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ABSTRACT

Blind source separation (BSS) is a problem found in many applica-
tions related to acoustics or communications. This paper addresses
the blind source separation problem for the case where the source
signals are non-stationary and the sensors are noisy. To this end,  Fig. 1. Blind source separation setup with sensor noise.

we propose several useful elementary cost functions which can be

combined to an overall cost function. The elementary cost func-

tions might have different objectives, such as uncorrelated output1.2. Notation

signals or power normalization of the output signals. Additionally, The notation used throughout this paper is the following: Vectors
the corresponding gradients with respect to the adjustable param-, X

¢ . We di the desi f I ¢ functi are written in lower case, matrices in upper case. Matrix and vector
eters are given. Ve discuss the design of an overall cost func 'Ontranspose, complex conjugation and Hermitian transpose are de-
and also give a simulation example.

noted by(.)”, (.)*, and(.)" £ (()*)7, respectively. The sample
index is denoted by. The identity matrix is denoted Hy a vector

1. INTRODUCTION or a matrix containing only zeros lfy E{.} denotes the expecta-
tion operator. Vector or matrix dimensions are given in superscript.
1.1. Problem description The Frobenius norm and the trace of a matrix are denoteid by

andtr (.), respectivelya = diag( A ) is a vector whose elements
The generalMl x M mixing process is shown in Fig. 1 and de- are the diagonal elements & anddiag(a) is a square diago-

scribed as nal matrix which contains the elementszofddiag( A ) zeros the
off-diagonal elements oA and
X = Asy + @ off(A) 2 A — ddiag(A) 3
wheres; = (s1,.. .,SM)tT, x; = (z1,.. .,xM)tT, andn, con- zeros the diagonal elements Af For a square matriA we have

tain the samples of the unknown source signals, the sensor signalsjdiag( A ) =diag(diag( A )).
and the sensor noise at timerespectively, and\»*M is the un-

known mixing matrix. The blind source separation problem is de- 1.3. Assumptions

fined as finding a separation mat®% ™ ** such that the output

of the separation process In additio_n to the problem proposed above, we make the following
assumptions:
u; = Wx; = W(As; +ns) = Gs; + Wny (2) Al Time-invariant mixing matrixA..
A2 A has full rank)/.

is a vector of waveform-preserving estimates of the unknown A3 Source signals,,, m = 1,..., M, are mutually
source signals by using only the time series of the measured sensor independent.
signals{x;} for¢ = 1,2,.... G is the total transfer matrix of the A4 All source signalss,,, but possibly one are non-stationary.
global system. A5 All source signals are unknown

In the following, our main objective is to find a so-calleero- A6 The sensor noise signals are stationary additive white
forcing solution for W such thatG becomes close to a scaled Gaussian processes and mutually independent.
permutation matrix. This is equivalent to minimizing theer- A7  The source signals and the sensor noise are mutually
channel interferenc¢lCl) at the outputu, regardless of a possi- independent.

ble noise amplification byW. In fact, there are different statis- As a consequencel3 and.A6 imply
tical criteria which can be exploited for blind signal separation,

e.g., non-Gaussianity, non-whiteness, cyclo-stationarity, and non- Res, 2 E{sis{'} = diag(osts,---,0504) (4)
stationarity of the source signals. In the following, we assume A - . 5 N
non-stationary source signals. Ran = E{nyn; } = diag(oni, ..., o0 ) - ®)



and from (1) and47 we have stochastic-gradient learning algorithm, we need the gradient of the

a - u cost function with respect t8v
Rux, 2 E{x;x{'} = ARss, A” + R . (6)

ijl = 4OH(W (Rxx - Rnn) WH ) W (Rxx - Rnn)
2. OVERALL COST FUNCTION (15)

In order to successfully separate the unknown source signals, wevhich we can use in (9) to upda®. With (14) we obtain a bias-
define aroverall cost function7 which consists of a weighted sum ~ free separation matri¥V' after convergence. This goes also in

of elementary cost functions line with the bias-removal technique proposed by Dougtae.in
[1]. However, ifRan is unknown, by simply settinBRn, =0 we

