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ABSTRACT

This paper considers the blind equalization problem for nonlinear
channels of Volterra type excited by red i.i.d. symbols. Previous
work hasshownthat under theright conditionsthe equalizerscan be
found from the second order statistics of the channel output aslong
as the number of subchannels exceeds the number of kernels. In
order to alleviate this requirement, we consider the use of asimple
precoding device previous to transmission which provides atrade-
off between effective datarate and number of subchannelsrequired.
Necessary and sufficient conditions for blind equalizability under
this scheme are given, and an algorithm for the computation of the
equalizersis presented.

1. INTRODUCTION

Blind equalization of single-input multiple-output linear channels
hasreceived considerable attention, motivated by the fact that these
channelscan be perfectly equalized fromthe second-order statistics
(SOS) of the received signal [4] if the subchannels are coprime.

Many systems such as digital satellite and radio links, high-
density magnetic and optical storage channels, etc., exhibit non-
trivial nonlinearities. Recently blind equalization techniques for
nonlinear channels, both deterministic [1] and SOS-based [2] have
been proposed, which exploit the fact that if several subchannels
areavailable(e.g. if thereceived signal isoversampled and/or mul-
tiple sensors are used), linear FIR equalizers have the potential to
completely remove both linear and nonlinear | SI. Thediscrete-time
equivalent single-input, p-output channel model that we consider
has the form

q I
y(n) =YY higsi(n = j) +v(n), (1)

i=1 j=0

wherethe p x 1 vectorsy(-), v(+), hi; denote respectively the re-
ceived signal, additive noise, and channel coefficients. We adopt a
truncated Volterra series approximation [3] of the nonlinear chan-
nel so that the ‘basis functions' s;(-) are taken as monomials:
with a(-) the scalar-valued transmitted symbols, and for some ¢;,
0< kit < < ki,

si(n) = a(n)a(n — ki,1) - -a(n — kig,), )

and sj(n) = a(n) for somej, i.e. alinear kernel is present.

A first requirement in the schemes of [1] and [2] isthat p > ¢,
i.e. thenumber of subchannels must exceed the number of kernels.
For alarge number of nonlinear kernels this may require too much
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diversity. In this paper we investigate blind equalization from the
output SOS through a simple data precoding scheme that reduces
the number of nonlinear kernels at the expense of the effective
data rate. We assume real i.i.d. symmetrically distributed input
symbols. Whereas[2] only gives sufficient conditions on the input
under which blind equalization from SOS can be effected, here we
give conditionsthat are both necessary and sufficient.

In our notation, (-)” denotes the transpose; I, J.. denote
respectively the m x m identity matrix and the shift matrix with
ones in the first subdiagonal and zeros elsewhere; e, denotes the
k-th unit vector, and & stands for block diagonal concatenation,

e.g.AEBB:[S1 g]

2. THE PRECODING SCHEME

Observe from (2) that the s; (-) are products of a(n) and several of
its delays. Now suppose that the sequence transmitted through the
channel, a(-), is obtained from the actual symbol stream z(-) by
inserting N — 1 zeros between any consecutive symbols:

a(n) = { g(n/N) iefI;Lelmod N =0, o

If for the i-th kernel we define j(:) = min{j | k;,; > 0}, and if
N satisfies N > max{k; j), 1 <14 < ¢}, thendueto (3) al the
terms s;(n) become zero for all n except those of the form

si(n) = a(n)]™". 4

Hence the effective number of kernels has been reduced by the
precoding operation by the removal of all nonlinear terms except
pure powers of a(n). In what follows it is assumed that (3) is
implemented so that all terms satisfy (4). We shall denotethe total
number of surviving kernels by ¢’ (thus¢’ < q).

