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ABSTRACT 
In this paper, we present a novel method for generating sports 
video summary highlights. Specifically, our method localizes 
semantically important events in sport programs by detecting 
slow motion replays of these events, and then generates 
highlights of these events at multiple levels. In our method, a 
hidden Markov model (HMM) is used to model slow motion 
replays, and an inference algorithm is introduced which 
computes the probabilit y of a slow motion replay segment, and 
localizes the boundaries of the segment as well . An effective 
new feature is used in our HMM, based on a moving measure of 
the number of zero-crossings and the amplitudes of variations 
over time of video field differences. Furthermore, the method is 
capable of filtering out slow motion play segments in 
commercials. As compared with existing methods for video 
event detection, our method is more generic (i.e., domain 
independent), and has the abilit y to capture inherently important 
events. 
 

1. INTRODUCTION 

With the development of high-speed Internet, high-capacity 
storage, and high-ratio compression standards such as MPEG -1, 
-2 and -4, people are quickly drowning in a growing amount of 
available video information. Therefore, automatic detection of 
semantically important events in video and further 
summarization of video to help indexing, browsing and 
consuming the video has become increasingly important.  
Many approaches towards automatic event detection and 
summarization in sports programs have been reported in 
literature, e.g. [1-5]. However, most methods are developed for 
particular sports, specific edit effects, or specific environments 
only, resulting in domain specific approaches. For example, 
some require the events to take place in sites under surveillance 
[1], some are restricted to football games [2], some are restricted 
to baseball [3], to basketball [4], or to soccer [5].  
In this paper, we propose an entirely novel, more generic 
method. Based on the observation that in sports programs, 
important events are often replayed in slow motion immediately 
after they occur, our method detects slow motion replay 
segments to localize semantically important events and then 
further summarize sports programs. A clear advantage of our 
method over the existing domain-specific methods is that this 
strategy is generic in nature, and is therefore applicable to any 
sports, and in fact any other kinds of video programming. 
Furthermore, information about replay segments can also be 
used in combination with other types of information obtained by 
the existing methods.  

While we propose to use localization of SLO-MOs for event 
detection and summarization, Kobla et al. [6-7] detect SLO-
MOs in sports programs as a feature for sports/non-sports video 
classification. The method reported in [6-7] is block-based, 
which uses motion vectors in the MPEG-1 domain, while our 
method is pixel-based. No attempt is made in [6-7] to localize 
the boundaries of slow motion replay segments, or to distinguish 
SLO-MOs in commercials from the relevant SLO-MOs. Overall , 
we believe our method is more generic and accurate regarding 
localization of slow motion replay segment boundaries.  
This paper is organized as follows. In Section 2 we discuss the 
structure of slow-motion replay segments in sports programs. In 
Section 3, we discuss the proposed method, which has three 
major parts: (1) detecting SLO-MOs; (2) distinguishing between 
SLO-MOs containing program events and SLO-MOs that may 
be in the commercials included in the program; (3) using SLO-
MOs in generating program highlights at different durations. 
Finally, we present experimental results, followed by the 
conclusions. 
 

2. SLOW MOTION REPLAY SEGMENTS IN 
SPORTS VIDEO 

Figure 1 contains a simpli fied diagram of the structure of slow 
motion replay segments in sports video. The action shots 
containing the important event are often followed by other shots 
before the slow motion replay segment, which itself usually 
contains editing effects at the front and at the end. In this paper, 
we assume that sports video programs are in the format of 60 
fields/second interlaced NTSC. 
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Figure 1. The structure of slow motion replay segments.  
 
We further classify the fields in slow motion replay segments  
(SLO-MOs) as follows.  
(1) & (3) Editing effects fields (in & out), which mark the start 
and end of SLO-MOs, occupy less than 10% of SLO-MOs. Any 
gradual transitions, such as fade in & out, cross/additive-
dissolve and wipes, can be used in editing effects.  
(2) Slow motion fields, which form the visual slow motion 
effect, occupy more than 90% of SLO-MOs. The slow motion 
effect is usually attained by one of two methods: if the video 
was recorded by standard cameras, certain fields are simply 
repeated; if the video was recorded by 3-time high-speed super 



