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ABSTRACT

In this paper, we present a novel method for generating sports
video summary highlights. Spedficdly, our method locdizes
semanticdly important events in sport programs by detecting
sdow motion replays of these events, and then generates
highlights of these events at multiple levels. In ou method a
hidden Markov model (HMM) is used to model slow motion
replays, and an inference agorithm is introduced which
computes the probability of a ow motion replay segment, and
locdizes the boundxries of the segment as well. An effedive
new fegureisused in our HMM, based ona moving measure of
the number of zero-crosdgngs and the amplitudes of variations
over time of video field differences. Furthermore, the methodis
cgpable of filtering out slow motion fday segments in
commercials. As compared with existing methods for video
event detedion, our method is more generic (i.e.,, domain
independent), and hes the aility to cgpture inherently important
events.

1. INTRODUCTION

With the development of high-speed Internet, high-cgpadty
storage, and high-ratio compresdon standards sich as MPEG -1,
-2 and -4, people ae quickly drowning in a growing amourt of
avail able video information. Therefore, automatic detedion o
semanticdly important events in  video and further
summarizaion o video to help indexing, browsing and
consuming the video has become increasingly important.

Many approaches towards automatic event detedion and
summarization in sports programs have been reported in
literature, e.g. [1-5]. However, most methods are developed for
particular sports, spedfic alit effeds, or spedfic environments
only, resulting in damain spedfic gproaches. For example,
some require the events to take placein sites under surveillance
[1], some ae restricted to football games[2], some ae restricted
to baseball [3], to basketball [4], or to socce [5].

In this paper, we propcse an entirely novel, more generic
method Based on the observation that in sports programs,
important events are often replayed in low motion immediately
after they occur, our method deteds dow motion replay
segments to locdize semanticdly important events and then
further summarize sports programs. A clea advantage of our
method over the isting domain-spedfic methods is that this
strategy is generic in nature, and is therefore gplicable to any
sports, and in fad any other kinds of video programming.
Furthermore, information abou replay segments can aso be
used in combination with ather types of information oltained by
the eisting methods.
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While we propcse to use locdizaion o SLO-MOs for event
detedion and summarizaion, Kobla & a. [6-7] deted SLO-
MOs in sports programs as a feaure for sports/non-sports video
classficaion. The method reported in [6-7] is block-based,
which uses motion vedors in the MPEG-1 damain, while our
method is pixel-based. No attempt is made in [6-7] to locdize
the boundxries of slow motion replay segments, or to dstinguish
SLO-MOs in commercials from the relevant SLO-MOs. Overal,
we believe our method is more generic and acairate regarding
locdizaion o slow motion replay segment boundaries.

This paper is organized as follows. In Sedion 2we discussthe
structure of slow-motion replay segments in sports programs. In
Sedion 3 we discuss the proposed method which has three
major parts: (1) deteding SLO-MOs; (2) distinguishing between
SLO-MOs containing program events and SLO-MOs that may
be in the mmercials included in the program; (3) using SLO-
MOs in generating program highlights at different durations.
Finaly, we present experimental results, followed by the
conclusions.

2. SLOW MOTION REPLAY SEGMENTSIN
SPORTSVIDEO

Figure 1 contains a simplified dagram of the structure of slow
motion replay segments in sports video. The adion shots
containing the important event are often foll owed by other shots
before the slow motion replay segment, which itself usually
contains editing effeds at the front and at the end. In this paper,
we asume that sports video programs are in the format of 60
fieldssecondinterlaced NTSC.
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Figure 1. The structure of slow motion replay segments.

We further classfy the fields in slow motion replay segments
(SLO-MOs) asfollows.

(1) & (3) Editing effects fields (in & out), which mark the start
and end d SLO-MOs, occupy lessthan 10% of SLO-MOs. Any
gradual transitions, such as fade in & out, crosdadditive-
dissolve and wipes, can be used in editing effects.

