JOINT ANTI-DIAGONALIZATION FOR BLIND SOURCE SEPARATION.
A. Belouchranit, K. Abed-Merain?, M. G. Amin?, A. M. Zoubir*

L Elec. Eng. Dept, Ecole Nationale Polytechnique, EL Harrach 16200, Algiers, Algeria.
2 Sig. & Image Proc. Dept., Telecom Paris (ENST), Cedex 13, France.
3 Dept of Elec. and Comp. Eng. Villanova University, Villanova PA 19085 USA.
* Australian Telecomm. Research Institute and School of Elec. and Comp. Eng.
Curtin University of Technology, GPO Box U 1987, Perth 6485, Western Australia.

ABSTRACT where them x n matrix A is called the ‘mixing matrix’. Then

source signals are collected imax 1 vector denoted(¢) which

We address the problem of blind source separation of non-stationlyeferred to as the source signal vector. The sources are assumed
signals of which only instantaneous linear mixtures are observed.paye different structures and localization properties in the time-
A blind source separation approach exploiting both auto-terms aﬂ@quency domain. The mixing matri& is full column rank but is
cross-terms of the time-frequency (TF) distributions of the SOUrCe$eryise unknown. In contrast to traditional parametric methods,
is considered. The approach is based on the simultaneous diaﬂ&'specific structure of the mixture matrix is assumed.

nalization and anti-diagonalization of spatial TF distribution matri- _Itis well known that the blind source separation is a technique

ces made up of, respectively, auto-terms and cross-terms. NUM@gl e jgentification of the mixing matrix and/or the recovering of

cal simulations are provided to demonstrate the effectiveness of the < ,rce signals up to a fixed permutation and some complex fac-
proposed approach and compare its performances with existing fs

based methods.

1 INTRODUCTION 3. SPATIAL TIME-FREQUENCY DISTRIBUTIONS

. . . . . The discrete-time form of Cohen'’s class of Time-Frequency Distri-

Blind source separation (BSS) consists of recovering a set ofsngnB ions (TFD) for a signat(#) is given by [8]

of which only instantaneous linear mixtures are observed. Source

separation algorithms are based on the main assumption of mutual oo

independence of the respective source signals. Various techniques, (¢, f)= Z p(m, Dt +m~+Dz (t+m—1)e 4 (2)

have been proposed, including the separation by maximum likeli-

hood [3], separation by decorrelation and rotation [1, 4], separation

by neural networks [2], separation by contrast function [10], anglhere¢ and f represent the time index and the frequency index,

separation by information-theoretic criteria [11]. respectively. The kerned(m,[) characterizes the distribution and
For non stationary source signals, blind source separation mefa function of both the time and lag variables. The cross-TFD of

ods based on time-frequency distributions have been introducecdhiib signalsz; (t) andz»(t) is defined by

[5, 6]. These methods consider only auto-terms of the signal time-

frequency distributions (TFDs), and exploit the diagonal structure s )

of the source TFD matrices. In this paper, we perfrom BSS of FMDz, ., (t, f)= Zq&(m, Day(t+m—+D)as(t+m—1)e ™1 (3)

signals impinging on an antenna array using both the TFDs of the l,m=—o0

source signals as well as their cross TFDs. This is achieved by

exploiting the anti-diagonal structure of the source TFD matriceExpressions (2) and (3) are used to define the following sfztial

evaluated at the cross-term TF points. Moreover, we propose an dre-frequency distribution (STFD)matrix,

tomatic selection procedure to decide, with no a priori knowledge

l,m=—o00

about the sources, whether a considered TF point corresponds to an - " —janfl
auto-term or a cross-term. Do (t, f)= Z p(m, Dx(t+m+1)x" (t+m—1l)e 4)
As a consequence, in comparison with the method in [5], the lym=—co

proposed technique is more robust to noise and TF point selecti

0 .
errors and improves the quality of source separation. wﬂere[D_xx (¢, )lij = Drizy (8, f), fori,j =1,---,mand the
superscript! denotes the transpose conjugate operator.

