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ABSTRACT such approaches usually are concentrated on modeling the ascend-
. . ) ing pathway of the auditory periphery. In order to also incorporate
In this work, new acoustic features for continuous speech recog-gferent effects and the descending pathway in the auditory system,
nition based on the short-terRourier phase spectrum are intro- 4 feedhack control model is introduced in [2]. The model tries to
duced for mono (telephone) recordings. The new phase based feazgresent an efferent-induced depression mechanism which leads
tures were combined with standaviél Frequency Cepstral Coeffi- 14 considerable improvements in speech recognition performance
cients(MFCC), and results were produced with and without using ,nqer nojisy conditions. After performing further experiments with
additional linear dlscrlml.nant analysis (LDA) to chogsg the most phoneme recognition [3], the authors conclude that the improve-
relevant features. Experiments were performed orSiedill cor- ments introduced by the feedback mechanism are mainly due to

pus for telephone line recorded German digit strings. Using LDA o, improved discrimination of consonants, such as fricatives, af-
to combine purely phase based features with MFCCs, we obtained-ates and plosives.

improvements in word error rate of up to 25% relative to using
MFCCs alone with the same overall number of parameters in the
system.

In neurobiological experiments it could be shown that an effer-
ent mechanism based on the outer hair cells exists in the auditory
system, which both leads to negative as well as positive mechani-
cal feedback in the cochlea [7, 10].

This paper does not try to investigate or use detailed models
hof the human auditory system. Recently, it has even been ques-
tioned whether speech recognition really has benefitted from de-

1. INTRODUCTION

Acoustic features of today’s state-of-the-art automatic speec
recognition systems do not take into account phase spectrum infor-"=, ' - ! 4
mation. Currently, signal analysis methods for speech recognition t&ileéd simulation of properties of the human auditory system [5].
are mostly based on power spectra, where phase information hagk@ther than simulating physiological processing, we will try to
been removed. Representative and widely used basic signal analPoint out functionaprinciples which introduce new information

ysis methods for speech recognition are both Nte$ Frequency into speech recognition. These functional principles will be used to
Cepstral Coefficient§MFCC) [1], and, as an extension tiRer- build models to compute acoustic features, which both reflect the

ceptual Linear PredictiofPLP) coefficients [4]. For an extensive ~ Structure represented by these principles and which comply with
discussion on signal analysis for speech recognition see e.g. [9]. Ith€ requirements of an statistical pattern recognition system.
is a well known fact that the standard signal analysis methods are ~ The aim of this work is to present methods to incorporate
better suited to extract the attributes of quasi-stationary speech siginformation from short-termFourier phase spectra in order to
nals like vocals, than those of non-stationary signals like plosives. improve speech recognition performance for mono (telephone)
In [8], investigations on the role of phase information for the recording conditions. Two analysis methods will be discussed:
human perception of intervocalic plosives have been presented. Inacoustic features based on interference, and acoustic features,
one of the experiments presented therein, stimuli are constructedvhich are purely based on phase information. These phase features
from vocal-consonant-vocal sequences, where the original short-were combined with standard MFCC features, and results were
term Fourier spectra are combined with different phase spectra forproduced with and without using additional linear discriminant
analysis window sizes between 10 and 30 ms. The results indicateanalysis (LDA) to choose the most relevant features. Experiments
that the short-term amplitude spectra cannot exclusively be speci-were performed on th8ieTill corpus for telephone line recorded
fied by plosives. Moreover, the authors conclude that the percep-German digit strings. Using LDA to combine purely phase based
tion of voicing for plosives relies strongly on phase information, features with MFCCs, we obtained significant improvements in
whereas the perception of the place of articulation is mainly de- word error rate of up to 25% relative to using MFCCs alone with
termined by amplitude information. It should be pointed out that the same overall number of parameters in the system.
these investigations were performed for analysis window sizes that ~ The rest of the paper is organized as follows. In Section 3,
are comparable to those used in speech recognition. acoustic features based on frequency selective interference are in-
Until today, considerable effort has been devoted to includ- troduced. In Section 4, purely phase based acoustic features are
ing knowledge on the human auditory system into signal analysis derived. Experiments will be presented in Section 5, followed by
methods for speech recognition, see e.g. [6]. As reported in [2], the conclusions in Section 6.



