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ABSTRACT

We address the problem of blind source separation of non-stationary
signals of which only instantaneous linear mixtures are observed.
A blind source separation approach exploiting both auto-terms and
cross-terms of the time-frequency (TF) distributions of the sources
is considered. The approach is based on the simultaneous diago-
nalization and anti-diagonalization of spatial TF distribution matri-
ces made up of, respectively, auto-terms and cross-terms. Numeri-
cal simulations are provided to demonstrate the effectiveness of the
proposed approach and compare its performances with existing TF-
based methods.

1. INTRODUCTION

Blind source separation (BSS) consists of recovering a set of signals
of which only instantaneous linear mixtures are observed. Source
separation algorithms are based on the main assumption of mutual
independence of the respective source signals. Various techniques
have been proposed, including the separation by maximum likeli-
hood [3], separation by decorrelation and rotation [1, 4], separation
by neural networks [2], separation by contrast function [10], and
separation by information-theoretic criteria [11].

For non stationary source signals, blind source separation meth-
ods based on time-frequency distributions have been introduced in
[5, 6]. These methods consider only auto-terms of the signal time-
frequency distributions (TFDs), and exploit the diagonal structure
of the source TFD matrices. In this paper, we perfrom BSS of FM
signals impinging on an antenna array using both the TFDs of the
source signals as well as their cross TFDs. This is achieved by
exploiting the anti-diagonal structure of the source TFD matrices,
evaluated at the cross-term TF points. Moreover, we propose an au-
tomatic selection procedure to decide, with no a priori knowledge
about the sources, whether a considered TF point corresponds to an
auto-term or a cross-term.

As a consequence, in comparison with the method in [5], the
proposed technique is more robust to noise and TF point selection
errors and improves the quality of source separation.

2. PROBLEM FORMULATION

Considerm sensors receiving an instantaneous linear mixture of
signals emitted fromn � m sources. Them�1 vectorx(t) denotes
the output of the sensors at time instantt which may be corrupted
by additive noisen(t). Hence,

x(t) = As(t) + n(t); (1)
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where them � n matrixA is called the ‘mixing matrix’. Then
source signals are collected in an � 1 vector denoteds(t) which
is referred to as the source signal vector. The sources are assumed
to have different structures and localization properties in the time-
frequency domain. The mixing matrixA is full column rank but is
otherwise unknown. In contrast to traditional parametric methods,
no specific structure of the mixture matrix is assumed.

It is well known that the blind source separation is a technique
for the identification of the mixing matrix and/or the recovering of
the source signals up to a fixed permutation and some complex fac-
tors.

3. SPATIAL TIME-FREQUENCY DISTRIBUTIONS

The discrete-time form of Cohen’s class of Time-Frequency Distri-
butions (TFD) for a signalx(t) is given by [8]

Dxx(t; f)=

1X
l;m=�1

�(m; l)x(t+m+ l)x�(t+m� l)e�j4�fl (2)

wheret and f represent the time index and the frequency index,
respectively. The kernel�(m; l) characterizes the distribution and
is a function of both the time and lag variables. The cross-TFD of
two signalsx1(t) andx2(t) is defined by

Dx1x2(t; f)=

1X
l;m=�1

�(m; l)x1(t+m+l)x�2(t+m�l)e�j4�fl (3)

Expressions (2) and (3) are used to define the following dataspatial
time-frequency distribution (STFD)matrix,

Dxx(t; f)=

1X
l;m=�1

�(m; l)x(t+m+l)xH(t+m�l)e�j4�fl (4)

where[Dxx(t; f)]ij = Dxixj (t; f); for i; j = 1; � � � ;m and the
superscriptH denotes the transpose conjugate operator.

Under the linear data model (1) and assuming a noise-free en-
vironment, the STFD matrix takes the following structure:

Dxx(t; f) = ADss(t; f)A
H (5)

whereDss(t; f) is the signal TFD matrix whose entries are the
auto- and cross-TFDs of the sources.