Under the linear data model (1) and assuming a noise-free en-
2. PROBLEM FORMULATION vironment, the STFD matrix takes the following structure:

Considerm sensors receiving an instantaneous linear mixture of Dy (t, f) = ADu(t, f)AT (5)
signals emitted from < m sources. Then x 1 vectorx(t) denotes

the output of the sensors at time instanthich may be corrupted where D, (¢, f) is the signal TFD matrix whose entries are the
by additive noisen(t). Hence, auto- and cross-TFDs of the sources.

x(t) = As(t) + n(t), 1) )
Auto-source TFD:  We define the auto-source TFD by

THE WORK BY M. AMIN IS SPONSORED BY ONR, GRANT #
N00014-98-0176 D (t, f) = Des(t, f) for auto-term TF points (6)



Since the off-diagonal elements B (¢, f) are cross-terms, over the set of unitary matric8 = [vi,-- -, v,]. Hence, JAD of
the auto-source TFD matrix is quasliagonal for each TF point a set{N|k = 1..q} of ¢ n x n matrices is defined as the maxi-
that corresponds to a true power concentration, i.e. a source autuzation of the JAD criterion:

term. p ¢ =
CV) =) O, V) == Y wiNewi|”  (14)
k=1

Cross-source TFD:  We define the Cross-source TFD by 1 i1

D¢ (t, f) = Dss(t, f) for cross-term TF points (7) under the same unitary constraint. A Jacobi-like algorithm has been

Since the diagonal elements Bt.. (¢, f) are auto-terms, the derived for the maximization of the JAD criterion (14).

cross-source TFD matrix is quasi anti-diagonal (i.e. its diagonal ) _ ) S )
entries are close to zero) for each TF point that corresponds téc@mbined JD/JAD algorithm:  The Combined joint diagonaliza-

cross-term. tion and joint anti-diagonalization of two sefd1;|k = 1..p} and
{Ny|k = 1..q} of n x n matrices is defined as the maximization of
the JD/JAD criterion:

4. PROPOSED ALGORITHM

n V4 q
Let W denote ann x n matrix, such tha_(WA)(WA)H =Uuu¥ o) Z (Z VM| — Z |viHNkvi|2> (15)
=1, i.e. WA is ann x n unitary matrix W is referred to as the
whitening matrix, since it whitens the signal part of the observa-
tions). Pre- and post-multiplying the TFD-matricBs. (¢, f) by ~ Over the set of unitary matricéé = [vi,---,vn]. A Jacobi-like
W, lead to thewhitened TFD-matrices, defined as: algorithm has been derivedor the maximization of the JD/JAD
criterion (15).

i=1 k=1 k=1

D, (t,f) = WD (t, YW (8)

From the definition oW and Eq.(5), we can expreBs,_ (¢, f) as  Selection procedure: The success of the JD or JAD of TFD ma-
u trices in determining the unitary matri¥ depends strongly on the
D,,(t,f) = UDs(t, /U (9 correct selection of the auto-term and cross-term points. A simula-
tion example is given in Section 6 to emphasize this point. There-
Joint Diagonalization (JD): By selecting auto-term TF points, fore, it is crucial to have a selection procedure that is able to dis-
the data auto-source TFD will have the following structure, tinguish between auto-term and cross-term points based only on the
a . a H TFD matrices of the observations. Here, we propose a selection ap-
Do (t, f) = UDas(t, /YU (10) proach that exploits the anti-diagonal structure of the cross-source
whereDZ, (¢, f) is diagonal. The missing unitary matr¥ is re- TFD matrices. More precisely, we have
trieved (up to permutation and phase shifts) by Joint Diagonaliza-

c c H
tion (JD) of a combined s¢D?, (¢;, fi)|i = 1,---,p} of p auto- Trace(Dyy (¢, f)) = Trace(UDs(t, f)UT)
source TFD matrices. The incorporation of several auto-term TF = Trace(Dg(t, f)) = 0.
points in the JD reduces the likelihood of having degenerate eigen- . . ) ) )
values. Based on this observation, we derive the following testing proce-
The joint diagonalization [4] of a s€iM; |k = 1..p} of p x  dure:
matrices is defined as the maximization of the JD criterion: Tr D
if Trace(Doy (t, 1)) < ¢ — decide thatt, f) is a cross-term
LI norm(D,, (t, )
o= ZZ v M - if Trace(D(*, /) > ¢ — decide tha(t, f) is an auto-term
—1 i " ——————m——— -
Bt norm(D,., ()~ © ’
over the set of unitary matricé¢ = [vi,---,v,]. An efficient

joint approximate diagonalization algorithm exists in [4] and it is é{vheree is_ a ‘?ma”’ pqsitive _real_ scalar. The correct choice of the
yvalue ofe is still under investigation. An ad-hoc value£ 0.1) has

generalization of the Jacobi technique [9] for the exact diagonaliz ] . ; ;
tion of a single normal matrix. been used in our simulation experiment.