J(W,Rpn) = Z ;i Ji(W,Rnn) . (7) usually obtain a biased separation matrix in the noisy case, except
7 for some special cases, e.g.Rf,, is a scalar matrix and\ is a

unitary matrix. For this reason, Rn,n iS unknown we also use a

The elementary cost functiong; can have different objectives, ¢ -hastic gradient method to estimitg,,

e.g., decorrelation of the output signals, normalization of the sep-

aration matrixW, output power control, etc. Ruan,,, = Rnnk + Af{nnk (16)
After choosing a suitable cost functigh, we use a stochastic R R
gradient algorithm to find the unknown parameters which mini- ARun, = N VRaa {jl(wkaRnnk)} . (17)
mize J .
We restrict ourself to adapt a diagonal mati%,,, since we
Wit = Wi + AW, (8) assume fromA6 that the sensor noise is mutually uncorrelated.
AWy = —pu Vw {T (Wi, Ran)} 9) Therefore,
where AW, is the incremental update &, and VRanJ1 = —4 ddiag (WH off(W (Rxx - ftm,) wi )W)

Vw {T (Wi, Ran)} = Y @ Vw {Ji(Wi, Ran)}  (10) .
i where we choose the initial valUg,n, to be a diagonal matrix.
Moreover, if we know that each sensor has the same noise charac-

is the gradient of the overall cost functighwith respect tow. AR )
9 on P teristics, i.eon2, =02, we only have to adapt

In the case wherRan is unknown, we can also use a stochas-

tic gradient algorithm to find an estimakean Gnpt1 = Onjp + Adnj, (19)
R““k+1 = Roun,, + ARun, (11) Adni, = —n Voz, {T(Wy,6n2)} (20)
ARnny, = =1 VRon { T (Wi, Rom,) } 1z Wit \
here Vop i = =22 tr (W off (W (Rex — i 1) W ) W)
R . (21)
VRan {j(wk’ R““’f)} - ;aivp‘““ {‘Z(Wk’ R""’“)} ' whereRnn = da} Lis the current estimate @ nx .

13)
3.2. Constraints on the separation matrixW

3. ELEMENTARY COST FUNCTIONS SinceW =0 also minimizes the elementary cost function in (14),

) ) ) . we need an additional constraint which prevents this trivial solu-
In this section, we present some elementary cost functions whichtion, The elementary cost function

are effective for blind signal separation of non-stationary source

signals. A summary of elementary cost functions and their corre- T 2 H ddiag(WWH _ I) H2 (22)

sponding gradients is given in Table 1. Appendix A lists all equa- F

tions used for the derivation of the gradients. has its minimum when the row vectors % are normalized to
have length one. An alternative elementary cost function is

Js 2 || ddiag(W — 1) ||%, (23)
An elementary cost function for blind signal separation of non- C . . .
stationary souyrce signals can be a cost%unctior? which penalizesWh'Ch’ it included in the overall cost functiaf, steers the diago-
uncorrelated output signals. While decorrelation of the output sig- nal elements oW towards+1.
nals is a necessary but not sufficient criterion for the separation of o
stationary source signals, the decrorrelation criterion can be suf-3-3. Output power normalization
ficient for non-stationary source signals under some weak condi-
tions. We define an elementary cost function

3.1. Decorrelation of output signals

An alternative to directly constraiW, is to use a constraint on the
average output power. The elementary cost function

o 2 | off (W (Ruce — Rum) W) H; (14) 2 £ | adiag(WRo W 1) || (24)

which measures the deviation from having uncorrelated output steers the average long-term output power of the output signals
signals in the noise-free case. Since we want to a¥¥pby a to become one.