(2) Sow motion fields, which form the visua slow motion
effed, occupy more than 90% of SLO-MOs. The sow motion
effed is usualy attained by one of two methods: if the video
was rewmrded by standard cameras, cetain fields are simply
repeaed; if the video was recrded by 3-time high-speed super



motion cameras, fields are played ou at the norma playing
spedl. In the latter method, the view effed is fixed at exadly 3
times as dow as the normal spedd, if dl the recorded fields were
played badk. However, the play badk speed duing a slow
motion is usually controlled manually by hand, and frequently,
some of the fields may be repeaed or dropped to make the play
spead dower or faster for a better visual effed. Thus, bath
methods are charaderized by field repetition and/or field drop.
The method d standard camera +field repetition is much more
widely used, because it is easy and cheg to implement, and the
visual effed is stisfadory for most sports video programs.
Besides editing effects and slow motion replay fields, there ae
two ather types of fields, still fields and normal motion replay
fields, which are not shown in Figure 1 for simplicity. These two
types of fields do nd aways exist in SLO-MOs, but they may
occur between editing effects and slow motion replay fields, or
between slow motion replay fields.

Findly, it isimportant to pant out that SLO-MOs aso prevail in
commercials. Thus, for video event detedion and hghlights
generation, it is criticd to dstinguish SLO-MOs in sports games
from onesin commercials.

3. THE PROPOSED METHOD

The propaosed method has three @mporents: a detedor of SLO-
MOs, which deteds SLO-MOs and locdi zes their boundxries; a
commercia/non-commercia filter, which filters out SLO-MOs
in commercials, a summary generator, which generates program
highlights at different durations from filtered SLO-MOs.

3.1 Slow motion detection

We use a hidden Markov model (HMM) [9] to model the
relations of the five types of fieldsin SLO-MOs, to locdizethe
boundxries, and to cdculate the probability of every SLO-MO
candidate.

The structure of SLO-MOs described in Sedion 2 can be well
modeled by an HMM. However, a onventional HMM using the
Viterbi agorithm only computes the probability of a fixed-
length input sequence, and thus a onventional HMM doesn’t
have the aility to locdize aportion in a sequence that best fits
the HMM, which is our requirement. We aldressthis problemin
the following paregraphs, where we introduce a spedfic
structure of the HMM and an inference algorithm, cgpable of
locdizing boundaries of SLO-MOs.

3.1.1. HMM structure

The HMM, shown in Figure 2, is built to model a half of SLO-
MOs, starting from slow motion fields in a SLO-MO, either
going forward or badkward, and ending a normal play fields
before or after the SLO-MO. The HMM has five states: (0) slow
motion, (1) still, (2) normal replay, (3) edit effect in/out, and (4)
normal play. States (0)-(3) respedively correspond to all the
four types of fieldsin a SLO-MO, described in Sedion 2 Note
that we introduce state (4), normal play, which is mapped to the
fields immediately outside a SLO-MO. State (4), asociating
with the inference algorithm, plays a aucid role in locdizing
the boundhries.

The inference algorithm of this HMM, based on the Viterbi
algorithm, isasfoll ows.

1. Use asimple normdization + threshold method to pinpant
with high probability asinglefield insidein aSLO-MO;

2. Usethat field, defined as the origin, as the starting point for
aforward and a backward pass ead of length L fields, where L
islong enough to contain the boundiries;

3. Fed the L "forward-pass' fields into the HMM and run the
Viterbi algorithm to determine the optimal state sequence The
first field that readies the hidden state (4) is the boundxry that
ends the SLO-MO;

4. Fed theL "badkward-pass' fieldsinto the HMM and runthe
Viterbi algorithm to determine the optimal state sequence (note
the backward sequence is treaed in time reversed order). The
first field that reades the hidden state (4) is the boundry that
starts the SLO-MO.

By introducing an extra hidden state and two-pass inference
algorithm starting from the middle of a SLO-MO, this HMM s
cgpable of locdizing the boundiries. In this paper, we choose
L=800. Because SLO-MOs are usualy shorter than 20 semnds,
L=800 is long enowgh to contain the starting and ending
boundxries (given the field rate of 60 fields/second).

Figure 2. The structure of the Hidden M arkov M odedl.

3.1.2. HMM features

Four feaures are used in the HMM, three of which are
cdculated from the pixel-wise mean square difference of the
intensity of every two subsequent fields, which is denoted by
D(t), and ore of which is computed from the RGB color
histogram of ead field.

