 1.63 15.58

Table 1. Some results for artificial images. SNR is given by

1010%10(0?/03)-

| R| m| 72| SNR(dB) |
Autofocus 0.547| 0.489| 0.754 41.44
Small Defocus| 1.24| 1.21| 2.17 16.44
Large Defocus| 2.52| 2.07| 4.52 18.47

Table 2. Results for the real data shown in Fig. 2.

x1 (vertical) direction. This result, initially unexpected, was

consistent with the observed image DFT, which indicated a
stronger lowpass nature in the horizontal direction. We ad-
ditionally note the low SNRs estimated for the defocused

Fig. 2. Real data used for experiments summarized in Ta-
ble 2. Autofocus, small defocus, and large defocus are
shown from left to right.

ification as well as illumination variation.

(1]

(2]

(3]

(4]

images with respect to the autofocus image. The unexpect-

edly low SNRs were evident when the captured images were
gualitatively examined and were consistent across different

images. At present time, the cause of these low SNRs is not 5]

fully understood. We suspect that low contrast, along with
defocus and illumination variation, contribute to the prob-
lem. We hope to address the issue by employing a gradient
bar and a uniform gray bar in the target image — as men-
tioned at the end of Section 4 — to estimate and correct con-
trast modification and illumination variation, respectively.

In this paper, we present a method to estimate the blur of
a given imaging system in a limited-control environment

using a noise target. A previously proposed blur model
and maximum likelihood approach are extended to handle
a more flexible class of blur functions. We also discuss

6. CONCLUSION

(6]

(7]
(8]
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