3.4. Relationship to other algorithms

— x®=1|]
An adaptive algorithm using the cost functigh= 71 + a2 J> with - ;( E/-\; =3
Ran =0 was recently published by Jones [2]. Another algorithm e -- X(A) =5
was proposed by Parra and Spence [3] which uses a cost function B T A
similar to 71, except that the assumption having stationary noise B (P TR -
signals is dropped and the powers of the output signalsare
estimated too. In addition, an extension is given for the case where -20 200 200 500 800 1000
the source signals are convolutively mixed. Related work was also iteration k

done by Matsuokat al.in [4].
Fig. 2. Learning curve measuring the interchannel interference.

4. SOURCE SEPARATION VIA EIGENVALUE
DECOMPOSITION

source signals. The simultaneous diagonalization of two correla-
tion matrices can also be solved by a generalized eigenvalue de-
composition, as pointed out by Tsatsanis and Kweon in [7]. Re-
cently, Choi and Cichocki [8, 9] have proposed a method for blind
separation of non-stationary and non-white source signals using
simultaneous diagonalization of time-delayed correlation matrices
Ruxx, (T) & E{x¢x{L,} for 7 # 0.

We now present an alternative method, which is inspired from a
Linear Algebra problem, namely the simultaneous diagonalization
of two matrices [5], which is only possible if the two matrices
commute. In our case, the two matrices we want to diagonalize
are(Ruxx;, —Rnn) aNd(Ruxx;, — Ran), Wheret, andt; are two
different time instants. First, let us assume tBatx,, , Rxx;,
andR,. are known. Then we can define a maigxas

Q=2 (Rxxtl - R....)f1 (R,% - R....) (25)

. H 5. SIMULATION
=[ARus, A”]7'ARus A (26)

= A_HRs_slthsstz AT, (27) In the following, we give a simulation example to analyze the
behavior of the proposed algorithm. We measure the average
Since the source signads, are mutually independent by assump- channel-wisanterchannel interferencélCl) as our performance
tion, and therefore mutually uncorrelateBlss, andRs.s,, are criterion of interest. The overall cost function is a combination of
diagonal matrices, and so B..; Rs,,. Hence, the similarity ~ J1 andJs. Hence, we adapi; with (8) and

transform in (27) is just an eigenvalue decomposition (EVD) of
Q. Since an EVD is not unique, we can decomp@sas 0.4

AW}, = —
k 0.05 + || VwJ1 || o

VwJi —01VwJ s (30)
Q=TAT™ (28)

where the column vectots,, of T are the eigenvectors @ and

which includes a step-size normalizatiefy; is adapted with (19
have unity length, i.¢]t, ||, =1. Furthermore, P ok d (19

to (21) andnp = 0.04. The randomly chosen complex mixing ma-
trices A are normalized such that their largest singular value is al-

A = diag( A, ..., Am ) = Rag) Resy, (29) ways 1, the condition numbers ag¢A) =1, 3, and 5, and the sin-
gular values ofA are logarithmically distributed. We havié =10
contains the eigenvalues,, = afn,tz/afn,tl of Q. M\, is the stationary Gaussian-distributed source sigagleach being com-
power ratio of the source signaJ, between time instant, and plex and with powes? = 1. The non-stationarity of the source sig-

ti. If all A, are distinct, W = T# is a separation matrix  nals is introduced by a block-wise randomly chosen complex gain
such thatG becomes a scaled permutation matrix. In that case, K, . € [0.1,1] for every source signal, €.8m,: = K k - Sh.¢-

W (Rxx; — Ran) W is diagonal for alt. Hence, under these Hence,os?, ;. € [0.01,1]. Furthermore, we have; = 0.1. The
conditions, the blind signal separation problem for non-stationary correlation matriceR., are estimated over blocks & = 100
source signals can be tracked down to solving a single eigenvaluesamples. Fig. 2 shows performance curves averaged over 30 runs
decomposition task. Problems with this method arise if an eigen- for differentx(A). We see that convergence is reached quite fast,
value\,,, appears with multiplicity greater than one, because then despite the high noise level. However, the performance depends
Q has an eigenspace which does not uniquely define the columnstrongly on the condition number &.

vectors ofT, which are the row vectors aiV. This problem can

be greatly reduced by simultaneously diagonalizing a s&t obr-

relation matrice Ruxx;, — Ran .