We shall consider the use of linear equalizersfor the precoded
nonlinear channel. Due to the upsampling operation (3) at the
transmitter, the equalizer output must be downsampled by a factor
of N. With z(n), the datato be transmitted and a(n) its precoded
mutation, the overall configuration is depicted in Figure 1, where
ZMNL is a single-input, ¢’-output ‘Zero-Memory Nolinearity’,
H(z) isap x ¢’ matrix transfer function whose i-th column is
Z;"zo hijz=7, and G(z) isthe 1 x p equalizer transfer function.
In view of (4), ZMNL only consists pure powers of its input, i.e.
hastheform[1, ()T, (.)5*,---]7. By using

N-1

H(z) =Y 2"'E(Y), G(2)=

1=0 1

=

1
z_lRl(zN),
0
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Figure 1. Overall precoder-channel-equalizer configuration.

(polyphase representations), and noting that the upsampler and
the ZMNL commute, one obtains the equivalent block diagram of
Figure 2, where v;(n) = v(nN —1),0 <I < N — 1.
vo(n) R
m(n) ! m(n - d)
— ZMNL > Eo(2) Ro(z)

Ei(z) ;L»(;—»RN_l(z)
|—>EN—1(2)7}L’(g—' Ri(z) J

Figure 2: Equivalent configuration.
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3. PROBLEM STATEMENT

Observe that the p x 1 vector process y(-) is cyclostationary. We
can block it to form the Np x 1 vector process

A
y(n)=[ y(nN)" y(N-1" - y(nN-N+1" T,
which now iswide-sense stationary. This process satisfies

q'

v =S hyletn - HI 4y, O

i=1 j=0

withl; = |l;/N| and the Np x 1 vectorsh;;, v(n) given by

hijnN vo(n)
hi N1 v1(n)
h;; £ : , v(n) 2
hijntN-1 vn—1(n)

With this, we can stack M consecutive samples of the processes
y(+), v(+) to definethe M Np x 1 vectors

Y(n) = [y()" yn-1" - yo-M+17 ],
Vin) = [v(n)T vin-1)T - vin—-M+1)7T "

These processes satisfy the following relation:

Y (n) = FS(n) + V(n), (6)
where the signal regressor S(n) isgiven by
Stn) = [ Sim)" - Sy T,
Si(n) = [z(n)™ zn-1)" ... z(n—d;i+1)™ ]T

bl

with d; = M + I}, and the channel matrix F is given by F =
[ F1 Fo - Fo ], with

hijo --- hy
Fi . NMpx(M+L).
hio -+ hy

>

Therefore the covariance sequence of Y (-) can be written as
Cy(k) £ covlY (n),Y (n = k)] = FC.(W)F" + Cu(k), (7)

with the signal and noise covariance matrices

Cs(k) 2 cov[S(n), S(n—k)], Cu(k) = cov[V(n),V(n—Fk)].

We adopt the following assumptions:
AL The channel matrix F has full column rank.
A2: v(-) is zero-mean, white, with covariance o2 I,,.
A3: z(-) isreal, zero-mean, i.i.d., symmetrically distributed about
the origin.
A4: C,(0) is positive definite.
Observe that for Al to hold F must betdl, i.e.

NMp > Mg+ (i + - +1y)

must hold. This in turn impliesp > ¢'/N, in contrast with the
requirement p > ¢ when no precoding is used (also note ¢’ < ¢
since the ‘crossterms’ kernels have been eliminated by the pre-
coding scheme). A1 ensuresthe existence of vectors g4 with g2 F
a unit vector such that in the noiseless case, for 0 < d < d; — 1
onehas g2 Y (n) = z(n — d); i.e. g4 provides aFIR zero-forcing
(ZF) linear equalizer with associated delay d.

Under A2, the process v(-) is aso white with
cov[v(n),v(n)] = 0-12)[Np1 s0 that

Co(k) = o2 (INE)"

Then o2 can be estimated as the smallest eigenvalue of C,(0)
and thus the effect of the noise can be removed from Cy (k).
Henceforth we shall assume that this has been done so that
Cy(k) = FC,(k)FT. Assumption A4 is a ‘'persistent excita-
tion’ requirement. The problem is stated as follows.

