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ABSTRACT

This paper considers the blind equalization problem for nonlinear
channels of Volterra type excited by real i.i.d. symbols. Previous
work has shown that under the right conditions the equalizers can be
found from the second order statistics of the channel output as long
as the number of subchannels exceeds the number of kernels. In
order to alleviate this requirement, we consider the use of a simple
precoding device previous to transmission which provides a trade-
off between effective data rate and number of subchannels required.
Necessary and sufficient conditions for blind equalizability under
this scheme are given, and an algorithm for the computation of the
equalizers is presented.

1. INTRODUCTION

Blind equalization of single-input multiple-output linear channels
has received considerable attention, motivated by the fact that these
channels can be perfectly equalized from the second-order statistics
(SOS) of the received signal [4] if the subchannels are coprime.

Many systems such as digital satellite and radio links, high-
density magnetic and optical storage channels, etc., exhibit non-
trivial nonlinearities. Recently blind equalization techniques for
nonlinear channels, both deterministic [1] and SOS-based [2] have
been proposed, which exploit the fact that if several subchannels
are available (e.g. if the received signal is oversampled and/or mul-
tiple sensors are used), linear FIR equalizers have the potential to
completely remove both linear and nonlinear ISI. The discrete-time
equivalent single-input, � -output channel model that we consider
has the form �������	��
� 
 ��� ���� � ����� 
 ����
 ������� ��!#"$�����&% (1)

where the �('*) vectors ���,+ � , "$�,+ � , � 
 � denote respectively the re-
ceived signal, additive noise, and channel coefficients. We adopt a
truncated Volterra series approximation [3] of the nonlinear chan-
nel so that the ‘basis functions’

� 
 �,+ � are taken as monomials:
with - �,+ � the scalar-valued transmitted symbols, and for some . 
 ,/1032 
 4 � 0 +5+6+ 032 
 4 7 � ,� 
 �����8� - ����� - ���9� 2 
 4 � �$+6+5+ - ����� 2 
 4 7 � �&% (2)

and

�:� �����	� - ����� for some � , i.e. a linear kernel is present.
A first requirement in the schemes of [1] and [2] is that �<;>= ,

i.e. the number of subchannels must exceed the number of kernels.
For a large number of nonlinear kernels this may require too much
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diversity. In this paper we investigate blind equalization from the
output SOS through a simple data precoding scheme that reduces
the number of nonlinear kernels at the expense of the effective
data rate. We assume real i.i.d. symmetrically distributed input
symbols. Whereas [2] only gives sufficient conditions on the input
under which blind equalization from SOS can be effected, here we
give conditions that are both necessary and sufficient.

In our notation, �,+ �@? denotes the transpose; A5B , CDB denote
respectively the E ' E identity matrix and the shift matrix with
ones in the first subdiagonal and zeros elsewhere; FHG denotes the2

-th unit vector, and I stands for block diagonal concatenation,

e.g. J#I#K �ML J // KON .

2. THE PRECODING SCHEME

Observe from (2) that the

� 
 �,+ � are products of - ����� and several of
its delays. Now suppose that the sequence transmitted through the
channel, - �,+ � , is obtained from the actual symbol stream P �,+ � by
inserting Q �R) zeros between any consecutive symbols:- �����	�TS P ���VU Q � if �<WYX[Z Q � /

,/
else.

(3)

If for the \ -th kernel we define �]� \ �^�_WY`badc6�(e 2 
 4 � ; / f
, and ifQ satisfies Q ;gWih�jkc 2 
 4 ��lb
nm %^) 0 \ 0 = f , then due to (3) all the

terms

�o
 ����� become zero for all � except those of the form� 
 �����8�qp - �����sr B �ot (4)

Hence the effective number of kernels has been reduced by the
precoding operation by the removal of all nonlinear terms except
pure powers of - ����� . In what follows it is assumed that (3) is
implemented so that all terms satisfy (4). We shall denote the total
number of surviving kernels by =Hu (thus =�u 0 = ).