2. STANDARD SIGNAL ANALYSIS imply a time delay, which, as we suppose, will produce frequency
selective phase differences. More explicitly, our hypothesis is that
In this section, the standard short-term power spectrum based siga feedback loop corresponding to a particular frequency band leads
nal analysis component of our speech recognition system is de-to interference with the original signal within this frequency band.
scribed. First we perform a preemphasis of the sampled speech et 4, [k] and ¢ [k] be the amplitude and phase in frequency
signal. The preemphasized sampi#s] are obtained from the  channelk, obtained by a short-terfRourier transformation cen-
original samples|[n] by tered at timet after applying preemphasis and Hamming window
dn] = sfn] — s[n — 1] to the original speech samples. Suppose that the feedback loop in
’ frequency channd introduces a phase shift 6f. Moreover, let;
Every 10 ms, a Hamming window is apphed to preemphasized 25 be the number of SpeeCh Samples per time unit. The Superposition
ms speech segments. We compute the short-term spectrum by &f & signal at timet with amplitudex[k] and phasey; [k], and a
256—point fast Fourier transform together with zero padding. For Signal at timef — Ar with amplituder; - a-[k] and phase; - a- k]
further processing we use the frequency range from 0 to 4 kHz, then leads to the amplitudg, ;- a-[] of the superimposed signal,
since the signal is sampled with 8 kHz. Next, we compute 15 mel as givenin Eq. 1.

scale triangular filters [15], where the mel scale is defined by At this point, the questions remain how the time delay
as well as the phase shifi. are to be chosen. Since the details
/ of the above mentioned feedback loop are not completely known
Mel = 2595 lo 1 . . L . Lo
(f) Gio ( * 70002 these parameters will be optimized empirically so as to maximize

h iti f . For the time bei h
A filter bank is applied to the mel spectrum, in which each fil- Sﬁgzg s;\eif(io(?ig,l Kf gerTohrgw\a;gl(aee ofotrhe ’tv:in:r;zelzgg‘wv}/lletfe osea

ter has a triangular bandpass frequency response with bandwidthy, ,ihe 4 with a smoothing in the time domain. The characteris-

and spacing determin_ed by a COUStam mel frequency inter\_/al. Foriics of the smoothing including the time delay will be varied in the
each filter the output is the logarithm of the sum of the weighted corresponding experiments

spectral magnitudes. Due to overlapping filters, filter bank outputs
of adjacent filters are correlated. The covariance matrix of a vec-
tor consisting of the filter bank outputs has Toeplitz form. Thus 3.2. Smoothing
the filter bank outputs are decorrelated by a discrete cosine trans-

form [1]. M = 12 cepstrum coefficients,, are computed from L€t us define time intervalr; = i - A with¢ = —1,... 1

N = 15 filter bank outputsf,, by and a time step siz&¢. Based on the superposition amplitudes
& t—ar [k] we define the following smoothed superposition feature

N K]:
mm(n — 0.5) &
c Zl f cos( N ) m <
. . . . — 2
Subsequently, a cepstral mean normalization is carried out for &e[k] = T+ 1 i;j ity (k]

every utterance in order to account for different transfer functions.

In addition, the zeroth coefficient is shifted so that the maximum

value within every utterance is zero (energy normalization). Every IN our experiments, smoothed superposition features were calcu-
10 ms, a vectoy|t] consisting of\M/ = 12 cepstrum coefficients at Ia_med every 10ms. In comblnatlon with the value of the time step
time ¢ is computed. Each vectaft] is augmented by first—order §|zeAt, the vaIu.e ofl defines the range of the temporal smooth-
regression coefficients [13], and the second—order regression coiNd. The step size has been chosen tae= 2ms. The range
efficient of the energy. In this paper, a time differencetd- 10 has been set td = 2, which corresponds to a time window of
ms was used for the calculation of the regression coefficients. The2 - I - A = 8ms.

resulting acoustic vectat[t] is used for recognition.