Auto-source TFD: We define the auto-source TFD by

D
a
ss
(t; f) = Dss(t; f) for auto-term TF points (6)



Since the off-diagonal elements ofDss(t; f) are cross-terms,
the auto-source TFD matrix is quasi1 diagonal for each TF point
that corresponds to a true power concentration, i.e. a source auto-
term.

Cross-source TFD: We define the Cross-source TFD by

D
c
ss
(t; f) = Dss(t; f) for cross-term TF points (7)

Since the diagonal elements ofDss(t; f) are auto-terms, the
cross-source TFD matrix is quasi anti-diagonal (i.e. its diagonal
entries are close to zero) for each TF point that corresponds to a
cross-term.

4. PROPOSED ALGORITHM

LetW denote anm�n matrix, such that(WA)(WA)H = UUH

= I, i.e. WA is ann � n unitary matrix (W is referred to as the
whitening matrix, since it whitens the signal part of the observa-
tions). Pre- and post-multiplying the TFD-matricesDxx(t; f) by
W, lead to thewhitened TFD-matrices, defined as:

D
xx
(t; f) =WDxx(t; f)W

H (8)

From the definition ofW and Eq.(5), we can expressD
xx
(t; f) as

D
xx
(t; f) = UDss(t; f)U

H (9)

Joint Diagonalization (JD): By selecting auto-term TF points,
the data auto-source TFD will have the following structure,

D
a
xx
(t; f) = UDa

ss
(t; f)UH (10)

whereDa
ss
(t; f) is diagonal. The missing unitary matrixU is re-

trieved (up to permutation and phase shifts) by Joint Diagonaliza-
tion (JD) of a combined setfDa

xx
(ti; fi)ji = 1; � � � ; pg of p auto-

source TFD matrices. The incorporation of several auto-term TF
points in the JD reduces the likelihood of having degenerate eigen-
values.

The joint diagonalization [4] of a setfMkjk = 1::pg of p �
matrices is defined as the maximization of the JD criterion:

C(V)
def
=

pX
k=1

nX
i=1

jvHi Mkvij
2 (11)

over the set of unitary matricesV = [v1; � � � ;vn]. An efficient
joint approximate diagonalization algorithm exists in [4] and it is a
generalization of the Jacobi technique [9] for the exact diagonaliza-
tion of a single normal matrix.

Joint Anti-Diagonalization (JAD): By selecting cross-term TF
points, the data cross-source TFD will have the following structure,

D
c
xx
(t; f) = UDc

ss
(t; f)UH (12)

whereDc
ss
(t; f) is anti-diagonal. The missing unitary matrixU

is ‘uniquely’ (i.e. up to permutation and phase shifts) retrieved by
Joint Anti-Diagonalization (JAD) of a combined setfDc

xx
(ti; fi)ji =

1; � � � ; qg of q cross-source TFD matrices.
The joint anti-diagonalization is explained by first noting that

the problem of anti-diagonalization of a singlen � n matrixN is
equivalent2 to the maximization of the criterion

C(N;V)
def
= �

nX
i=1

jvHi Nvij
2 (13)

1Because of the finite window effect, the sidelobes from cross terms
would often prevent a full diagonal structure of the above matrix.

2This is due to the fact that the Frobenius norm of a matrix is constant
under unitary transform, i.e. norm(N) =norm(VHNV).

over the set of unitary matricesV = [v1; � � � ;vn]. Hence, JAD of
a setfNkjk = 1::qg of q n � n matrices is defined as the maxi-
mization of the JAD criterion:

C(V)
def
=

qX
k=1

C(Nk;V) = �

qX
k=1

nX
i=1

jvHi Nkvij
2 (14)

under the same unitary constraint. A Jacobi-like algorithm has been
derived for the maximization of the JAD criterion (14).

