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ABSTRACT

In this paper, we propose a method to estimate the blur of a
fixed imaging system, without control of camera position or
lighting, using an inexpensive target. Such a method is ap-
plicable, for example, in the restoration of surveillance im-
agery where the imaging system is available, but with only
limited-control of the imaging conditions. We extend a pre-
viously proposed parametric blur model and maximum like-
lihood technique to estimate a more general family of blur
functions. The requirements for an appropriate characteri-
zation target are also discussed. Experimental results with
artificial and real data are presented to validate the proposed
approach.

1. INTRODUCTION

Image restoration [1] is the process of estimating an image
from an observation that has undergone some degradation
such as blur and/or additive noise. To perform any sort of
image restoration, knowledge of the degradation or blur is
required. Knowledge of the blur can be obtained in at least
two ways, which we refer to asblind estimation andperfect-
controlestimation. In the blind estimation scenario [2, 3, 4],
the blur is estimated directly from the degraded image(s). In
the perfect-control setting, the imaging system used to cap-
ture the given image is characterized through some experi-
mental process. This option, of course, is often infeasible or
impractical. Obviously the imaging system cannot be sub-
jected to a characterization process if it is unavailable and/or
unknown. Even if the imaging system is available, however,
current methods for characterization [5, 6] are often imprac-
tical as they require expensive targets, nearly ideal light-
ing, control of camera and/or target placement, and analysis
by a skilled individual. These two alternatives – blind and
perfect-control – represent two extremes of the blur estima-
tion problem.
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In this paper, we begin the investigation of a new tech-
nique for estimating image blur inlimited-controlenviron-
ments. The limited-control environment falls between the
two aforementioned extremes and is useful in surveillance
and/or video forensics applications [7]. In such applica-
tions, an event of interest may be recorded by a fixed imag-
ing system, such as a surveillance camera, that is available
for limited testing in its native environment. As it may
be desirable to improve the recorded image(s) using image
restoration techniques, the goal of the work presented here
is a robust method to estimate the blur of a fixed imaging
system, without control of camera position or lighting, us-
ing an inexpensive target (or targets). Such a method is the
primary contribution of this paper. Additionally, we extend
the blur models and maximum likelihood estimation tech-
nique suggested in [2] to allow for a broader class of para-
metric blur functions.

The remainder of this paper is organized as follows. In
Section 2, we present the parametric blur model, based upon
that in [2], that we have adopted for our work. In Section 3,
we discuss the maximum likelihood estimation of the blur
parameters and then, in Section 4, we describe briefly the re-
quirements for the characterization target. We present some
experimental results from artificial and real data in Section 5
and make some closing comments in Section 6.

2. BLUR MODEL

In general, the blur of an optical imaging system can be very
difficult to model. An accurate blur model based upon phys-
ical optics requires such parameters as depth of the imaged
objects, lens aberrations, and spectral distribution of the in-
cident light [8]. A more tractable approach is to employ
parametric blur models based upon geometric or diffraction-
limited assumptions. Such an approach is suggested in [8]
as a reasonable alternative to the more cumbersome physi-
cal optics model and has been used successfully in the im-
age processing literature [2, 9].

We adopt the continuous spatial domain approach pre-
sented by Pavlović and Tekalp in [2] with some modifica-
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Fig. 1. Simple model of imaging system assuming linear,
shift-invariant blur and additive noise.

tions and extensions. Specifically, in [2] out-of-focus cir-
cular aperture blur and circularly symmetric Gaussian blur
are considered independently. We, however, allow for sep-
arable, elliptically symmetric Gaussian blur and addition-
ally consider both out-of-focus and Gaussian blur simulta-
neously. The Gaussian is used to approximate any blur in
the scene that may arise from sources other than focus er-
ror. We adopt the separable Gaussian because some imag-
ing systems tend to have more blur in one direction than the
other (e.g., the real data mentioned in Section 5). The point
spread function (PSF) for the out-of-focus circular aperture
is given by

hc(x;R) =
1

πR2
ΠR(|x|) (1)
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{
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0, |x| > R.
(2)

The PSF for the elliptically symmetric, separable Gaussian
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The blur for the overall imaging system is given by the con-
volution of (1) and (3):

h(x;R, γ1, γ2) = hc(x;R) ∗ hg(x; γ1, γ2). (4)

Letting θ represent the collection of blur parameters to be
estimated,{R, γ1, γ2}, we can rewrite (4) in the Fourier do-
main as

H(u; θ) =
1

πR|u|
J1(2πR|u|)·

exp(−2π2γ2
1u2

1) exp(−2π2γ2
2u2

2) (5)

whereJk(·) is thekth-order Bessel function of the first kind.
Given the model of (5), the goal of blur estimation is then
to estimate the parametersR, γ1, andγ2.