The three fedures based on D(t) are: (@) a measure of zero-
crossngs in a diding window over D(t) along the time ais; (b)
the lowest value of D(t) in the dliding window; and (c) the
differences of every two adjacent values of D(t). The dliding
window is S fields long and moves forward 1 field ead time.
These three feaures describe the till, normal motion replay,
and dow motion fields.

Sow motion fields are generated by field repetition/drop, and
field repetition/drop cause frequent and strong fluctuations in
D(t), which can be measured by a zeo-crossing measure, px(t).
This measure is defined in the foll owing two steps.

First, we define the number of zero-crossngs in a window of
length Sfields as

S-1
7(t,0) = Ztrld(D(t ~5)-D(t),D(t-s-1)-D(1).6)
where B(t) isthe average of D(t) over adliding window at time
t,

if x=0 & y<-6 <-0&y=0
trld(x, y,0) = oL if x y or x y ,

dse



and 0 isathreshold onamplitudes of fluctuationsin D(t).

Next, we quantize the dfed of 6 on zc(t,6). By introdwcing ©, a

set of ascendant thresholds 6 indexed by i=1,2, 11, we define
fargmax{6, | zc(t,6,) > B,6, 06} if z(t,6,) > B

PM)=0 "

0 else

where 8 isathreshold onzc(t,8). Notethat oncezc(t,8) passes
B, px(t) is dependent on the anplitudes of fluctuationsin D(t).
The zeo-crossng measure py(t) isill ustrated in Figure 3. This
zero-crossng measure takes into acourt both the frequency and
amplitude of the fluctuations.
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Figure 3. The zeo-crossing measure. Note that the numbers of
zero-crossngs of the two curves are the sameif the differencein
amplitudes of fluctuations is not taken into acmurt. On the other
hand, setting =2, the low-amplitude airve yields zc(t,6,)=3,
zc(t,6,)=0 and zc(t,65)=0. Becaise only zc(t,6))> B, p«(t)=1;
The high-amplitude arve yields zc(t,6,)=5, zc(t,8,)=4 and
zc(t,6:)=3. Because dl the three ae bigger than 3, we seled the
biggest 8 and asdgn the @rrespondng i to px(t). Therefore,
P(t)=3.

The fourth feaure, based onthe mlor histogram, isfor cgpturing
the gradual transitions in editing effects. There ae many papers
addressng this problem. We have alopted the method described
in[8].

All the four feaures are normaized and quantized to 16 levels
before they are used by the HMM .

3.2 Commercial/non-commercial filtering

As discussd in Sedion 2 there may also be SLO-MOs in the
commercials that are included in the sports programming, as is
the usua case in TV broadcasts. Thus, we need a
commercia/noncommercial filter to distinguish between SLO-
MOsin commercials andin the adual program.

The principle of the commercia/non-commercia filter is that
the average wlor histogram of a cmmercial SLO-MO is quite
different from the average wlor histogram of a segment in the
game while dl the segments in the game have similar
histograms. Thus, once we have identified segments that are part
of the game (not necessry SLO-MO segments), we can use
them as references and filter out commercia SLO-MOQOs, by
comparing the distances of color histogram of SLO-MOs with
the average wlor histogram of the references. Becaise eab
commercia islessthan 2 minutes long, and the interval between
two commercial interruptions is longer than 5 minutes, the two
positions that are two minutes before and after the SLO-MOs
must be nornrcommercial, and thus srve & the references.

3.3 Video summary highlights generation

Based on information abou the locaion o SLO-MOs, we
generate highlight summaries of the video program. The
resulting highlights may include multiple levels of highlights
with varying detail, ranging from short to longer highlights, as
foll ows.

1. Concaenation o al noncommercial SLO-MOs. The
resulting highlight provides the most compad summary of the
program (and it does not contain any commercials).

2. Concaenation o expanded noncommercial SLO-MOs.
Expansion is peformed by adding t; and t, seconds to the
beginning and end o eath SLO-MO.

3. Same @ level 2, but the expansion time intervals are chosen
as afunction d the statistics of the @mrrespondng SLO-MO. In
one possble implementation, the value of t; is st propartional to
the adual length of the event depicted in the SLO-MO. The
value of the propationdity fador k is determined by the length
of the desired summary. To avoid overlaps between segments, a
simple cdhedk mechanism can be introduced through which the
value of kis controll ed adaptively.