Combined JD/JAD algorithm: The Combined joint diagonaliza-
tion and joint anti-diagonalization of two setsfMkjk = 1::pg and
fNkjk = 1::qg of n�n matrices is defined as the maximization of
the JD/JAD criterion:

C(V)
def
=

nX
i=1

 
pX

k=1

jvHi Mkvij
2 �

qX
k=1

jvHi Nkvij
2

!
(15)

over the set of unitary matricesV = [v1; � � � ;vn]. A Jacobi-like
algorithm has been derived3 for the maximization of the JD/JAD
criterion (15).

Selection procedure: The success of the JD or JAD of TFD ma-
trices in determining the unitary matrixU depends strongly on the
correct selection of the auto-term and cross-term points. A simula-
tion example is given in Section 6 to emphasize this point. There-
fore, it is crucial to have a selection procedure that is able to dis-
tinguish between auto-term and cross-term points based only on the
TFD matrices of the observations. Here, we propose a selection ap-
proach that exploits the anti-diagonal structure of the cross-source
TFD matrices. More precisely, we have

Trace(Dc
xx
(t; f)) = Trace(UDc

ss
(t; f)UH)

= Trace(Dc
ss
(t; f)) � 0:

Based on this observation, we derive the following testing proce-
dure:

if
Trace(D

xx
(t; f))

norm(D
xx
(t; f))

< � �! decide that(t; f) is a cross-term

if
Trace(D

xx
(t; f))

norm(D
xx
(t; f))

> � �! decide that(t; f) is an auto-term

where� is a ‘small’ positive real scalar. The correct choice of the
value of� is still under investigation. An ad-hoc value (� = 0:1) has
been used in our simulation experiment.

Identification Procedure: Equations (5-15) constitute the pro-
posed blind source separation approach which is summarized by
the following steps:

� Determine the whitening matrix̂W from the eigen decom-
position of an estimate of the covariance matrix of the data
(see [5] for more details).

� Compute the TF distribution of the array output according to
(4).

� Select a set of TF points (usually corresponding to the high
amplitude points of the signal TF transform) then distinguish
between auto-term and cross-term points using the above se-
lection procedure.

� Determine the unitary matrix̂U by maximizing the JD/JAD
criterion applied to the whitened TFD matrices computed at
the selected TF points.

3Details of the JAD and the JD/JAD algorithms are omitted here due to
space limitation.



� Obtain an estimate of the mixture matrixÂ asÂ = Ŵ#
Û,

where the superscript# denotes the pseudo-inverse, and an
estimate of the source signalsŝ(t) asŝ(t) = ÛH

Wx(t).

5. DISCUSSION

We present below several comments to obtain more insight into the
proposed blind source separation (BSS) method:

1) In practice, the cross-source TFD matrices will not be purely
anti-diagonal. This is because some auto-terms, through their side
lobes or main lobes, will intrude over the cross-term regions. The
cross-terms will be however the dominant components. This situ-
ation is similar to the earlier work on joint diagonalization of TFD
matrices selecting auto-term points [5], where the source auto-TFD
matrices are not purely diagonal because of cross-term intrusion.
This impairment is mitigated by the joint approximation property
of the JD/JAD algorithm and its robustness.

2) In contrast to the previously proposed Time-Frequency Sep-
aration (TFS) approach [5], the new proposed algorithm, allows se-
lecting TF points in both auto-term and cross-term regions, as both
regions provide separate key information about the signals, and in
turn provides improved separation performance (see simulation ex-
ample in Section 6).

3) The cross-term issues rise in both the TF and ambiguity
domain [7] based BSS. Therefore the proposed blind separation
method can be applied to both domains.

4) The smoothing kernel reduces the cross terms by re-distribu-
ting them across the t-f domain, rather than being concentrated at
specific points where they can be confused with true energy. This
re-distribution process will place some of these terms on the top
of the autoterms, rendering the TFD matrix, constructed from au-
toterms, non-diagonal. So, in many cases, the Wigner-Ville distri-
bution is more robust than other distributions.

5) The JAD algorithm provides an estimate of the unitary matrix
U and cross-source TFD matricesDc

ss
(t; f). A necessary condition

for the uniqueness of the solution is that the number of equations is
greater than the total number of unknown parameters. This leads
to the conditionq � n � 1, whereq is the number of then � n

matrices to be processed by the JAD algorithm. Note that for the JD
algorithm, we need onlyp � 1 as a necessary condition. A detailed
study on the identifiability of the problem will be given elsewhere.

