OPTIMAL WEIGTHING OF POSTERIORS FOR AUDIO-VISUAL SPEECH RECOGNITION
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ABSTRACT

We investigate the fusion of audio and video a posteriori
phonetic probabilities in a hybrid ANN/HMM audio-visual
speech recognition system. Three basic conditions to the
fusion process are stated and implemented in a linear and
a geometric weighting scheme. These conditions are the
assumption of conditional independence of the audio and
video data and the contribution of only one of the two paths
when the SNR is very high or very low, respectively. In the
case of the geometric weighting a new weighting scheme
is developed whereas the linear weighting follows the Full
Combination approach as employed in multi-stream recog-
nition. We compare these two new concepts in audio-visual
recognition to a rather standard approach known from the
literature. Recognition tests were performed in a contin-
uous number recognition task on a single speaker database
containing 1712 utterances with two different types of noise
added.

1. INTRODUCTION

In recent years much attention was put on the integration
of multiple streams, so called multi-stream, for noise ro-
bust speech recognition. In most cases these streams are
the result of different preprocessing of the audio signal.
One application of this multi-stream approach is audio-
visual speech recognition. Here the two streams, namely
the acoustic signal and the lips movement, carry comple-
mentary information. The visual modality additionally con-
tributes information on the place of articulation. E.g. /t/
and /p/ are well discriminated via the lips movement but
can easily be confused when looking on a noisy acoustical
signal only.

In this paper we state three basic conditions which, in
our opinion, should be fulfilled in a weighting scheme for
audio-visual fusion. We implement these conditions in a
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newly developed geometric weighting scheme in the frame-
work of a so called Separate Identification (SI) architecture
[1], which can be seen as a special case of multi-stream
recognition. Furthermore, as an example of a linear weight-
ing scheme, we apply the so called Full-Combination (FC)
approach, known from multi-stream recognition [2], to our
knowledge for the first time to audio-visual recognition. In
the implementation of the FC we also take these basic con-
ditions into account. We then compare the new geometric
and linear fusion scheme to one common for audio-visual
speech recognition.

2. RECOGNITION SYSTEM

To compare the different fusion methods we use an ANN/-
HMM hybrid model for continuous audio-visual number
recognition. Identification of the phonemes is performed
independently for the audio and the video path (compare
Fig. 1) and thus follows a SI or multi-stream approach.
The ANNSs are trained to produce the a posteriori proba-
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Fig. 1. Separate ldentification (SI) audio-visual speech
recognition system

bilities P(H;|x4) and P(H;|xy ) for the occurrence of the
phoneme H; when the acoustic feature vector x 4 and the vi-
sual feature vector xy are observed, respectively. The goal
of the fusion process is to obtain a good estimation of the a
posteriori probability P(H;|x 4,xy) when both x 4 and xy
are present.

Implementation of the system was carried out with the
tool STRUT from TCTS lab Mons, Belgium [3]. To train



the ANNSs and to perform the recognition tests we used a
single-speaker audio-visual database recorded at the Insti-
tut de la Communication Parlée (ICP) in Grenoble, France
[4]. The database consists of 1712 utterances each compris-
ing several numbers representing a street address, zipcode
or similar, as in NUMBERS95 from the Oregon Graduate
Institute (OGI). For training 884 and for testing 828 utter-
ances were used. The audio feature extraction is performed
with RASTA-PLP using 12 cepstral coefficients and the log
energy. Video features are extracted via a chroma key pro-
cess, which requires coloring of the speakers lips with blue
ink (see also Fig. 1)[5]. Due to the coloring, the lips can
then be located easily and their movement parameters can
be extracted in real time. As lips parameters

e outer lip width

e inner lip width

e outer lip height

e inner lip height

e lip surface and

e mouth surface surrounded by lips
were chosen.

To take temporal information into account, several time
frames of the audio and video feature vectors are pre-
sented simultaneously at the input of the corresponding
ANNSs. The generated posteriors are directly forwarded to
the HMM without a conversion to so called scaled likeli-
hoods. Left-right HMM models were employed to model
the individual phonemes. The order of the HMMs used
to represent the different phonemes was adapted to the
mean length of the corresponding phoneme. Word mod-
els are generated by the concatenation of the corresponding
phoneme models. Recognition is based on a dictionary with
the phonetic transcription of 30 English numbers. Complete
sentences containing a sequence of numbers were presented
to the system during the recognition process. No distinc-
tion between phonemes and visemes was made in the fusion
process. Each acoustical articulation is assumed to have a
synchronously generated corresponding visual articulation.