motion cameras, fields are played out at the normal playing 
speed. In the latter method, the view effect is fixed at exactly 3 
times as slow as the normal speed, if all the recorded fields were 
played back. However, the play back speed during a slow 
motion is usually controlled manually by hand, and frequently, 
some of the fields may be repeated or dropped to make the play 
speed slower or faster for a better visual effect. Thus, both 
methods are characterized by field repetition and/or field drop. 
The method of standard camera + field repetition is much more 
widely used, because it is easy and cheap to implement, and the 
visual effect is satisfactory for most sports video programs.  
Besides editing effects and slow motion replay fields, there are 
two other types of fields, still fields and normal motion replay 
fields, which are not shown in Figure 1 for simplicity. These two 
types of fields do not always exist in SLO-MOs, but they may 
occur between editing effects and slow motion replay fields, or 
between slow motion replay fields.  
Finally, it is important to point out that SLO-MOs also prevail i n 
commercials. Thus, for video event detection and highlights 
generation, it is critical to distinguish SLO-MOs in sports games 
from ones in commercials. 

3. THE PROPOSED METHOD 

The proposed method has three components: a detector of SLO-
MOs, which detects SLO-MOs and localizes their boundaries; a 
commercial/non-commercial filter, which filters out SLO-MOs 
in commercials; a summary generator, which generates program 
highlights at different durations from filtered SLO-MOs.  

3.1 Slow motion detection 
We use a hidden Markov model (HMM) [9] to model the 
relations of the five types of fields in SLO-MOs, to localize the 
boundaries, and to calculate the probabilit y of every SLO-MO 
candidate.  
The structure of SLO-MOs described in Section 2 can be well 
modeled by an HMM. However, a conventional HMM using the 
Viterbi algorithm only computes the probabilit y of a fixed-
length input sequence, and thus a conventional HMM doesn’ t 
have the abilit y to localize a portion in a sequence that best fits 
the HMM, which is our requirement. We address this problem in 
the following paragraphs, where we introduce a specific 
structure of the HMM and an inference algorithm, capable of 
localizing boundaries of SLO-MOs.  

3.1.1. HMM structure 
The HMM, shown in Figure 2, is built to model a half of SLO-
MOs, starting from slow motion fields in a SLO-MO, either 
going forward or backward, and ending at normal play fields 
before or after the SLO-MO. The HMM has five states: (0) slow 
motion, (1) still, (2) normal replay, (3) edit effect in/out, and (4) 
normal play. States (0)-(3) respectively correspond to all the 
four types of fields in a SLO-MO, described in Section 2. Note 
that we introduce state (4), normal play, which is mapped to the 
fields immediately outside a SLO-MO. State (4), associating 
with the inference algorithm, plays a crucial role in localizing 
the boundaries.   
The inference algorithm of this HMM, based on the Viterbi 
algorithm, is as follows.  
1. Use a simple normalization + threshold method to pinpoint 
with high probabilit y a single field inside in a SLO-MO;  
2. Use that field, defined as the origin, as the starting point for 
a forward and a backward pass, each of length L fields, where L 
is long enough to contain the boundaries;  

3. Feed the L "forward-pass" fields into the HMM and run the 
Viterbi algorithm to determine the optimal state sequence. The 
first field that reaches the hidden state (4) is the boundary that 
ends the SLO-MO; 
4. Feed the L "backward-pass" fields into the HMM and run the 
Viterbi algorithm to determine the optimal state sequence (note 
the backward sequence is treated in time reversed order). The 
first field that reaches the hidden state (4) is the boundary that 
starts the SLO-MO. 
By introducing an extra hidden state and two-pass inference 
algorithm starting from the middle of a SLO-MO, this HMM is 
capable of localizing the boundaries. In this paper, we choose 
L=800. Because SLO-MOs are usually shorter than 20 seconds, 
L=800 is long enough to contain the starting and ending 
boundaries (given the field rate of 60 fields/second).  
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Figure 2. The structure of the Hidden Markov Model.  

