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ABSTRACT

We present a definition of wavelet-bicoherence based on wavelet-
polyspectra. We propose a simple estimator for wavelet-bicoherence,
and discuss its statistical properties. In particular it is shown that
wavelet-bicoherence estimates has a larger number of effective de-
grees of freedom than traditional Fourier-based bicoherence esti-
mates. The proposed estimator is applied to detection of coherent
couplings in rocket measurements from the ionospheric E-region.
It is concluded that wavelet-bicoherence is a well suited tool for
analysis of non-stationary mode coupling.

1. INTRODUCTION

The problem considered in this paper is that of detecting coherent
mode couplings of electrostatic waves in the ionospheric E-region
from rocket measurements. Signals containing coherent couplings
have traditionally been analyzed by means of a normalized bispec-
trum, called the bicoherence [1]. The bicoherence, when defined
properly, quantifies the fraction of power contained in the non-
linearity. However, since our available data are obtained by means
of a rocket launch, they have a highly non-stationary nature. Thus,
traditional FFT-based methods [2, 3] may be inadequate due to the
inability of the short-time Fourier transform to resolve short lived
transients properly. A recently proposed method which addresses
this problem is the wavelet-bicoherence [4, 5, 6], which is based on
the continuous wavelet transform. For analysis of non-stationary
processes the wavelet-bispectrum has two main advantages com-
pared to traditional FFT-based methods. First, since the continu-
ous wavelet transform is a time-scale representation of a signal,
we introduce a time axis in a natural way. Second, wavelets has an
inherent constant-Q filtering property, and are consequently well
suited for detection of transients.

This paper is organized as follows. In section 2 we define
the wavelet-bicoherence in terms of the wavelet-polyspectra intro-
duced by the authors in [6]. Then we propose an estimator for
the wavelet-bicoherence, and discuss the statistical properties of
the resulting estimate. In section 3, to demonstrate the method’s
performance under non-stationary conditions, we apply the pro-
posed estimator to measurements of electrical potentials in the
ionosphere.

2. WAVELET-BICOHERENCE

2.1. Definitions

The continuous wavelet transform (CWT) of a real valued signal
x(t) is defined as [7]
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Here,ψ(t) is an admissible wavelet,a is a scale variable andt
is a time variable. Then thenth-order wavelet-polyspectrum with
respect to an admissible waveletψ(t) is defined as [6]
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where the processX(t) is assumed to be stationary on the local
interval of integration[t− T/2, t+ T/2] and

a−1 = a−1
1 + a−1

2 + . . .+ a−1
n−1. (3)

The wavelets used in this paper are of the form

ψ(t) = g(t) exp(jηt), (4)

whereg(t) is a real valued and symmetric window which has to
be well localized in the frequency domain. The parameterη is
chosen such that the Fourier transform ofψ(t) is essentially zero
for f ≤ 0. With this choice of wavelet there is a well defined
relationship between instantaneous frequencyf and scalea given
by a = η/(2πf) for f 6= 0 [7]. Note that the CWT is not defined
for frequencyf = 0.

For zero-mean processes we define the wavelet-bispectrum by
Bw(f1, f2, t) , Mw

3 (f1, f2, t) and the wavelet power spectrum
by Sw(f, t) , Mw

2 (f, t), where we have replaced the scalesa
with η/(2πf) as explained in the previous paragraph. A normal-
ized version of the wavelet-bispectrum is then the squared wavelet-
bicoherence defined by
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where again the process analyzed is assumed to be stationary on
the local interval[t − T/2, t + T/2]. This quantity may easily
be shown to be bounded by0 ≤ b2w(f1, f2, t) ≤ 1 by employ-
ing Cauchy-Schwarz’ inequality. The quantityb2(f1, f2, t) is a
measure of the fraction of power at frequencyf1 + f2 due to the
quadratic coupling of the modes at frequenciesf1 and f2, as a
function of time.

2.2. Estimates of the wavelet-bicoherence

Estimation ofb2w(f1, f2, t) is done in a straightforward manner.
First we have to discretize the CWT given in Eq. (1). This yields
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assuming sampling time∆t = 1. Then we estimate the wavelet
power spectrum and the wavelet-bispectrum by
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respectively. Here,n is the middle sample,d·e is the ceiling func-
tion, andM the number of samples in the local interval of integra-
tion, respectively. Substituting the estimates given in Eqs. (6), (7),
and (8) into Eq. (5) we get an estimatêb2w(f1, f2, n) of the squared
wavelet-bicoherence.

Small values in the denominator estimate may cause ill-conditi-
oned wavelet-bicoherence estimates. This effect is mitigated by
adding a small constantC to the denominator, a process which is
often referred to as regularization. A disadvantage of this method
is thatC introduces a negative bias to the overall estimate. Thus,
we must selectC large enough to remove spurious effects due to
small values in the denominator, but no so large as to cause signif-
icant bias in the overall estimate.

2.3. Statistical properties

The estimates ofSw(f, t) andBw(f1, f2, t) are, up to frequency
dependent factors, asymptotically unbiased estimates of slowly vary-
ing power- and bispectra in the limit whenM , the number of sam-
ples within the (fixed) local interval of integration, tends to infinity,
ie. ∆t → 0 [6]. However, this does not guarantee thatb̂2w will be
unbiased. Nevertheless, it is often a good approximation to assume
asymptotic unbiasedness.

It is not easy to obtain a useful expression for the statistical
variability of the wavelet-bicoherence estimator. Commonly one
neglects the variability of the denominator, since the variance of
the bispectrum estimate in the numerator usually is significantly
larger than the variance of the power spectrum estimates in the
denominator [1]. Thus, a crude approximation of the estimator
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Fig. 1. Observed distribution of
√
b̂2w estimated from 100 inde-

pendent realizations of a white Gaussian process, each consisting
of 100 samples.

variance is given by
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The variance of the estimator̂Bw(f1, f2, n) is given in [6], where
it is shown to have statistical properties analogous to the weighted
overlapped segment averaging method.