We shall consider the use of linear equalizers for the precoded
nonlinear channel. Due to the upsampling operation (3) at the
transmitter, the equalizer output must be downsampled by a factor
of Q . With P ����� , the data to be transmitted and - ����� its precoded
mutation, the overall configuration is depicted in Figure 1, where
ZMNL is a single-input, = u -output ‘Zero-Memory Nolinearity’,v �swD� is a �x'*= u matrix transfer function whose \ -th column isy ���� ��� � 
 � w]z

�
, and { �swD� is the )|'Y� equalizer transfer function.

In view of (4), ZMNL only consists pure powers of its input, i.e.
has the form p�)�%o� t � B � %o� t � B } %6+6+5+ r ? . By usingv �swD�	��~ z �� � ��� w z ��� � �sw ~ �&% { �sw �8��~ z �� � ��� w z ��� � �sw ~ �&%



v �sw � { �swD� � Q� � � � � � �� Q ZMNL �� �P �����*����� �� ��P ����� - ����� = u � "$������
Figure 1: Overall precoder-channel-equalizer configuration.

(polyphase representations), and noting that the upsampler and
the ZMNL commute, one obtains the equivalent block diagram of
Figure 2, where " � �������3"$��� Q �x��� , /10 � 0 Q �>) .
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Figure 2: Equivalent configuration.

3. PROBLEM STATEMENT

Observe that the ��'�) vector process ���,+ � is cyclostationary. We
can block it to form the Q �('*) vector process� �����8���p ����� Q � ? ����� Q �#)H� ? +6+o+������ Q � Q !�)�� ? r ? %
which now is wide-sense stationary. This process satisfies� �����8��
 �� 
 ��� � ��� � ���	� 
 � p P ������� �sr B � !��������&% (5)

with ��u
 ����� 
 U Q�� and the Q �('�) vectors � 
 � , ������� given by

� 
 � ��� ¡¡¢ � 
 4 � ~� 
 4 � ~¤£ �...� 
 4 � ~¤£V~ z �
¥§¦¦¨ %©�¤����� ��� ¡¡¢ " � �����" � �����

..." ~ z � �����
¥§¦¦¨ t

With this, we can stack ª consecutive samples of the processes� �,+�� , ���,+ � to define the ª«Q ��'¬) vectors­ ������� p®� ����� ? � ���9�R)�� ? +6+5+ � ����� ª !3)H� ? r ? %¯ ������� p �¤�����@? �����9�R)��@? +6+5+°������� ª !3)H�@? r ? t
These processes satisfy the following relation:­ �������g±³²´������! ¯ �����&% (6)

where the signal regressor ²´����� is given by²´�����µ� p ² � ����� ? +6+6+¶² 
 � ����� ? r ? %² 
 �����µ� p P ����� B � P ���9�R)�� B � +6+o+ P �����¬� 
 !g)H� B � r ? %

with � 
 � ª !�� u
 , and the channel matrix ± is given by ±·�p ± � ± } +o+5+¸± 
 � r , with± 
 ��  ¡¢ � 
 � +6+6+ � 
 � ��. . .
. . .� 
 � +6+5+ � 
 � ��

¥ ¦¨ % Q(ª ��'^� ª !¹� u
 � t
Therefore the covariance sequence of

­ �,+ � can be written asº´» � 2 � ���¼5X�½Vp ­ �����&% ­ ���9� 2 �srd��± º´¾ � 2 �s± ? ! º´¿ � 2 �&% (7)

with the signal and noise covariance matricesº ¾ � 2 �	���¼5X�½Vp ²´�����&%À²Á���¤� 2 �srs% º ¿ � 2 ����T¼ÀXH½�p ¯ �����&% ¯ ����� 2 �sr t
We adopt the following assumptions:
A1: The channel matrix ± has full column rank.
A2: "$�,+ � is zero-mean, white, with covariance Â }¿ A � .
A3: P �,+�� is real, zero-mean, i.i.d., symmetrically distributed about
the origin.
A4:

º´¾ � / � is positive definite.
Observe that for A1 to hold ± must be tall, i.e.Q(ª �<; ª =^!3�Ã� u � !�+6+5+�!#� u
 � �

must hold. This in turn implies �g;Ä=�u�U Q , in contrast with the
requirement ��;q= when no precoding is used (also note = u 0 =
since the ‘cross-terms’ kernels have been eliminated by the pre-
coding scheme). A1 ensures the existence of vectors ÅÇÆ with Å ?Æ ±
a unit vector such that in the noiseless case, for

/<0 � 0 � � �g)
one has Å ?Æ ­ ������� P ���9����� ; i.e. Å�Æ provides a FIR zero-forcing
(ZF) linear equalizer with associated delay � .