3.1.2. HMM features 
Four features are used in the HMM, three of which are 
calculated from the pixel-wise mean square difference of the 
intensity of every two subsequent fields, which is denoted by 
D(t), and one of which is computed from the RGB color 
histogram of each field. 
The three features based on D(t) are: (a) a measure of zero-
crossings in a sliding window over D(t) along the time axis; (b) 
the lowest value of D(t) in the sliding window; and (c) the 
differences of every two adjacent values of D(t). The sliding 
window is S fields long and moves forward 1 field each time. 
These three features describe the still, normal motion replay, 
and slow motion fields.  
Slow motion fields are generated by field repetition/drop, and 
field repetition/drop cause frequent and strong fluctuations in 
D(t), which can be measured by a zero-crossing measure, pzc(t). 
This measure is defined in the following two steps. 
First, we define the number of zero-crossings in a window of 
length S fields as  
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and θ  is a threshold on amplitudes of fluctuations in D(t).  
Next, we quantize the effect of θ on zc(t,θ). By introducing Θ, a 
set of ascendant thresholds θi indexed by i=1,2,⋅⋅⋅,I, we define  
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where β  is a threshold on zc(t,θi).  Note that once zc(t,θi) passes 
β, pzc(t) is dependent on the amplitudes of fluctuations in D(t).  
The zero-crossing measure pzc(t) is ill ustrated in Figure 3. This 
zero-crossing measure takes into account both the frequency and 
amplitude of the fluctuations. 
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Figure 3. The zero-crossing measure. Note that the numbers of 
zero-crossings of the two curves are the same if the difference in 
amplitudes of fluctuations is not taken into account. On the other 
hand, setting β=2, the low-amplitude curve yields zc(t,θ1)=3, 
zc(t,θ2)=0 and zc(t,θ3)=0. Because only zc(t,θ1)> β, pzc(t)=1; 
The high-amplitude curve yields zc(t,θ1)=5, zc(t,θ2)=4 and  
zc(t,θ3)=3. Because all the three are bigger than β, we select the 
biggest θi and assign the corresponding i to pzc(t). Therefore, 
pzc(t)=3.  

 
The fourth feature, based on the color histogram, is for capturing 
the gradual transitions in editing effects. There are many papers 
addressing this problem. We have adopted the method described 
in [8].  
All the four features are normalized and quantized to 16 levels 
before they are used by the HMM. 

3.2 Commercial/non-commercial filtering 
As discussed in Section 2, there may also be SLO-MOs in the 
commercials that are included in the sports programming, as is 
the usual case in TV broadcasts. Thus, we need a 
commercial/non-commercial filter to distinguish between SLO-
MOs in commercials and in the actual program.  
The principle of the commercial/non-commercial filter is that 
the average color histogram of a commercial SLO-MO is quite 
different from the average color histogram of a segment in the 
game while all the segments in the game have similar 
histograms. Thus, once we have identified segments that are part 
of the game (not necessary SLO-MO segments), we can use 
them as references and filter out commercial SLO-MOs, by 
comparing the distances of color histogram of SLO-MOs with 
the average color histogram of the references. Because each 
commercial is less than 2 minutes long, and the interval between 
two commercial interruptions is longer than 5 minutes, the two 
positions that are two minutes before and after the SLO-MOs 
must be non-commercial, and thus serve as the references.  

3.3 Video summary highlights generation 
Based on information about the location of SLO-MOs, we 
generate highlight summaries of the video program. The 
resulting highlights may include multiple levels of highlights 
with varying detail , ranging from short to longer highlights, as 
follows. 

1. Concatenation of all non-commercial SLO-MOs. The 
resulting highlight provides the most compact summary of the 
program (and it does not contain any commercials). 
2. Concatenation of expanded non-commercial SLO-MOs.  
Expansion is performed by adding t1 and t2 seconds to the 
beginning and end of each SLO-MO.   
3.  Same as level 2, but the expansion time intervals are chosen 
as a function of the statistics of the corresponding SLO-MO. In 
one possible implementation, the value of t1 is set proportional to 
the actual length of the event depicted in the SLO-MO. The 
value of the proportionality factor k is determined by the length 
of the desired summary. To avoid overlaps between segments, a 
simple check mechanism can be introduced through which the 
value of k is controlled adaptively. 