Blind Equalizability Problem: Let F beamatrix of the same size
as F such that

FC(b)F' = FC.(k)F",  k=0,1,...k.  (8)

We say that  is compatible with the SOS of Y(-), up to lag
k. Determi ne conditions under which a ZF equalizer gq for any
compatible F is also a ZF equalizer for F. That is, if the j-th
kernel isthelinear one, thenwith0 < d < d; —1andc # 0,

T £ T T T
gd}-:[ Odl+"'+dj—1 €d+1 Odj+1+"'+dql ]

T T T T
= gaF=] 0d1+---+d]-_1 C-€gq Od,-+1+---+dq, . ©



Observe that if (9) is satisfied, then the matrices C,, (0), ...,
C, (k) effectively contain enough information for the determina-
tion of theequalizers. Inthat case we say that the channel isblindly
equalizable from the SOS of Y'(+).

4. EQUALIZABILITY CONDITIONS

Assumethat i1 > I3 > --- > I.,. Define

1>

L;; [ 1 Odix(dj—di) ] (di X dj):

aij = covlz™(n),2™(n)], 1<4,5<d,

and let A be the matrix A = (aj)1<i,j<q - Observethat A > 0
because of A4. Let A = BBT be the Cholesky factorization of
Awith B = (8i5)1<i,j<q (thus 8i; = 0if j > i). We have the
following result:

Lemmal The source covariance matrices C, (k) admit the fac-
torization C, (k) = Q7*QT , where 7 = Ju, @ Ja, & -+ & Ja,
and Q isthe (d1 + - - - + dg )-Square matrix

Bi1 L1
A Bar1Llar  Baalas
Q= _ : (10)
ﬂqlqull /8(1’2qu2 /Bqlql quql
Thenin view of Lemma 1 and (7), one has
Cy(k) = FQI Q" FT. (11)

Now Iet~.73 be a compatible matrix. For £k = 0, (8) reads as
(FOFNT = (FQ)(FQ)T. Sinceby Al F has full column
rank and  is nonsingular, it follows that (FQ) = (FQ)P for
some orthogonal matrix P, or equivalently F = FaPQ ! In
addition, for k = 1,..., k, (8) gives

PJT* =g*P. (12

Observe that if (12) issatisfied for £ = 1, then it is satisfied for al
k > 0. Thereforeit suffices to consider blind equalizability from
Cy(0) and Cy(1). The next result gives necessary and sufficient
conditions.

Lemma2 The channel (5) is blindly equalizable from the output
OSiff (i) there is no nonlinear kernel with the same length asthe
linear one, and (ii) there is no odd-order kernel longer than the
linear one. That is, if the j-th kernel isthelinear one, then I} # [}
for i # 7; andif I > I; then m; must be even.

Note that condition (ii) in Lemma 2 amountsto having aj1 =
- = aj,;—1 = 0 or equivalently

Bir=++-=Bj,j-1=0. (13

5. OBTAINING THE EQUALIZERS

Assuming that the channel satisfiesthe conditionsof Lemma2, the
equalizers can be found as follows. Firgt, it will be convenient to
reorder the kernels so as to have the linear one first, then all those
longer than thelinear one, and then all those shorter. Then (11) till
holds, but now 2 is obtained from (10) by suitably permuting rows

and columns. (Note that the resulting 2 still is lower triangular
because of (13)). Asin[5], perform an SVD of C,(0):

Cy(0) = Th Uz][z(f SHIIES]

where ¥ > 0 isr x r diagona and U; has r columns, r» be-
ing the number of columns of F. Dueto Al and (11), one has
F = U, XVQ~! for somer x r orthogona V. Let Vi comprise
the first d; columns of V. It can be readily checked that with

02 £ E[2°(n)), the ZF equalizers are given by

Gzr 21 g0 gi—1 | =0 UhS Vi, (14)
In order to obtain V; we shall make use of the matrix
rRES I, =vavT. (15)
From (15), it follows that
RVi = ViJy,, R"Vi = Wi Jg,, (16)

so that Vi can be recovered fromitsfirst or last column.

