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ABSTRACT 2. WAVELET-BICOHERENCE

2.1. Definitions

We present a definition of wavelet-bicoherence based on waveletrq continuous wavelet transform (CWT) of a real valued signal
polyspectra. We propose a simple estimator for wavelet—bicoherenqle(,t) is defined as [7]

and discuss its statistical properties. In particular it is shown that

wavelet-bicoherence estimates has a larger number of effective de- A 1 e N o[t —t ,

grees of freedom than traditional Fourier-based bicoherence esti- Wy (a,) = ﬁ [mx (t ) L4 (T) dt’. @
mates. The proposed estimator is applied to detection of coherent

couplings in rocket measurements from the ionospheric E-region.Here, ¢(t) is an admissible wavelet, is a scale variable and
It is concluded that wavelet-bicoherence is a well suited tool for is a time variable. Then theth-order wavelet-polyspectrum with

analysis of non-stationary mode coupling. respect to an admissible waveleft) is defined as [6]
M':;)(alz cee 5, Qn—1, t) =
1 .t+T/2 ’ ’ ’ /
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from rocket measurements. Signals containing coherent couplings
have traditionally been analyzed by means of a normalized bispec- at=al +vart .. +arty. (3)
trum, called the bicoherence [1]. The bicoherence, when defined o

properly, quantifies the fraction of power contained in the non- The wavelets used in this paper are of the form

linearity. However, since our available data are obtained by means A = alt - 4
of a rocket launch, they have a highly non-stationary nature. Thus, ¥ (t) = g(t) exp(jnt), )

traditional FFT-based methods [2, 3] may be inadequate due to theyhere(t) is a real valued and symmetric window which has to
inability of the short-time Fourier transform to resolve short lived pe well localized in the frequency domain. The parametés

transients properly. A recently proposed method which addresseschosen such that the Fourier transformyd) is essentially zero

this problem is the wavelet-bicoherence [4, 5, 6], which is based onfor ¢ < 0. with this choice of wavelet there is a well defined

the continuous wavelet transform. For analysis of non-stationary ye|ationship between instantaneous frequefiand scale: given

processes the wavelet-bispectrum has two main advantages comyy o — 5 /(27 f) for f # 0 [7]. Note that the CWT is not defined

pared to traditional FFT-based methods. First, since the continu-for frequencyf = 0.

ous wavelet transform is a time-scale representation of a signal,  For zero-mean processes we define the wavelet-bispectrum by

we introduce a time axis in a natural way. Second, wavelets hasang  (r,, #, t) £ M (fi, f,t) and the wavelet power spectrum

inherent constant-Q filtering property, and are consequently well by Sw(f,t) 2 M¥(f,t), where we have replaced the scales

suited for detection of transients. with /(27 f) as explained in the previous paragraph. A normal-
This paper is organized as follows. In section 2 we define ized version of the wavelet-bispectrum is then the squared wavelet-

the wavelet-bicoherence in terms of the wavelet-polyspectra intro- bicoherence defined by

duced by the authors in [6]. Then we propose an estimator for

the wavelet-bicoherence, and discuss the statistical properties ofw(f1, f2,1)

the resulting estimate. In section 3, to demonstrate the method’s |Buw (f1, f2,1)|?

performance under non-stationary conditions, we apply the pro- 7 +4T)2 , T )

posed estimator to measurements of electrical potentials in the 7% {fth/g Wy (fr, )Wy (f2, )| dt } “Suw(fi+ fo, 1)

ionosphere. (5)
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where again the process analyzed is assumed to be stationary o
the local intervallt — T'/2,¢ 4+ T/2]. This quantity may easily

be shown to be bounded loy < b2,(f1, f2,t) < 1 by employ-

ing Cauchy-Schwarz’ inequality. The quantiy(fi, f,t) is a
measure of the fraction of power at frequengy+ f. due to the
quadratic coupling of the modes at frequencfesand f>, as a
function of time.