6. SIMULATION

First experiment: We consider a uniform linear array ofm = 3
sensors having halfwavelength spacing and receiving signals from
n = 2 sources in the presence of white Gaussian noise. The sources
arrive from different directions�1 = 10 and�2 = 20 degrees. The
emitted signals are two chirps. The kernel used for the computation
of the TFDs is the Wigner-Ville kernel. Eight TFD matrices are
considered.

The performance is characterized in terms of signal rejection.
The mean rejection level is defined as

I
def
=
X
q 6=p

EjÂ#
Apqj

2 (16)

We compare in Figure 1 the performance of the TFS algorithm pro-
posed in [5] and the proposed algorithm for a signal-to-noise ratio
(SNR) in the range [5 - 20 dB]. The mean rejection levels are eval-
uated here over100 Monte Carlo runs with1024 samples. It turns
out that, in this case, the new algorithm performs slightly better than
the TFS algorithm.
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Figure 1: Mean rejection level vs SNR.
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Figure 2: WVD of two mixed signals at 0 dB SNR.

Second experiment: In this experiment, we consider two chirp
signals (n = 2), depicted by

s1(t) = exp(�j0:004�t2)

s2(t) = exp(�j0:004�t2 � j�0:4t);

impinging on an array of m=5 sensors at 30 and 60 degrees. White
Gaussian noise was added, leading to an SNR of 0dB. The Wigner-
Ville distribution (WVD) of the mixture at the middle sensor is de-
picted in Figure 2. From Figure 2, we selected eight arbitrary TF
points, among which one was a cross-term. Using the algorithm
based on JD only, suggested in [5], we obtain the estimated sig-
nals, described by WVDs, shown in Figure 3. The figure clearly
shows that the algorithm had failed. An estimate of the mean rejec-
tion level was as high as 3 dB. However, if we apply the proposed
method from Section 4, the results are more promising, leading to
Figure 4 with a signal rejection level estimate of -26 dB. One may
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Figure 3: WVDs of the two chirps using JD with seven auto-terms
and one cross-term.
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Figure 4: WVDs of the two chirps using JD/JAD with seven auto-
terms and one cross-term.

suggest to remove the cross-term, identified with the method sug-
gested in Section 4, and run a JD algorithm based on the auto-terms
only. The result of this approach is depicted in Figure 5. Although
visually not noticeable, this approach does not perform as well as
the JD/JAD method as the signal mean rejection level estimate is
higher by circa 2 dB (-24dB). This loss of mean rejection level can
be more severe in other situations.
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Figure 5: WVDs of the two chirps using JD with the seven auto-
terms from above.

Third experiment: Here, we use three sources signals at 20 dB
SNR (the third source being at 90 degrees). The number of antenna
elements is again m = 5. The WVD of the mixture at the mid-
dle sensor is depicted in Figure 6. Six TF points are considered,
among which five are cross-terms. The procedure described above
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Figure 6: WVD of the mixture of three chirps at 20 dB SNR.

was used with � = 0:1 to identify the auto-terms and cross-terms
and the JD/JAD criterion ran.The result is depicted in Figure 7. It

is clearly seen that the method performs very well with a rejection
mean level estimate of -28 dB.
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Figure 7: WVDs of the three chirps using JD/JAD with one auto-
term and five cross-terms.

7. CONCLUSIONS

In this paper, the problem of blind separation of linear spatial mix-
tures of non-stationary source signals based on time-frequency dis-
tributions has been investigated. A solution based on the hybrid
diagonalization / anti-diagonalization of a combined set of spatial
time-frequency distribution matrices, selected in both the auto-term
and cross-term regions, has been proposed. The identifiability prob-
lem as well as the problem of TF points selection have been dis-
cussed. Numerical simulations are provided to illustrate the effec-
tiveness of the proposed approach.
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