4. EXPERIMENTAL RESULTS

Our experimental datawere catured from 4:2:2 YUV NTSC D-
1 tapes, which have a720x243 resolution for ead field and a
60Hz field rate. We down-sampled the resolution to 36(«240to
reduce the computational cost. We catured 10 dfferent video
clipsin total, abou 20 Gigabytes of data, with a duration o 25
minutes long. The dips cover five different types of games.
Among them, there ae two 10-minute dips: one basketball and
one football, and 8 much shorter clips (usualy shorter than 1
minute): one aito radng, three basketball, one boxing, one
football and ore socca. We used 5 shorter clips to train the
HMM, and we dl clips as the testing data (We didn't observe
different performance between the training and ather data during
the test).

There ae atotal of 91,204 fieldsin al clips, and 23718fields of
them arein total 15 norcommercial SLO-MOs. The SLO-MOs
detedor deteded al the 15 nonrcommerciad SLO-MOs and
additional 8 commercial SLO-MOs in the dips. Thus, the
detedion o noncommercial SLO-MOs has a success rate of
100%. The cmmercia/noncommercial filter filtered ou 7
commercial SLO-MOs while preserving al the non-commercial
SLO-MOs and ore @mmercid SLO-MO. Therefore, the
commercia/noncommercia filter has a successrate of 95.7%.
Regarding boundxry locdizaion acaracy, we have used two
meaurements. The first one is defined as the ratio of the miss
deteded fields over the total number of fields in the SLO-MOs.
The second ore is defined as the ratio of missdeteded fields
over the total number of fields in the clip. The locdizaion
performance acording to the former definition was 12.81%,
while acording to the latter it was 3.33%.

We have used the two 10-minute dips to generate multi-level
summary highlights (the other seven clips are too short to
generate a highlight other than the level-1 highlights discussed
in Sedion 33, which orly contain SLO-MOs). The highlight
summaries of the two 10minute dips are generated at 3
different levels, ranging from around 100secnds to 4 minutes
long. The aithors believe that the generated highlights
summarize the most important events in these dips very well.
After we further added gradual transitions between dfferent
scenes, the highlights are visually pleasing overall aswell.

The normalized and quantized values of the four feaures and the
final hidden states of the HMM for a short socce clip (1060
fieldslong) are shown in Figure 4.

While detedion o SLO-MOs is reliable, locdizaion o
boundiries of SLO-MOs is not perfed. Sometimes, scene-cuts
occur within a SLO-MO withou editing effeds. If there ae
normal motion play fields in such a SLO-MO, it is difficult to



distinguish the end d a SLO-MO from a scene-cut within a
SLO-MO, resulting in a significant error. Probably, additional
feaures are necessary (for instance audio feaures) to solve this

problem.
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Figure 4. The four features of the HMM and the optimal
hidden states obtained by the Viterbi algorithm in a short
soccer clip.

5. CONCLUSIONS & DISCUSSION

In this paper, we propose anew method for automatic event
detedion and summarization o sports programming. The
methodis based onthe nation that slow motion replay segments
are important clues to locdizing semanticdly important events.
By deteding slow motion replay segments, the method finds the

locaions of inherently important events in lengthy programs,
and further generates multi-level summary highlights. In ou
paper, the structure of slow motion replay segments is analyzed,
and a Hidden Markov Modd is propased which matches the
structure of slow motion sequences. An inference algorithm is
used to deted the boundaries of Sow motion replay segments,
and we have developed four fegures for our HMM framework,
including a new zero-crossng measure. We dso proposed a
solution for filtering out ow motion segments that are part of
commercias. Finaly, a summary of program highlights is
generated by concaenating the (non-commercial) slow motion
replay segments with segments immediately before and after the
deteded segments.

Our method can be utili zed at either the program provider or the
consumer side to provide highlights of sports events that may
vary in duation acwording to personal preferences, usage
condtions, and requirements on system resources.

Currently, al four feaures used in the HMM framework are
derived from the video signal. Other feaures, based onthe audio
signal, can be introduced into the framework realily, to enhance
the performance and robustnessof our algorithm.
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