Dueto our reordering of thekernels, 7 = J4, @Y &Y where
Y comprisesthe J blocks of sizelessthan d; and Y those of size
greater than d;. PartitioningV =[ Vi Vo Vs JwhereV, V3
have the same number of columnsasY, Y respectively, one has

R=Vidg, VI + VoY Vs +VaY Vil . 17)
—— N —
R r £
_ N iti
Further B* = RE4+T* 4+ forall k. Let.75; 2 Lo 1o @

then for somew, r1, ..., ry, @nd ¢y >tz > -+ >ty > d1, OnNe
can write without loss of generality

Y =Tt & O Tryte- (18)
Partitioning accordingly Vo = [ Va1 Vau JOnehasT =
VaYViE = S T wherel'; 2 Vo, 7,4, VaF; and

r* = Z Tk (19)
i=1
holdsfor all k. From (15), onefindsthat fori =1,... u,
RVai = VaiT vy Ry = VZiJZ;ti- (20)

Using (20), it canbe shownthat fori =1,..., u,
t;i—1
I = Z(RT)tifkfll—\?—l(RT)kfl. (21)
k=1
Now set Ry = R,andfori=1,2,...

t;—1

, u, do:

Peo= OROETEIRETI R,
k=1
Riyn = Ri—T;.

Combining (17)-(21), one finds that at the end of the iteration,
Ruy1 = R—T = R+ T. Therefore, since "t ~! = 0,

R = VAP TV = (Viea, ) (Vien) ™. (22
Thus an SVD of Riﬁr‘ll provides the first and last columns of V;

up to aunitary constant. The remaining columnsare found via (16)
and then (14) yields the ZF equalizers.



| subchannel | hio [ his [ hiz [[hoo [ hos [ hos | hos || hao | ha |
1 10| 02 | 05| 09| 02 |-03|-06| -01| 04
2 -04 | 05 | 08 03 |-04|-02| 03 04 | 03
3 05|-01|-09| 10| 02| 01]|-03}| -01]| 03
4 -03 | 0.7 | 03 05 |-01|-04| 03 03 | 09

Table 1: Coefficients of the precoded Volterra channel used in the simulations

6. SSIMULATION RESULTS

We considered an equivalent channel asin (5) with ¢’ = 3 surviv-
ing kernels after precoding, with lengths i} = 2,1, = 3,15 = 1
and exponents mi; = 1, ma = 2, msg = 3. The modulation is
4-PAM with equiprobable levels i% and £1, and the number of
subchannels available after precoding was Np = 4. The coef-
ficients are shown in table 1, giving a 2.2 dB linear-to-nonlinear
distortion ratio.

For illustration purposes the phase ambiguity inherent to the
algorithm was removed before computing the error rates, which
were averaged based on 100 independent runs. The noise is white
Gaussian with variance o2. The SNR is defined as

i1
> b .
j=0

We chose an equalizer length M = 7. Figure 3 shows the
symbol error rate attained with the ZF equalizers as a function of
the SNR, when K = 1000 symbols were used for estimating the
channel output covariance matrices. For simplicity these covari-
ance matrices were not denoised. For this example, the equalizers
with intermediate associated delays (1 < d < 7) performed sim-
ilarly and about 3 dB better than those of extremal delays (d = 0
and d = 8). Figure 4 shows the variation of the symbol error rate
with the number of symbols K for covariance estimation, for a
SNR value of 20 dB.

2

SNR = 101log;, Nam 3
Poy

7. CONCLUSIONS

We have presented a simple precoding scheme that considerably
alleviates the need for alarge number of subchannelsfor the blind
equalization of nonlinear Volterra channels, by reducing the effec-
tive number of nonlinear kernels that need to be equalized. For
i.i.d. symmetrically distributed input data, we show that the chan-
nel can be equalized from its second order output statisticsiff inits
effective precoded model no nonlinear kernel has the same length
asthelinear kernel, and no odd degree nonlinear kernel has larger
length than thelinear one. An algorithm for the computation of the
equalizersis presented.
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