g ldentification Procedure: Equations (5-15) constitute the pro-
gosed blind source separation approach which is summarized by
the following steps:

Joint Anti-Diagonalization (JAD): By selecting cross-term T
points, the data cross-source TFD will have the following structur

c _ c H ~
Do (t, f) = UDus(t, /YU (12) e Determine the whitening matri¥ from the eigen decom-
whereDg, (¢, f) is anti-diagonal. The missing unitary matfiX position of an estimate of the covariance matrix of the data
is ‘uniquely’ (i.e. up to permutation and phase shifts) retrieved by (see [5] for more details).
Joint Anti-Diagonalization (JAD) of a combined @, (ti, fi)|i = o Compute the TF distribution of the array output according to
1,---,q} of g cross-source TFD matrices. ().

The joint anti-diagonalization is explained by first noting that
the problem of anti-diagonalization of a singtex n matrix N is
equivalent to the maximization of the criterion

e Select a set of TF points (usually corresponding to the high
amplitude points of the signal TF transform) then distinguish
between auto-term and cross-term points using the above se-

“ . lection procedure.
oM, V) =37 I Nvi? (13) d _ i -

— ¢ Determine the unitary matri& by maximizing the JD/JAD
criterion applied to the whitened TFD matrices computed at
IBecause of the finite window effect, the sidelobes from cross terms the selected TF points.

would often prevent a full diagonal structure of the above matrix.
2This is due to the fact that the Frobenius norm of a matrix is constant 2Details of the JAD and the JD/JAD algorithms are omitted here due to
under unitary transform, i.e. nof) =norm(VE N'V). space limitation.




e Obtain an estimate of the mixture matAxasA = W#T, o ‘ ‘

where the superscrigt denotes the pseudo-inverse, and ar [~
estimate of the source signalg) ass(t) = U7 Wx(t). R

5. DISCUSSION

ection level (dB)
’

-28 N

We present below several comments to obtain more insight into tI€ ™| . T —
proposed blind source separation (BSS) method: Eer S~ )
1) In practice, the cross-source TFD matrices will not be purel - T
anti-diagonal. This is because some auto-terms, through their si |
lobes or main lobes, will intrude over the cross-term regions. The
cross-terms will be however the dominant components. This situ-
ation is similar to the earlier work on joint diagonalization of TFD
matrices selecting auto-term points [5], where the source auto-TFD
matrices are not purely diagonal because of cross-term intrusic °°
This impairment is mitigated by the joint approximation property °r
of the JD/JAD algorithm and its robustness.
2) In contrast to the previously proposed Time-Frequency Se| °*°
aration (TFS) approach [5], the new proposed algorithm, allows s _ o=
lecting TF points in both auto-term and cross-term regions, as bo 3oz}
regions provide separate key information about the signals, and o=
turn provides improved separation performance (see simulation € o.s|-
ample in Section 6). ol

3) The cross-term issues rise in both the TF and ambiguit oos-
domain [7] based BSS. Therefore the proposed blind separati . =l
method can be applied to both domains. me in sameles

4) The smoothing kernel reduces the cross terms by re-distribu-
ting them across the t-f domain, rather than being concentrated at
specific points where they can be confused with true energy. This
re-distribution process will place some of these terms on the t : . . . : :
of the autoterms, rendering the TFD matrix, constructed from a(g%%?sd(zxie;;mdegg{d e:jnbt;ls experiment, we consider two chirp
toterms, non-diagonal. So, in many cases, the Wigner-Ville distri- '
bution is more robust than other distributions. s1(t) = exp(—;j0.004mt?)