3.3. Data Reduction

3. ACOUSTIC INTERFERENCE . . .
Subsequently, a mel filterbank identical to the case of the MFCCs

According to the relation between the short-term phase spectrumis applied, where each output is the logarithm of the sum of the
information and the human perception of intervocalic plosives [8], Weighted smoothed superposition features, cf. Section 2. Then,
the expectation is that the consideration of phase information for 15 smoothed superposition cepstral coefficients are computed by

speech recognition bears at least the potential to improve the dis-2Pplying a discrete cosine transform for the 15 outputs of the
crimination of plosives. smoothed superposition mel filterbank. Finally, the MFCCs based

on the amplitude, as presented in Section 2, are subtracted from
the corresponding smoothed superposition cepstral coefficients, in
order to enforce the phase contribution of these features. As for the
We recall the fact that there exists a feedback mechanism via thecase of standard MFCCs, a cepstral mean normalization is carried
outer hair cells in the cochlea [7, 10]. Such a feedback loop will out on the superposition cepstrum for every utterance.

3.1. Interference

&ri—arlk] = \/CE?W + @} arlk] = 224 [k] - 21— ar K] - cos <<Pt[/<f] — pr-arlk] — 27 - AT+ 9k>« )



4. ACOUSTIC PHASE FEATURES for each gender 214 distinct states plus one for silence,

Gaussian mixture emission distributions,
global pooled diagonal covariance matrix,

12 cepstral features plus first order regression coefficients
and the second order regression coefficient of the energy,

e optional LDA with three adjacent frames as input features.

In the case of interference, cf. Eq. (1), the only phase dependenc . . . - . -
is introduced by the cosine of the phase difference between twoerhe _basgllne recognizer applu_es_ML training using the Viterbi ap
proximation. A detailed description of the baseline system could

signals at timeg andt — Ar, including the phase shift; intro- b . . - A

. ) e found in [14]. In particular cases, we also applied discrimi-
duced by the feedback loop. Tr_“S defines our base phase featurenative training. The corresponding training system is described
Ct,t—ar [K] for frequency channet:

in [11, 12] and the papers cited therein.

In this section, we will present acoustic features, which are based
purely on phase information.

4.1. Phase Dependence of Interference

27k
Ct,t—ar (k] = cos (@t (k] = pe—arlk] = =7 -0+ AT+ 9k> : 5.1. Results for Superposition Features

In Table 5.1, the experimental results are summarized for the case
of single Gaussian densities using additional interference features
4.2. Phase Evolution in comparison to MFCCs only. Without using LDA, a relative im-
] ) ) ) provement in word error rate of about 7% is obtained using addi-
The evolution of phase over a restricted period of time could NOW tional interference features. On the other hand, with LDA, a mi-
be obtained by fixing a center tint@nd varying the time stefr. nor relative improvement of only 2.5% is obtained. Therefore, we
In order to obtain an estimate of the local phase change, we calcu-zgsyme that the improvement without LDA is mainly due to the
late the average of the absolute difference between the base phasgcreased acoustic feature dimension. All in all, although some
features for adjacent time steps;, A1 over arestricted period  jmprovement could be observed, the interference features do not
of time , i.e. fori = —I +1,...,I. The resulting feature, [k] perform as well as expected.
will be called smoothed phase feature in the rest of this paper:

il — 1< i 1 Table 1: Word error rates on tHgieTill test corpus obtained for
Gelk] = o Z |C’fvt+Aﬂ[ ] = Getrar s [ H : standard MFCCs and for additional interference features (IF), as
==t defined in Section 3. In these experiments, single Gaussian emis-

In our experiments, smoothed phase features were calculated eacfion distributions were used. In case of LDA, the number of fea-
10ms. In all cases, the range- I - At of the averaging has tures gives the output dimension of the LDA transformation.
been chosen to be 20ms. The time step sizes considered were _
N = 0.125ms (equivalent to 1 sample) with= 80, At = 2ms LDA | acoustic features error rateq 7o)

with 7 = 5, andAt = 10ms with] = 1. type | # del - ins |WER| SER
no | MFCC 25 1.07-0.78| 4.33] 10.87
+IF 37 0.70-0.82| 4.02] 10.43
yes | MFCC 40 0.67-0.52| 3.57| 9.19
Subsequently, a mel filterbank identical to the case of the MFCCs +IE 20 0.66-0.49| 3.48| 9.10
is applied, where each output is the logarithm of the sum of
the weighted smoothed phase features, cf. Section 2. Then, 15
smoothed phase cepstral coefficients are computed by applying a
discrete cosine transform for the 15 outputs of the smoothed phase>-2- Results for Phase Features

melfilterbank. As for the case of standard MFCCs, a cepstral mean|y Taple 5.2, the experimental results using additional phase fea-

normalization is carried out on the smoothed phase cepstral coefyyres in comparison to MFCCs only are summarized for the case