3. PARAMETER ESTIMATION

Referring to the imaging system model in Fig. 1, the in-
put,f(x), is characterized in [2] by an autoregressive model

driven by Gaussian-distributed, white noise. As we have
some control over the input to the imaging system in the
limited-control environment, we can simplify further and
assume that the input is purely Gaussian noise with un-
known varianceσ2

f . Such an input can be approximated
using a prefabricated target, as discussed in Section 4 be-
low. The termv(·) represents additive white noise of un-
known varianceσ2

v . We letg(n) represent theN × N ob-
served samples of the imageg(x). Using the well-known
block circulant approximation [10] to the covariance matrix
of g(n) (lexicographically ordered), and following the form
of [2], the maximum likelihood parametersθ can be found
by minimizing the negative of the likelihood function (LF)

L(θ, σ2
f , σ2

v) =
∑
k

log
(
Sg(k; θ)

)
+

1
N2

|G(k)|2

Sg(k; θ)
, (6)

whereSg(k; θ) represents samples of the (analytically com-
puted) power spectrum ofg(x) and whereG(k) is the dis-
crete Fourier transform (DFT) ofg(n). Recalling that the
inputf(·) in Fig. 1 is purely white noise, we can write

Sg(u; θ) = σ2
f |H(u; θ)|2 + σ2

v (7)

whereH(u; θ) was given in (5). We note that|H(·)|2 =
H2(·) sinceH(·) is purely real.

To minimize (6) effectively, we must compute the gradi-
ents ofL(·) with respect to each of the unknowns. Recalling
thatθ = {R, γ1, γ2}, we have
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for the blur parameters and
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for the signal and noise power, respectively. To complete (8),
we must evaluate the partials ofH(·) with respect to each
of the blur parameters, yielding
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=
1
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for i = 1, 2.
Given the DFT of the observed digital image,G(k), the

likelihood functionL(·) from (6) is minimized with respect
to the five unknown parameters –R, γ1, γ2, σ2

f , andσ2
v

– using a constrained nonlinear minimization routine (the
fmincon function from MATLAB’s Optimization Tool-
box). Initial experimental results indicated some sensitivity
to initial conditions, so a two-step initialization procedure is
performed. In the first step, initial guesses forσ2

f andσ2
v are

computed. In the second step, these initial guesses are used
to computeL(·) over a7 × 7 grid of equally spaced points
(over the range of expected/allowable values, noted below)
by assuming thatγ1 = γ2. The minimizer over this 49 point
set is then selected as the starting point for the optimization.

To constrain the optimization, the unknown parameters
are allowed to take values in the following ranges:R ∈
(0, 10], {γ1, γ2} ∈ (0, 10], and{σ2

f , σ2
v} ∈ (0,∞). The al-

lowable blur parameter (R, γ1, γ2) ranges are representative
of what is reasonably expected in our application of interest.

4. CHARACTERIZATION TARGET

As mentioned at the beginning of the previous section, the
goal of the target is to provide white, Gaussian-distributed
noise as input to the imaging system. White noise ensures
that the power spectrumSg(·) takes the form of (7). The
Gaussian distribution is required to satisfy the assumptions
used to generate the likelihood function of (6).

The target we employ is composed of constant intensity
blocks, where the intensity of each block is selected from a
discrete, approximately Gaussian distribution over[0.0, 1.0]
(0.0 corresponds to black, 1.0 corresponds to white). In the
ideal – but impractical – scenario, each block on the target
would correspond to one pixel, with no overlap. Instead, we
only require that the area of each target block correspond to
less than the area of one pixel. In this situation there will be
some correlation because adjacent pixels will generally be
observing portions of the same target blocks. This correla-
tion, however, is limited to a3×3 window and is neglected.

We note that decreasing the area of each target block
with respect to the area of each pixel would decrease the
aforementioned correlation, but would also tend to decrease
the effective SNR. As the number of target blocks observed
by each pixel increases, the effective spread off(·) about
its mean (i.e.,σ2

f ) decreases. Therefore, we would like the
target blocks to be smaller than, but on the same order of,
the area imaged by each pixel. This can be accomplished

in the field by having several targets with varying block
sizes available. To account for illumination variation (and
perform mean removal), we fit the captured image with a
separable quadratic. The quadratic is subtracted from the
captured image prior to processing.