4. EXPERIMENTAL RESULTS  

Our experimental data were captured from 4:2:2 YUV NTSC D-
1 tapes, which have a 720x243 resolution for each field and a 
60Hz field rate. We down-sampled the resolution to 360x240 to 
reduce the computational cost. We captured 10 different video 
clips in total, about 20 Gigabytes of data, with a duration of 25 
minutes long. The clips cover five different types of games. 
Among them, there are two 10-minute clips: one basketball and 
one football , and 8 much shorter clips (usually shorter than 1 
minute): one auto racing, three basketball , one boxing, one 
football and one soccer. We used 5 shorter clips to train the 
HMM, and use all clips as the testing data (We didn’ t observe 
different performance between the training and other data during 
the test).  
There are a total of 91,204 fields in all clips, and 23,718 fields of 
them are in total 15 non-commercial SLO-MOs. The SLO-MOs 
detector detected all the 15 non-commercial SLO-MOs and 
additional 8 commercial SLO-MOs in the clips. Thus, the 
detection of non-commercial SLO-MOs has a success rate of 
100%. The commercial/non-commercial filter filtered out 7 
commercial SLO-MOs while preserving all the non-commercial 
SLO-MOs and one commercial SLO-MO. Therefore, the 
commercial/non-commercial filter has a success rate of 95.7%. 
Regarding boundary localization accuracy, we have used two 
measurements. The first one is defined as the ratio of the miss-
detected fields over the total number of fields in the SLO-MOs. 
The second one is defined as the ratio of miss-detected fields 
over the total number of fields in the clip. The localization 
performance according to the former definition was 12.81%, 
while according to the latter it was 3.33%.  
We have used the two 10-minute clips to generate multi -level 
summary highlights (the other seven clips are too short to 
generate a highlight other than the level-1 highlights discussed 
in Section 3.3, which only contain SLO-MOs). The highlight 
summaries of the two 10-minute clips are generated at 3 
different levels, ranging from around 100 seconds to 4 minutes 
long. The authors believe that the generated highlights 
summarize the most important events in these clips very well . 
After we further added gradual transitions between different 
scenes, the highlights are visually pleasing overall as well .  
The normalized and quantized values of the four features and the 
final hidden states of the HMM for a short soccer clip (1060 
fields long) are shown in Figure 4.  
While detection of SLO-MOs is reliable, localization of 
boundaries of SLO-MOs is not perfect. Sometimes, scene-cuts 
occur within a SLO-MO without editing effects. If there are 
normal motion play fields in such a SLO-MO, it is diff icult to 



distinguish the end of a SLO-MO from a scene-cut within a 
SLO-MO, resulting in a significant error. Probably, additional 
features are necessary (for instance, audio features) to solve this 
problem. 
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(a) The feature from pzc(t).  
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(b) The feature from the lowest value in a sliding-window.  
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(c) The feature from the differences of every two adjacent 

values of D(t).  
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(d) The feature from the color histogram.  
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(e) The optimal hidden states of the HMM, the starting and 
ending boundary points and the origin point. 
 

Figure 4. The four features of the HMM and the optimal 
hidden states obtained by the Viterbi algorithm in a short 
soccer clip. 

5. CONCLUSIONS & DISCUSSION 

In this paper, we propose a new method for automatic event 
detection and summarization of sports programming. The 
method is based on the notion that slow motion replay segments 
are important clues to localizing semantically important events. 
By detecting slow motion replay segments, the method finds the 

locations of inherently important events in lengthy programs, 
and further generates multi -level summary highlights. In our 
paper, the structure of slow motion replay segments is analyzed, 
and a Hidden Markov Model is proposed which matches the 
structure of slow motion sequences. An inference algorithm is 
used to detect the boundaries of slow motion replay segments, 
and we have developed four features for our HMM framework, 
including a new zero-crossing measure. We also proposed a 
solution for filtering out slow motion segments that are part of 
commercials. Finally, a summary of program highlights is 
generated by concatenating the (non-commercial) slow motion 
replay segments with segments immediately before and after the 
detected segments.   
Our method can be utili zed at either the program provider or the 
consumer side to provide highlights of sports events that may 
vary in duration according to personal preferences, usage 
conditions, and requirements on system resources. 
Currently, all four features used in the HMM framework are 
derived from the video signal. Other features, based on the audio 
signal, can be introduced into the framework readily, to enhance 
the performance and robustness of our algorithm.  
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