The true bicoherence of a Gaussian process is zero. One can
show that for zero bicoherence the estimatorb̂2w is approximately
χ2 distributed, and thus will have a positive bias. However, the
bias can be shown to be negligible. In Fig. 1 we show the observed

distribution of
√
b̂2w estimated from 100 independent realizations

of a Gaussian process, each consisting of 100 Gaussian samples.
We have shown the distribution of the square root of the estimate
to emphasize theχ2-like shape.

The expressions for the bias and variance FFT-based bicoher-
ence estimators in the general case are given in [8] apply equally
well to the wavelet-bicoherence estimator treated in this article if
we include a frequency dependent improvement factor [6]. Thus,
the wavelet-based estimator has a larger number of effective de-
grees of freedom. For the Morlet-Grossmann wavelet described
in the next section, one may show that the improvement factor for
variance is given by

ν(f1, f2) ' k fN
M
· f

2
1 + f2

2 + (f1 + f2)2

f1f2(f1 + f2)
(10)

wherek is a constant depending on the choice of parameters in
the wavelet,M is the number of points in the local interval of
integration, andfN is the Nyquist frequency. In [9] this factor
is empirically found to beν(f1, f2) ∼ fN/(M

√
f1f2), which is

close to the theoretical value given here.
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Fig. 2. Estimate of time averaged wavelet power spectrum.

3. DATA ANALYSIS

The measurements of the electrical potentials were obtained by
means of a pair of probes mounted on a sounding rocket. The
sampling frequency was 2000 Hz. A detailed description of the
experimental conditions is found in [10]. Owing to the rocket spin
relative to the DC electric field, the electric field signal has a large-
amplitude variation following the rocket spin, with the fluctuating
wave component being superimposed. Since the spin frequency is
far below the frequency range of the phenomena we want to ana-
lyze, we remove the fundamental spin frequency and its first few
harmonics by applying an 8-Hz zero-phase high-pass filter prior to
analysis.

In this paper we will focus on the part of the measured signal
obtained between 256 and 258 seconds after launch, which is a
4000 samples long record. This corresponds to the rocket’s down-
leg from approximately 99 to 97 km above the sea level. The signal
we analyze is theu6(t) record [10].

We have in the following analysis used the Morlet-Grossmann
wavelet

ψ(t) = exp

(
− t2

2σ2
+ jηt

)
(11)

as analyzing wavelet. This wavelet is well known for its optimal
simultaneous time and frequency resolution, and it thus provides
a good general purpose choice. The parametersσ2 andη are user
specified, subject to certain restrictions connected to tradeoff be-
tween frequency and time resolution [7, 6]. In this analysis we
have chosenσ2 = 1.5 andη = 4π.

As an initial analysis, we estimateSw(f) andb2w(f) assuming
the time series to be stationary.

The results are shown in Figs. 2 and 3. Note thatŜw(f) is mul-
tiplied by a constant, which depends on the wavelet parameterσ2,
to yield an approximately unbiased spectrum estimate [6], and that
we have restricted the analysis to the low frequency range where
we expect to observe mode couplings. The Nyquist frequency is
fN = 1000 Hz.

Fig. 3. Estimate of time averaged squared wavelet-bicoherence.

In Fig. 2 we observe several peaks in the frequency range 20-
60 Hz. We expect to find couplings between these frequency com-
ponents in the wavelet-bicoherence estimate. However, as seen in
Fig. 3, we find only weak traces of coherent couplings in this anal-
ysis. Notice the low coherence level (∼ 10−2). This is of course
due to the fact that the signal is non-stationary, which causes our
estimation procedure to average out the short lived couplings.

Now we repeat the analysis, but this time we assume the pro-
cess to be approximately stationary only on intervals of 10 sam-
ples. The results are shown in Figs. 4 and 5. Again we have
restricted the analysis to the low frequency range. In Fig. 4 we
can recognize the frequency components observed in Fig. 2, but
we clearly see that the process has a non-stationary nature. Fig. 5
shows an isosurface of̂b2w(f1, f2, n) at the value 0.77. Again we
observe time variable structures, mainly concentrated at frequency
pairs corresponding to the frequency components observed in the
estimated power spectrum. The value 0.77 is well above the 95%
significance level forb2 = 0.5, even for standard bicoherence es-
timates with the same number of degrees of freedom [8]. Thus,
the coherent mode couplings we observe clearly are statistically
significant.

4. CONCLUSIONS

We have proposed a definition of wavelet-bicoherence based on
wavelet-polyspectra. Furthermore, we have suggested an estima-
tor for wavelet-bicoherence and compared its statistical properties
of with those of standard Fourier-based estimators. The estima-
tor is shown to have a larger number of effective degrees of free-
dom. In particular we have shown that the improvement factor is
frequency dependent, due to the constant-Q filtering property of
wavelets, and we have provided a theoretical expression for this
factor for the Morlet-Grossmann wavelet used in this paper. Next,
the wavelet-bicoherence estimator was applied to the analysis and
interpretation of non-stationary data observed in the ionospheric E-
region. The results show that statistically significant time-varying
coherent mode couplings are present at frequencies corresponding
to components observed in an initial time averaged power spectral



Fig. 4. Estimated evolutionary wavelet power spectrum.

estimate. Thus, the wavelet-bicoherence technique demonstrate a
remarkably robust performance, even under highly non-stationary
conditions.
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