3. FUSION OF AUDIO AND VIDEO

The goal of the fusion process is to calculate the a posteriori
probability, when both the audio and the video features are
present, via the posteriors of each individual stream. In this
chapter we state the 3 conditions to the fusion process and
introduce a new geometric fusion method, the Full Com-
bination approach and the standard fusion method known
from the literature, which will serve as a benchmark.

3.1. Boundary Conditionsto the Fusion Process

Massaro&Stork [6] and Movellan&Challderon [7] gave ev-
idence that the acoustical and the visual features can be con-

sidered as conditionally independent:
P(xa,xv|H;) = P(xa|H;)P(xv|H;) 1

Considering this assumption and applying Bayes’ rule the
desired a posteriori probability of the phoneme H; can be
formulated as:

P(Hilxa)P(Hi|xy) P(xa)P(xv)

P(H;|xa,xv) = P(H,)) - P(xa,xv)

Unfortunately the ANNSs only give us an estimate P of
the true posteriors. Particularly in the case of the audio
path, this estimate strongly depends on the additional noise
present. It is therefore desirable to control the influence of
the audio and video features depending on the noise level.
When the SNR is very low the estimation in the audio path
completely fails. Therefore the final a posteriori probability
should only depend on the video features:

P(Hi|x,4,xv) — P(H,|xv) (3)

We want to refer to this in the following as Condition | to the
fusion process. Similar for very high SNR the estimation in
the audio path is in general much better than the one in the
video path and consequently

P(H;|xa,xv) — P(H;|x4) (4)

This will be referred to as Condition 1. Finally the evalu-
ation of the a posteriori probability according to Eg. 2 in
cases where both, the audio and the video path, contribute
equally will be referred to as Condition Ill. In the next
two sections we develop a geometric and a linear weight-
ing method which takes Conditions I-111 into account.

3.2. Geometric Weighting

To develop the Geometric Weighting scheme we replace the
terms independent of the actual phoneme H; by a normal-
ization factor:
1

&(a, f) = N—1 Pe(H;|x4) PP (H;j|xv)
Jj=0 Pot+B-1(H;)
Then the final estimate of the a posteriori probability of the
phoneme H; can be written as:

P (H;|x4) PP (Hi|xv) )
Peti-1(Hy)

®)

e(a; B)

(6)
The weighting parameters o and 3 both depend on a third
parameter ¢ according to:

Pow (Hilxa,xv) =

1

@ = 1+exp(—c—5)
1

p = 1+exp(c—5)

—x<c<L 0 @)



The parameter ¢ varies with the SNR and is so far adjusted
manually so as to give best recognition results. Whenc¢ =0
the posteriors from the audio and video path both have the
same weight as & ~ 1 and  ~ 1. Hence Condition IlI
is fulfilled. For very low ¢ and thus very low SNR a ~
0,8 ~ 1 and for very high ¢ corresponding to very high
SNR a ~ 1,8 ~ 0. Consequently these two cases fulfill
Conditions I&lII.

In the following sections we will refer to this fusion
method as Geometric Weighting.

3.3. Full Combination Approximation

As a method of linear weighting we consider the so called
Full Combination (FC) approach developed in the frame-
work of multi-stream speech recognition [2]. In our case
the two streams are the audio and video signal. In the FC
approach the final a posteriori probability is derived via the
weighted linear sum over all possible combinations of the
streams. In the case of audio-visual recognition we have to
consider during combination the “empty” stream, contain-
ing only the priors, the audio, the video and the combined
audio/video stream:

Pro(Hilxa,xv) = aP(Hilxa,xv) +
as P(H;|x4) +
agl?(HHXv) + ®)
asP(H;)
InEq8 P(H;|x4) P(H;|x4)

P(Hi|xa,xv) =7 ©)

is the a posteriori probability of the combined audio and
video stream. To evaluate this probability again conditional
independence of the audio and video data is assumed. This
assumption leads to the so called Full Combination Approx-
imation (FCA)[2]. The parameter « replaces the terms in-
dependent of the phoneme H; and is evaluated correspond-
ingly to Eq. 6.

The aj are the weights with which the individual
streams contribute to the final probability. They are set
toa, = a-f,a; = a(l —8),a3 = (1 — «)f and
as = (1 —a)-(1-p), with o and 3 as given in Eq. 7.
When the estimation process for the different probabilities
is not consistent and hence the sum over all probabilities
does not equal one, an independent normalization for each
stream is necessary. Condition Il is fulfilled via ¢ = 0.
Similar for ¢ <« 0 and ¢ > 0, respectively Conditions &Il
are fulfilled.