If Ran is unknown, it can be replaced by an estimRtg, .
However, the drawback of this method is that the eigenvettrs
are quite sensitive to bad estimatedfx andR.,n . It can even We have presented several elementary cost functions, which can be
causeQ to have negative eigenvalugs,, which have no physical ~ combined to an overall cost function for blindly separating a noisy
meaning anymore. The solution of the EVD method can also be mixture of non-stationary source signals. In addition, the gradients
helpful to obtain a good initial valu&y in (8). of the elementary cost functions are given, which can be used for

A similar EVD method was used by Molgedey and Schuster an online stochastic-gradient learning algorithm for adjusting the
in [6] for the separation of stationary, but temporally correlated parameters of interest. Finally, a simulation example is given.

6. SUMMARY



Table 1. Elementary cost functions with corresponding gradients

objective

elementary cost functiofl; (W, Ran)

gradientV.7; (W, Ran)

if Rnn is diagonal

if Ran =021

uncorrelated output signalg

o fon(ow e )

Vw]1:4off(W(Rxx - Rnn)WH) W (Rxx — Run)
Ve, Ji=—4 ddiag(wH off(w (Rxx — Run) WH ) w)

V2 Ji ==y tr (W off (W (Roex — o21) WH ) W)

normalized output power
if Rnn is diagonal

if Ran =021

o e W e o) 1]

VWJ2=4ddiag(w (Rxx — Run) WH — I) W (Rxx — Ran)
VRnn Jo =—4 ddiag( W ddiag( W (Rux —Rnn) W7 — 1) W )

V2o =— tr (WH ddiag( W (Rax — Ran) W7 —1) W)

row-normalizedW

Js £ || adiag( WWT — 1) Hi

Vw T :4ddiag(WWH - I) w

column-normalizedW

Ja = H ddiag(WHW - I) Hi

VWJ4:4deiag(wHw - 1)

norm constraint

Ts 2 (W3 — )

Vw]5=4(HW||§?*M)W

diag(W)=1

Js £ || ddiag(W — 1) ||%

Vw Js =2ddiag(W —I)

real diag. elem. oW

72 Jaans(w W

ij7:4ddiag(w - WH)

row-scaled unitaryWW

7 & o (ww) |

ijg:4off(WWH ) w

column-scaled unitaryV

72 [or(wrw) |,

ij9:4Wofr(wHw)

unitary W

o & [ww

Vw Ji0=4 (wwH - I) W =4W (WHW _ 1)

[ det (W) |=1

Ji1 £ |log (| det (W) ) 2

Vw11 =2 log (| det (W) |) - W—H

A. COMPUTATION OF THE GRADIENT OF A COST

FUNCTION WITH RESPECT TO A MATRIX

The following equalities are useful for the computation of Frobe-

nius norms and trace functions [10]
IA 7 = (A" A)

loff(A) 17 = | All7 — || ddiag(A) |I7

tr (AB) = tr (BA)
tr (A ddiag(B)) = tr (ddiag( A ) B)

= tr (ddiag( A ) ddiag(B))

tr (off(A ) ddiag(B)) =0.

For the computation of the gradient of a cost function based on
the Frobenius norm, we have to differentiate a trace function
with respect to a complex matriw = [wys, + jwiny,|. After

Haykin [11], the complex gradient can be defined as

Vw =2

A

0 0

OW* | dwre,

The following equalities are useful for the differentiation of a trace

e
owi,

function with respect to a complex matrix

0
0 i
S T(WTA)=A
0 " _
0

A%

_tr( W/AW?B) = AW”B + BW”A .

(1)
(32
(33)
(34)
(3%
(36)

37

(38)
(39)
(40)

(41)
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