Under A2, the process �¤�,+ � is also white with¼5X�½�p �������&%,�������sr$� Â }¿ A ~ � , so thatº ¿ � 2 �	� Â }¿ÉÈ C ~ �~�Ê �[Ë G t
Then Â }¿ can be estimated as the smallest eigenvalue of

º » � / �
and thus the effect of the noise can be removed from

º´» � 2 � .
Henceforth we shall assume that this has been done so thatº » � 2 �i�Ì± º´Í � 2 �s±Y? . Assumption A4 is a ‘persistent excita-
tion’ requirement. The problem is stated as follows.
Blind Equalizability Problem: Let Î± be a matrix of the same size
as ± such thatÎ± º ¾ � 2 � Î± ? �3± º ¾ � 2 �s± ? % 2 � / %o)�% t6t6t6Ï2 t (8)

We say that Î± is compatible with the SOS of
­ �,+ � , up to lagÏ2

. Determine conditions under which a ZF equalizer Å Æ for any
compatible Î± is also a ZF equalizer for ± . That is, if the � -th
kernel is the linear one, then with

/10 � 0 � � �R) and Ð1Ñ� /
,Å ?Æ Î±Ò�Óp / ?Æ6Ô £�Õ Õ Õ £ Æ&ÖØ× Ô F ?Æ £ � / ?ÆÀÖÚÙ Ô £	Õ Õ Õ £ Æ6Û � rÜ Å ?Æ ±Ò�Óp / ?Æ6Ô £�Õ Õ Õ £ Æ&ÖØ× Ô Ð + F ?Æ £ � / ?Æ&Ö@Ù Ô £�Õ Õ Õ £ Æ Û � r t (9)



Observe that if (9) is satisfied, then the matrices
º » � / � , . . . ,º´» � Ï2 � effectively contain enough information for the determina-

tion of the equalizers. In that case we say that the channel is blindly
equalizable from the SOS of

­ �,+ � .
4. EQUALIZABILITY CONDITIONS

Assume that ��u �^Ý ��u} Ý +6+5+ Ý ��u
 � . DefineÞ 
 � �� p A Æ � / Æ �&ß l ÆÀÖ z Æ � m r ��� 
 '�� � �&%à 
 � �� ¼5X�½Vp P B � �����&% P B Ö �����srs% ) 0 \ %@� 0 = u %
and let J be the matrix J �T�Ãà 
 � � �Øá 
 4 � á 
 � . Observe that J ; /
because of A4. Let J � KâK ? be the Cholesky factorization ofJ with K �T��ã 
 � � �Øá 
 4 � á 
 � (thus ã 
 � � /

if ��; \ ). We have the
following result:

Lemma 1 The source covariance matrices
º´¾ � 2 � admit the fac-

torization
º ¾ � 2 �8��äÁå G äÁ? , where åT� C ÆoÔ I�C ÆÀæ I +6+6+ I�C Æ Û �and ä is the ��� � !3+6+6+o!#� 
 � � -square matrix

ä ��µ ¡¡¢ ã �Ø� Þ �Ø�ã } � Þ } � ã }Ø} Þ }Ø}
...

...
. . .ã 
 � � Þ 
 � � ã 
 � } Þ 
 � } +o+6+�ã 
 � 
 � Þ 
 � 
 �

¥§¦¦¨ t
(10)

Then in view of Lemma 1 and (7), one hasº » � 2 �8�g±³äÁå G ä ? ± ? t (11)

Now let Î± be a compatible matrix. For
2 � /

, (8) reads as� Î±1ä^�À� Î±Yä^� ? �Ì��±Yä^�À��±1ä^� ? . Since by A1 ± has full column
rank and ä is nonsingular, it follows that � Î±³ä^�1�·��±³ä^�,ç for
some orthogonal matrix ç , or equivalently Î±è��±³äéçêä z � . In
addition, for

2 �_)Ç% t6t5t % Ï2 , (8) givesçêå G ��å G ç t (12)

Observe that if (12) is satisfied for
2 �_) , then it is satisfied for all2 ; /

. Therefore it suffices to consider blind equalizability fromº´» � / � and
º´» �,)H� . The next result gives necessary and sufficient

conditions.