2.2. Estimates of the wavelet-bicoherence

Estimation ofv2 (f1, f2,t) is done in a straightforward manner.
First we have to discretize the CWT given in Eq. (1). This yields

— 271'fN_1 « | 2nf
ﬂ 2 st [ =)

assuming sampling timAt¢ = 1. Then we estimate the wavelet
power spectrum and the wavelet-bispectrum by

n+[M/2]—1

Sm=5 > [Wmen o
k=n—[M/2]
and
BTU(fh f27n) =
n+r1bf/2]71/\ - ., (8)
— > Wl R Walfe, )Wy (fi+ f2, k),
k=n—[M/2]

respectively. Herey is the middle sampléd-] is the ceiling func-
tion, andM the number of samples in the local interval of integra-
tion, respectively. Substituting the estimates given in Egs. (6), (7),
and (8) into Eq. (5) we get an estimai?g(fl, f2,n) of the squared
wavelet-bicoherence.

Small values in the denominator estimate may cause ill-conditi-
oned wavelet-bicoherence estimates. This effect is mitigated by
adding a small constat to the denominator, a process which is
often referred to as regularization. A disadvantage of this method
is thatC' introduces a negative bias to the overall estimate. Thus,
we must select” large enough to remove spurious effects due to
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Fig. 1. Observed distribution of/ 5% estimated from 100 inde-
pendent realizations of a white Gaussian process, each consisting
of 100 samples.

variance is given by

Var{l;?:(fhfmn)}
Var{é;(fhfmn)}
B{8u(fn)} B {Bulfem)} B{S0(fi+ fom)}

~

9)

The variance of the estimat(b{f;(fl, f2,n) is givenin [6], where
itis shown to have statistical properties analogous to the weighted
overlapped segment averaging method.

The true bicoherence of a Gaussian process is zero. One can
show that for zero bicoherence the estima@ﬂs approximately
x? distributed, and thus will have a positive bias. However, the
bias can be shown to be negligible. In Fig. 1 we show the observed

distribution of y/ b/%: estimated from 100 independent realizations
of a Gaussian process, each consisting of 100 Gaussian samples.

small values in the denominator, but no so large as to cause signif\we have shown the distribution of the square root of the estimate

icant bias in the overall estimate.

2.3. Statistical properties

The estimates of., (f,t) and B.,(f1, f2,t) are, up to frequency

to emphasize thg?-like shape.

The expressions for the bias and variance FFT-based bicoher-
ence estimators in the general case are given in [8] apply equally
well to the wavelet-bicoherence estimator treated in this article if
we include a frequency dependent improvement factor [6]. Thus,

dependent factors, asymptotically unbiased estimates of slowly varji@ wavelet-based estimator has a larger number of effective de-

ing power- and bispectra in the limit whéd, the number of sam-
ples within the (fixed) local interval of integration, tends to infinity,

ie. At — 0 [6]. However, this does not guarantee thfétwill be

unbiased. Nevertheless, it is often a good approximation to assume

asymptotic unbiasedness.

It is not easy to obtain a useful expression for the statistical
variability of the wavelet-bicoherence estimator. Commonly one
neglects the variability of the denominator, since the variance of
the bispectrum estimate in the numerator usually is significantly

grees of freedom. For the Morlet-Grossmann wavelet described
in the next section, one may show that the improvement factor for
variance is given by

In 4B+ i+ )2
M fif2(fr+ f2)
wherek is a constant depending on the choice of parameters in

the wavelet,M is the number of points in the local interval of
integration, andfy is the Nyquist frequency. In [9] this factor

v(fi, f2) >~k (10)

larger than the variance of the power spectrum estimates in theis empirically found to be/(f1, f2) ~ fn/(M~+/fif2), which is

denominator [1]. Thus, a crude approximation of the estimator

close to the theoretical value given here.
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Fig. 3. Estimate of time averaged squared wavelet-bicoherence.

Fig. 2. Estimate of time averaged wavelet power spectrum.