4.3. Data Reduction

ficients for every utterance. of Gaussian mixture densities. For the case without LDA, exper-
iments have only been performed using single Gaussian emission
5. EXPERIMENTAL RESULTS distributions. For a time step size 8§ = 10ms, a relative im-

provement in word error rate of more than 10% is obtained. On
Experiments were performed on tBeTillcorpus [11, 12] fortele-  the other hand, folt = 2ms and0.125ms, considerable dete-
phone line recorded German continuous digit strings. Siedill riorations in word error rate could be observed. Since the Gaus-
corpus consists of approximately 43k spoken digits in 13k sen- sian emission distributions are modeled with diagonal variances,
tences for both training and test. The number of female and malethis effect could be due to correlations introduced by the new fea-

speakers is balanced. tures. For the improvement in casedf = 10ms without LDA,

The baseline recognition system for t8&Till corpus is built it should again be noted that the feature dimension differs consid-
with whole word HMMs using continuous emission distributions. €rably and could partly be responsible for the improvement.
It is characterized as follows: With LDA, experiments have been performed for single Gaus-

sian densities, as well as mixture densities with empirically opti-

mized number of densities per mixture. Using LDA, the results for

e gender-dependent whole-word HMMs, with every two sub- the phase features are clear cut: for single densities and all choices
sequent states being identical of the time step size, relative improvements in word error rate of

e vocabulary of 11 German digits includingwad



at least 12% are obtained for comparable numbers of acoustic fea-

tures

after LDA. Using mixture densities, the results remains the

same: for time step sizes of both 2ms and 10ms relative improve-
ments of at least 13% are obtained in comparison to the best result
using standard MFCC features before LDA. Using ML training,
the best result ig4.51% word error rate. Using subsequebis-

crimi

native Training(DT) [12], this could even be improved to

1.28% word error rate, which compares ta67% word error rate
using MFCC features only.

Table 2: Word error rates on tH&ieTill test corpus obtained for

standard MFCCs and for additional phase features (PF), as defined
in Section 4. In these experiments, Gaussian mixture emission
distributions were used, where 'dns’ gives the average number of

densities per mixture. In case of LDA, the number of features is [®

the o

utput dimension of the LDA transformation.

LDA |dng train | acoust. feaf. AL error rateg%)
crit. | type | # |[ms] del-ins |WER| SER
no| 1| ML [MFCC| 25| — | 1.07-0.78| 4.33|10.87
+PF | 40 | 10 | 0.67-0.61| 3.85] 9.94
2 | 1.09-1.37| 5.68|14.55
1/8| 1.04-1.17| 5.08|12.85
yes| 1| ML |MFCC| 40 | — | 0.67-0.52| 3.57| 9.19
+PF | 40 | 10 | 0.65-0.32| 3.14| 8.31
2 | 0.50-0.40| 3.01| 8.04
1/8| 0.66-0.43| 3.14| 8.30
32| ML |[MFCC| 40 | — | 0.49-0.40| 1.78| 4.72
+PF | 40 | 10 | 0.39-0.31| 1.54| 4.16
2 | 0.33-0.35| 1.51| 4.20
DT {MFCC| 40 | 2 | 0.41-0.37| 1.67| 4.50
+PF| 40| 2 | 0.360.18 | 1.28| 355
6. CONCLUSIONS
In this work, new acoustic features for continuous speech recog-

nition based on the short-terFourier phase spectrum were in-
troduced for mono (telephone) recordings. The new phase based12]

featu

res were added to standdi@l Frequency Cepstral Coeffi-

cients(MFCC). Experiments were performed on SBieTillcorpus
for telephone line recorded German digit strings. Using standard

MFC

Cs and LDA gave a baseline word error rates of 1.78% us-

ing ML training and 1.67% using discriminative training. Using

additi
Fouri
rates

ional acoustic features, which are purely based on short-term
er phase, the baseline results could be improved to word error
of 1.51% absolute with ML training and finally 1.28% abso-

lute using discriminative training. In the case of discriminative

traini
term

ng the relative improvement in word error rate using short-
phase is 25% compared to MFCC features alone.
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