5) The JAD algorithm provides an estimate of the unitary matrix sa(t) = exp(—50.004mt> — jx0.4t),

U and cross-source TFD matricBé; (¢, f). A necessary condition

for the uniqueness of the solution is that the number of equationsifspinging on an array of m=5 sensors at 30 and 60 degrees. White
greater than the total number of unknown parameters. This lea@aussian noise was added, leading to an SNR of 0dB. The Wigner-
to the conditiong > n — 1, whereg is the number of thes x n  Ville distribution (WVD) of the mixture at the middle sensor is de-
matrices to be processed by the JAD algorithm. Note that for the Jixted in Figure 2. From Figure 2, we selected eight arbitrary TF
algorithm, we need only > 1 as a necessary condition. A detailedpoints, among which one was a cross-term. Using the algorithm
study on the identifiability of the problem will be given elsewhere.based on JD only, suggested in [5], we obtain the estimated sig-
nals, described by WVDs, shown in Figure 3. The figure clearly
shows that the algorithm had failed. An estimate of the mean rejec-
tion level was as high as 3 dB. However, if we apply the proposed
First experiment: We consider a uniform linear array of = 3 method from Section 4, the results are more promising, leading to

sensors having halfavelength spacing and receiving signals frorrllz'(:‘]urellWIth asignal rejection level estimate of -26 dB. One may

n = 2 sources in the presence of white Gaussian noise. The sources
arrive from different directiong; = 10 and¢» = 20 degrees. The
emitted signals are two chirps. The kernel used for the computatic °*°[
of the TFDs is the Wigner-Ville kernel. Eight TFD matrices are °+[ !
considered. osst-ly,
The performance is characterized in terms of signal rejectior o=

10 15 20
SNR (dB)

Figure 1: Mean rejection level vs SNR.

fre

Figure 2: WVD of two mixed signals at 0 dB SNR.

6. SSMULATION
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We compare in Figure 1 the performance of the TFS algorithm prc J

posed in [5] and the proposed algorithm for a signal-to-noise rat... # o Mimemsampies 100 M0 B e

(SNR) in the range [5 - 20 dB]. The mean rejection levels are eval-

uated here over00 Monte Carlo runs withi024 samples. It turns Figure 3: WVDs of the two chirps using JD with seven auto-terms
out that, in this case, the new algorithm performs slightly better thegd one cross-term.

the TFS algorithm.



B o.af

B 0.35

4 0.3

frequency
i
frequency
o
i
a
T

I
o
N

B 0.15}

4 o1l

100 120 20 40 60 80
time in samples

20 40 60 80 100 120

time in samples

Figure 4: WVDs of the two chirps using JD/JAD with seven auto-
terms and one cross-term.

suggest to remove the cross-term, identified with the method sug-
gested in Section 4, and run a JD agorithm based on the auto-terms
only. The result of this approach is depicted in Figure 5. Although
visually not noticeable, this approach does not perform as well as
the JD/JAD method as the signal mean rejection level estimate is
higher by circa2 dB (-24dB). This loss of mean rejection level can
be more severe in other situations.
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Figure 5: WVDs of the two chirps using JD with the seven auto-
terms from above.

Third experiment: Here, we use three sources signals at 20 dB
SNR (the third source being at 90 degrees). The number of antenna
elementsis again m = 5. The WVD of the mixture at the mid-
dle sensor is depicted in Figure 6. Six TF points are considered,
among which five are cross-terms. The procedure described above

Wigner—vVille distribution of the mixed signal at the center array sensor
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Figure 6: WVD of the mixture of three chirps at 20 dB SNR.

was used with e = 0.1 to identify the auto-terms and cross-terms
and the JD/JAD criterion ran.The result is depicted in Figure 7. It

is clearly seen that the method performs very well with arejection
mean level estimate of -28 dB.
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Figure 7: WVDs of the three chirps using JD/JAD with one auto-
term and five cross-terms.

7. CONCLUSIONS

In this paper, the problem of blind separation of linear spatial mix-
tures of non-stationary source signals based on time-frequency dis-
tributions has been investigated. A solution based on the hybrid
diagonalization / anti-diagonalization of a combined set of spatial
time-frequency distribution matrices, selected in both the auto-term
and cross-term regions, has been proposed. The identifiability prob-
lem as well as the problem of TF points selection have been dis-
cussed. Numerical simulations are provided to illustrate the effec-
tiveness of the proposed approach.
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