In Fig. 2 we observe several peaks in the frequency range 20-
3. DATA ANALYSIS 60 Hz. We expect to find couplings between these frequency com-
ponents in the wavelet-bicoherence estimate. However, as seen in
The measurements of the electrical potentials were obtained byFig. 3, we find only weak traces of coherent couplings in this anal-
means of a pair of probes mounted on a sounding rocket. Theysis. Notice the low coherence level (10~2). This is of course
sampling frequency was 2000 Hz. A detailed description of the due to the fact that the signal is non-stationary, which causes our
experimental conditions is found in [10]. Owing to the rocket spin estimation procedure to average out the short lived couplings.
relative to the DC electric field, the electric field signal has a large- Now we repeat the analysis, but this time we assume the pro-
amplitude variation following the rocket spin, with the fluctuating cess to be approximately stationary only on intervals of 10 sam-
wave component being superimposed. Since the spin frequency iples. The results are shown in Figs. 4 and 5. Again we have
far below the frequency range of the phenomena we want to ana-restricted the analysis to the low frequency range. In Fig. 4 we
lyze, we remove the fundamental spin frequency and its first few can recognize the frequency components observed in Fig. 2, but
harmonics by applying an 8-Hz zero-phase high-pass filter prior to we clearly see that the process has a non-stationary nature. Fig. 5
analysis. shows an isosurface &, (f1, f,n) at the value 0.77. Again we
In this paper we will focus on the part of the measured signal observe time variable structures, mainly concentrated at frequency
obtained between 256 and 258 seconds after launch, which is gairs corresponding to the frequency components observed in the
4000 samples long record. This corresponds to the rocket's down-estimated power spectrum. The value 0.77 is well above the 95%
leg from approximately 99 to 97 km above the sea level. The signal significance level fob?> = 0.5, even for standard bicoherence es-

we analyze is thes () record [10]. timates with the same number of degrees of freedom [8]. Thus,
We have in the following analysis used the Morlet-Grossmann the coherent mode couplings we observe clearly are statistically
wavelet significant.
o
b(t) = exp (—ﬁ + Jnt) 11 4. CONCLUSIONS

as analyzing wavelet. This wavelet is well known for its optimal We have proposed a definition of wavelet-bicoherence based on
simultaneous time and frequency resolution, and it thus provideswavelet-polyspectra. Furthermore, we have suggested an estima-
a good general purpose choice. The parametéandn are user tor for wavelet-bicoherence and compared its statistical properties
specified, subject to certain restrictions connected to tradeoff be-of with those of standard Fourier-based estimators. The estima-
tween frequency and time resolution [7, 6]. In this analysis we tor is shown to have a larger number of effective degrees of free-

have chosen” = 1.5 andn = 4. dom. In particular we have shown that the improvement factor is
As aninitial analysis, we estimat&, (f) andb;, (f) assuming  frequency dependent, due to the constant-Q filtering property of
the time series to be stationary. . wavelets, and we have provided a theoretical expression for this
The results are shown in Figs. 2 and 3. Note $aff) is mul- factor for the Morlet-Grossmann wavelet used in this paper. Next,

tiplied by a constant, which depends on the wavelet paramaéter  the wavelet-bicoherence estimator was applied to the analysis and
to yield an approximately unbiased spectrum estimate [6], and thatinterpretation of non-stationary data observed in the ionospheric E-
we have restricted the analysis to the low frequency range whereregion. The results show that statistically significant time-varying
we expect to observe mode couplings. The Nyquist frequency is coherent mode couplings are present at frequencies corresponding
fn = 1000 Hz. to components observed in an initial time averaged power spectral
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Fig. 4. Estimated evolutionary wavelet power spectrum. . . . .
¢ y P P Fig. 5. Estimated evolutionary squared wavelet-bicoherence. Iso-

surface a@(fh f2,m) =0.77.

estimate. Thus, the wavelet-bicoherence technique demonstrate a
remarkably robust performance, even under highly non-stationary
conditions. [10] B. Krane, H. L. Pécseli, J. Trulsen, and F. Primdahl, “Spec-
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