Lemma 2 The channel (5) is blindly equalizable from the output
SOS iff (i) there is no nonlinear kernel with the same length as the
linear one, and (ii) there is no odd-order kernel longer than the
linear one. That is, if the � -th kernel is the linear one, then ��u
 Ñ����u�
for \éÑ�3� ; and if ��u
 ;R��u� then E 


must be even.

Note that condition (ii) in Lemma 2 amounts to having à � � �+6+5+[��à � 4 � z � � /
or equivalentlyã � � �q+5+o+D�3ã � 4 � z � � / t

(13)

5. OBTAINING THE EQUALIZERS

Assuming that the channel satisfies the conditions of Lemma 2, the
equalizers can be found as follows. First, it will be convenient to
reorder the kernels so as to have the linear one first, then all those
longer than the linear one, and then all those shorter. Then (11) still
holds, but now ä is obtained from (10) by suitably permuting rows

and columns. (Note that the resulting ä still is lower triangular
because of (13)). As in [5], perform an SVD of

º´» � / � :º´» � / �	�qpâë � ë } r´L<ì } // / N L ë ?�ë ?} N %
where ì ; /

is í ' í diagonal and ë � has í columns, í be-
ing the number of columns of ± . Due to A1 and (11), one has±î� ë � ì ¯ ä z � for some í ' í orthogonal

¯
. Let

¯ � comprise
the first � � columns of

¯
. It can be readily checked that withÂ }Í ��>ïYp P } �����sr , the ZF equalizers are given byð�ñHò ���p Å � +6+6+ Å Æ6Ô z � rd� Â Í ë � ì z � ¯ � t (14)

In order to obtain
¯ � we shall make use of the matrixó �� ì z � ë ?� º´» �,)H� ë � ì z � � ¯ å ¯ ? t (15)

From (15), it follows thatóÉ¯ � � ¯ � C ÆoÔ % ó ? ¯ � � ¯ � C ?Æ6Ô % (16)

so that
¯ � can be recovered from its first or last column.

Due to our reordering of the kernels, åT� C Æ6Ô�I ­ I �­
where�­

comprises the C blocks of size less than � � and
­

those of size
greater than � � . Partitioning

¯ �Óp ¯ � ¯ } ¯kô r where
¯ }

,
¯ ô

have the same number of columns as
­

,
�­

respectively, one hasó � ¯ � CDÆ6Ô ¯ ?�õ ö�÷ øùú ! ¯ } ­1¯ ?}õ öo÷ øû ! ¯ ô �­1¯ ?ôõ öo÷ øüû t
(17)

Further
ó G � Ïó G !Éý G ! �ý G for all

2
. Let å 
 � �� C � I lb


times

m+6+6+ I¹C � ;
then for some þ , í � , . . . , í�ÿ , and . � ; . } ;Ó+6+o+�; .,ÿ ;�� � , one
can write without loss of generality­ ��å�� Ô 7 Ô I +6+o+ I å�� � 7 � t (18)

Partitioning accordingly
¯ } � p ¯ } � +6+o+ ¯ } ÿ r one has ýg�¯ } ­â¯ ?} � y ÿ
 ��� ý 
 where ý 
 �� ¯ } 
 å�� � 7 � ¯ ?} 
 ; andý G � ÿ� 
 ��� ý G
 (19)

holds for all
2

. From (15), one finds that for \ �_)Ç% t6t5t % þ ,óÉ¯ } 
 � ¯ } 
 å�� � 7 � % ó ? ¯ } 
 � ¯ } 
 å ?� � 7 � t (20)

Using (20), it can be shown that for \ �q)�% t6t6t % þ ,ý 
 � 7 � z �� G ��� � ó ? � 7 � z G z � ý 7 � z �
 � ó ? � G z � t (21)

Now set
ó � � ó

, and for \ �_) , � , . . . , þ , do:ý 
 � 7 � z �� G ��� � ó ? � 7 � z G z � ó 7 � z �
 � ó ? � G z � %ó 
 £ � � ó 
 �xý 
 t
Combining (17)-(21), one finds that at the end of the iteration,ó ÿ £ � � ó �*ý�� Ïó ! �ý . Therefore, since