In the common approach for FCA the weights of each
stream are adapted according to the reliability of the par-
ticular stream. The reliability of the audio signal strongly
depends on the noise level, whereas, as a consequence of
the recording conditions, the reliability of the visual signal

is constant. To determine the weights we applied a man-
ual optimization approach similar to the one used for the
Geometric Fusion. In our implementation the degrees of
freedom of the FCA and the Geometric Fusion are limited
to one, which might not be optimal but a multidimensional
optimization is not practicable.

3.4. Standard Fusion

In the literature conditional independence of the audio and
video features is assumed in systems which rely on like-
lihoods via direct weighting of Eq. 1 [5][8]. Whereas in
systems based on a posteriori probabilities, as our imple-
mentation, Eq. 1 is modified according to (compare [1][9]):

Psia(Hilxa,xv) = P*(H;|x4) PP (Hi|xy) - §(a, B)
(10)
with the weighting factors given in Eq. 7 * and the nor-
malization factor &, which is straightforward. In this case
only Condition 1&II are fulfilled fora = 1,8 = 0 and
a=0,0=1
This fusion method will be referred to as Standard Fu-
sion.

4. PERFORMANCE COMPARISON

To compare the different fusion modalities we added noise
at different SNR levels to the audio signal and then per-
formed recognition tests implementing the different fusion
strategies. The recognition systems were identical except
for the fusion process. The free parameter ¢ in the fusion
process was tuned by hand so to obtain the best possible
result for each fusion modality. The a priori probabilities
involved in the FCA and the Geometric Fusion were esti-
mated from the training set of the database. Two sets of
tests with two different types of noise were carried out. In
the first test white Gaussian noise was added. In the second
test noise, which we recorded in a car under real driving
conditions on a motor-way, was used. This noise is almost
stationary and has a lowpass characteristic.

The results of the comparison with white noise are vi-
sualized in Fig.2. It can be seen that for all SNR values the
audio-visual recognition performs better or at least as good
as video or audio alone. The FCA and the Geometric Fusion
perform very similar in all cases and they give significantly
better results than the standard fusion. Furthermore, start-
ing at SNR values around —6dB up to clean speech, syn-
ergy effects arising from the joint use of audio and video
data are clearly visible for the FCA and the Geometric Fu-
sion. At low SNR values the Geometric Fusion performs
slightly better than the FCA. The numerical values at some
exemplary points are given in Tab. 1.

Iweighting witha = (1 — A) and 8 = X, 0 < A < 1, as originaly
implemented in the literature leads to identical results
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Fig. 2. Comparison of the word error rates for recognition
with different fusion methods when white noise is added

-6dB -3dB  3dB 6dB 9dB clean
Audio 84.8% 74.8% 48.7% 35.9% 23.3% 0.8%
Standard 22.1% 22.1% 19.0% 15.2% 10.1% 0.8%
FC 21.8% 20.0% 12.6% 8.8% 4.8% 0.6%
Geometric20.1% 18.0% 11.4% 8.1% 4.8% 0.6%

Table 1. Comparison of the word error rates for recognition
with different fusion methods when white noise is added
(WER on video alone is 22.1%)

Fig.3 shows the results when using noise recorded in a
car. The results are very similar to those obtained with white
noise. Besides the rather poor performance of the Standard
Fusion also the small difference between the Geometric Fu-
sion and the FCA for low SNR values is visible.
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Fig. 3. Comparison of the word error rates for recognition
with different fusion methods when noise recorded in a car
is added

5. CONCLUSION

We formulated three conditions to the fusion of audio and
video data in a hybrid ANN/HMM audio-visual recogni-
tion system, which allows direct weighting of the posteri-
ors. We applied these conditions to a geometric and a linear
weighting scheme. The conditions comprise the assump-
tion of conditional independence of the audio and video
data but also take the situations, where only the data of

one channel is reliable, into account. The linear weight-
ing scheme introduced follows the Full Combination Ap-
proximation approach, known from multi-stream recogni-
tion. We then compared these two new concepts to one
already known from the literature. To test the different fu-
sion modalities we used an audio-visual database containing
1712 sentences each representing a sequence of numbers. A
continuous recognition was performed where two different
types of noise at different SNRs were added to the audio
channel. The results for both noise conditions are identi-
cal. The FCA and the Geometric Fusion clearly outperform
the Standard Fusion in all situations. At high noise levels
the newly introduced Geometric Fusion gives slightly better
results than the FCA, whereas for medium and good SNR
their performance is almost identical.
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