In ongoing work, we intend to correct illumination vari-
ation and nonlinear contrast modification by including a uni-
form gray bar and a black-to-white gradient bar, one each in
both the horizontal and vertical directions, on the target im-
age. The uniform gray bars will be used to estimate and
correct illumination variation; the gradient bars will be used
to estimate and correct contrast modifications.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results from both
artificial and real data. Artificial data was generated by first
creating a Gaussian white noise image with known variance,
σ2

f , of size128 × 128 pixels. This noise image was then
blurred by a PSF of the form presented in Section 2 with
known parameters{R, γ1, γ2}. Gaussian, white noise with
known variance,σ2

v , was then added to the blurred image
to simulate the observation noise. The DFT of the noisy,
blurred image was then used asG(k) in (6). Real data was
obtained using a consumer video camera, a PC with video
capture capabilities, and a noise target such as that described
in Section 4. To provide blurry images, the autofocus fea-
ture of the camera was disabled and the camera was man-
ually defocused by varying degrees. The DFT of one cap-
tured frame was then used asG(k) in (6). Examples of the
real images are shown in Fig. 2.

Some results obtained from the artificial data are sum-
marized in Table 1. The algorithm performed similarly with
various blur parameters. It should be evident from Table 1
that the algorithm performs quite well, even down to SNRs
as low as 20dB. Around 15dB and less, however, the algo-
rithm demonstrated decreased robustness. This decreased
robustness at low SNRs might be a limiting factor in low-
quality surveillance imagery.

In Table 2, we summarize results obtained from the real
data. Although the good results obtained from the artificial
data give confidence in the results from the real data, we also
performed an additional subjective test. The blurs estimated
from the defocused images were applied to images obtained
using autofocus. The resulting, digitally blurred images cor-
responded well to the same images obtained with optical
blurring by manual defocus. This indicates, albeit subjec-
tively, that the estimated blur is representative of the true,
optical blur. Ongoing work is aimed at quantifying more
conclusively the accuracy and consistency of these results.

We now make a few comments regarding the data from
Table 2. First, note that the Gaussian blur parameters in-
dicate more blur in thex2 (horizontal) direction than in the



R γ1 γ2 SNR (dB)

SNR 40dB
True 6.2 0.9 1.8 40.00
Estimated 6.20 0.932 1.81 40.25

SNR 30dB
True 6.2 0.9 1.8 30.00
Estimated 6.15 0.917 1.79 29.91

SNR 20dB
True 6.2 0.9 1.8 20.00
Estimated 6.21 0.961 1.91 20.53

SNR 15dB
True 6.2 0.9 1.8 15.00
Estimated 6.94 0.764 1.63 15.58

Table 1. Some results for artificial images. SNR is given by
10 log10(σ2

f/σ2
v).

R γ1 γ2 SNR (dB)

Autofocus 0.547 0.489 0.754 41.44
Small Defocus 1.24 1.21 2.17 16.44
Large Defocus 2.52 2.07 4.52 18.47

Table 2. Results for the real data shown in Fig. 2.

x1 (vertical) direction. This result, initially unexpected, was
consistent with the observed image DFT, which indicated a
stronger lowpass nature in the horizontal direction. We ad-
ditionally note the low SNRs estimated for the defocused
images with respect to the autofocus image. The unexpect-
edly low SNRs were evident when the captured images were
qualitatively examined and were consistent across different
images. At present time, the cause of these low SNRs is not
fully understood. We suspect that low contrast, along with
defocus and illumination variation, contribute to the prob-
lem. We hope to address the issue by employing a gradient
bar and a uniform gray bar in the target image – as men-
tioned at the end of Section 4 – to estimate and correct con-
trast modification and illumination variation, respectively.

6. CONCLUSION

In this paper, we present a method to estimate the blur of
a given imaging system in a limited-control environment
using a noise target. A previously proposed blur model
and maximum likelihood approach are extended to handle
a more flexible class of blur functions. We also discuss
the requirements for constructing a suitable characteriza-
tion target. Results from artificial and real data are given
and demonstrate reasonable performance. Ongoing work is
aimed at improving robustness in low SNR scenarios and,
furthermore, accounting for nonlinear camera contrast mod-

Fig. 2. Real data used for experiments summarized in Ta-
ble 2. Autofocus, small defocus, and large defocus are
shown from left to right.

ification as well as illumination variation.
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