�ý Æ6Ô z � � /
,ó ÆoÔ z �ÿ £ � � ¯ � C Æ6Ô z �ÆoÔ ¯��� �q� ¯ � FoÆ6Ô �À� ¯ � F � � � t (22)

Thus an SVD of
ó Æ6Ô z �ÿ £ � provides the first and last columns of

¯ �
up to a unitary constant. The remaining columns are found via (16)
and then (14) yields the ZF equalizers.



subchannel � �s� � �Ø� � � } � } � � } � � }Ø} � } ô � ô � � ô �1 1.0 0.2 0.5 -0.9 0.2 -0.3 -0.6 -0.1 0.4
2 -0.4 0.5 0.8 0.3 -0.4 -0.2 0.3 0.4 0.3
3 0.5 -0.1 -0.9 1.0 0.2 0.1 -0.3 -0.1 0.3
4 -0.3 0.7 0.3 0.5 -0.1 -0.4 0.3 0.3 0.9

Table 1: Coefficients of the precoded Volterra channel used in the simulations

6. SIMULATION RESULTS

We considered an equivalent channel as in (5) with =�u��	� surviv-
ing kernels after precoding, with lengths �nu � � � , ��u} �
� , ��uô � )
and exponents E � � ) , E } � � , E ô ��� . The modulation is
4-PAM with equiprobable levels � �ô and � ) , and the number of
subchannels available after precoding was Q ����
 . The coef-
ficients are shown in table 1, giving a 2.2 dB linear-to-nonlinear
distortion ratio.

For illustration purposes the phase ambiguity inherent to the
algorithm was removed before computing the error rates, which
were averaged based on 100 independent runs. The noise is white
Gaussian with variance Â }¿ . The SNR is defined as

����� �Ó) /�� X�� �s� Â }ÍQ � Â }¿ � Ô� � ��� ebe � � � ebe } t
We chose an equalizer length ª ��� . Figure 3 shows the

symbol error rate attained with the ZF equalizers as a function of
the SNR, when � �T) /�/Ç/ symbols were used for estimating the
channel output covariance matrices. For simplicity these covari-
ance matrices were not denoised. For this example, the equalizers
with intermediate associated delays ( ) 0 � 0 � ) performed sim-
ilarly and about 3 dB better than those of extremal delays ( �i� /
and �Y��� ). Figure 4 shows the variation of the symbol error rate
with the number of symbols � for covariance estimation, for a
SNR value of 20 dB.

7. CONCLUSIONS

We have presented a simple precoding scheme that considerably
alleviates the need for a large number of subchannels for the blind
equalization of nonlinear Volterra channels, by reducing the effec-
tive number of nonlinear kernels that need to be equalized. For
i.i.d. symmetrically distributed input data, we show that the chan-
nel can be equalized from its second order output statistics iff in its
effective precoded model no nonlinear kernel has the same length
as the linear kernel, and no odd degree nonlinear kernel has larger
length than the linear one. An algorithm for the computation of the
equalizers is presented.
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[2] R. López-Valcarce and S. Dasgupta, “Blind identifiabil-
ity/equalizability of single input multiple output nonlinear
channels from second order statistics”, Proc. 2000 ICASSP,
vol. 5, pp. 2769-2772, Istanbul, Turkey.

[3] M. Schetzen, “The Volterra and Wiener theories of nonlinear
systems”, Wiley, 1980.

[4] L. Tong and S. Perreau, “Multichannel blind equalization:
from subspace to maximum likelihood methods”, Proc. of
the IEEE, vol. 86. no. 10, pp. 1951-1968, Oct. 1998.

[5] L. Tong, G. Xu and T. Kailath, “Blind identification and
equalization based on second-order statistics: a time-domain
approach”, IEEE Trans. on Information Theory, vol. 40, no.
2, pp. 340-350, March 1994.

5 10 15 20 25 30

10
−3

10
−2

10
−1

10
0

SNR, dB

sy
m

bo
l e

rro
r r

at
e

intermediate delays
extremal delays    

Figure 3: SER vs. SNR. � �¶) /Ç/�/ symbols for covariance
estimation.
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