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ABSTRACT

In this work, new acoustic features for continuous speech recog-
nition based on the short-termFourier phase spectrum are intro-
duced for mono (telephone) recordings. The new phase based fea-
tures were combined with standardMel Frequency Cepstral Coeffi-
cients(MFCC), and results were produced with and without using
additional linear discriminant analysis (LDA) to choose the most
relevant features. Experiments were performed on theSieTill cor-
pus for telephone line recorded German digit strings. Using LDA
to combine purely phase based features with MFCCs, we obtained
improvements in word error rate of up to 25% relative to using
MFCCs alone with the same overall number of parameters in the
system.

1. INTRODUCTION

Acoustic features of today’s state-of-the-art automatic speech
recognition systems do not take into account phase spectrum infor-
mation. Currently, signal analysis methods for speech recognition
are mostly based on power spectra, where phase information has
been removed. Representative and widely used basic signal anal-
ysis methods for speech recognition are both theMel Frequency
Cepstral Coefficients(MFCC) [1], and, as an extension thePer-
ceptual Linear Prediction(PLP) coefficients [4]. For an extensive
discussion on signal analysis for speech recognition see e.g. [9]. It
is a well known fact that the standard signal analysis methods are
better suited to extract the attributes of quasi-stationary speech sig-
nals like vocals, than those of non-stationary signals like plosives.

In [8], investigations on the role of phase information for the
human perception of intervocalic plosives have been presented. In
one of the experiments presented therein, stimuli are constructed
from vocal-consonant-vocal sequences, where the original short-
term Fourier spectra are combined with different phase spectra for
analysis window sizes between 10 and 30 ms. The results indicate
that the short-term amplitude spectra cannot exclusively be speci-
fied by plosives. Moreover, the authors conclude that the percep-
tion of voicing for plosives relies strongly on phase information,
whereas the perception of the place of articulation is mainly de-
termined by amplitude information. It should be pointed out that
these investigations were performed for analysis window sizes that
are comparable to those used in speech recognition.

Until today, considerable effort has been devoted to includ-
ing knowledge on the human auditory system into signal analysis
methods for speech recognition, see e.g. [6]. As reported in [2],

such approaches usually are concentrated on modeling the ascend-
ing pathway of the auditory periphery. In order to also incorporate
efferent effects and the descending pathway in the auditory system,
a feedback control model is introduced in [2]. The model tries to
represent an efferent-induced depression mechanism which leads
to considerable improvements in speech recognition performance
under noisy conditions. After performing further experiments with
phoneme recognition [3], the authors conclude that the improve-
ments introduced by the feedback mechanism are mainly due to
an improved discrimination of consonants, such as fricatives, af-
fricates and plosives.

In neurobiological experiments it could be shown that an effer-
ent mechanism based on the outer hair cells exists in the auditory
system, which both leads to negative as well as positive mechani-
cal feedback in the cochlea [7, 10].

This paper does not try to investigate or use detailed models
of the human auditory system. Recently, it has even been ques-
tioned whether speech recognition really has benefitted from de-
tailed simulation of properties of the human auditory system [5].
Rather than simulating physiological processing, we will try to
point out functionalprinciples, which introduce new information
into speech recognition. These functional principles will be used to
build models to compute acoustic features, which both reflect the
structure represented by these principles and which comply with
the requirements of an statistical pattern recognition system.

The aim of this work is to present methods to incorporate
information from short-termFourier phase spectra in order to
improve speech recognition performance for mono (telephone)
recording conditions. Two analysis methods will be discussed:
acoustic features based on interference, and acoustic features,
which are purely based on phase information. These phase features
were combined with standard MFCC features, and results were
produced with and without using additional linear discriminant
analysis (LDA) to choose the most relevant features. Experiments
were performed on theSieTill corpus for telephone line recorded
German digit strings. Using LDA to combine purely phase based
features with MFCCs, we obtained significant improvements in
word error rate of up to 25% relative to using MFCCs alone with
the same overall number of parameters in the system.

The rest of the paper is organized as follows. In Section 3,
acoustic features based on frequency selective interference are in-
troduced. In Section 4, purely phase based acoustic features are
derived. Experiments will be presented in Section 5, followed by
the conclusions in Section 6.



2. STANDARD SIGNAL ANALYSIS

In this section, the standard short-term power spectrum based sig-
nal analysis component of our speech recognition system is de-
scribed. First we perform a preemphasis of the sampled speech
signal. The preemphasized samplesd[n] are obtained from the
original sampless[n] by

d[n] = s[n]− s[n− 1].

Every 10 ms, a Hamming window is applied to preemphasized 25
ms speech segments. We compute the short-term spectrum by a
256–point fast Fourier transform together with zero padding. For
further processing we use the frequency range from 0 to 4 kHz,
since the signal is sampled with 8 kHz. Next, we compute 15 mel
scale triangular filters [15], where the mel scale is defined by

Mel(f) = 2595 log10
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A filter bank is applied to the mel spectrum, in which each fil-
ter has a triangular bandpass frequency response with bandwidth
and spacing determined by a constant mel frequency interval. For
each filter the output is the logarithm of the sum of the weighted
spectral magnitudes. Due to overlapping filters, filter bank outputs
of adjacent filters are correlated. The covariance matrix of a vec-
tor consisting of the filter bank outputs has Toeplitz form. Thus
the filter bank outputs are decorrelated by a discrete cosine trans-
form [1]. M = 12 cepstrum coefficientscm are computed from
N = 15 filter bank outputsfn by

cm =
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Subsequently, a cepstral mean normalization is carried out for
every utterance in order to account for different transfer functions.
In addition, the zeroth coefficient is shifted so that the maximum
value within every utterance is zero (energy normalization). Every
10 ms, a vectory[t] consisting ofM = 12 cepstrum coefficients at
time t is computed. Each vectory[t] is augmented by first–order
regression coefficients [13], and the second–order regression co-
efficient of the energy. In this paper, a time difference of±3 · 10
ms was used for the calculation of the regression coefficients. The
resulting acoustic vectorx[t] is used for recognition.

3. ACOUSTIC INTERFERENCE

According to the relation between the short-term phase spectrum
information and the human perception of intervocalic plosives [8],
the expectation is that the consideration of phase information for
speech recognition bears at least the potential to improve the dis-
crimination of plosives.

3.1. Interference

We recall the fact that there exists a feedback mechanism via the
outer hair cells in the cochlea [7, 10]. Such a feedback loop will

imply a time delay, which, as we suppose, will produce frequency
selective phase differences. More explicitly, our hypothesis is that
a feedback loop corresponding to a particular frequency band leads
to interference with the original signal within this frequency band.

Let xt[k] andϕt[k] be the amplitude and phase in frequency
channelk, obtained by a short-termFourier transformation cen-
tered at timet after applying preemphasis and Hamming window
to the original speech samples. Suppose that the feedback loop in
frequency channelk introduces a phase shift ofθk. Moreover, letη
be the number of speech samples per time unit. The superposition
of a signal at timet with amplitudext[k] and phaseϕt[k], and a
signal at timet−∆τ with amplitudext−∆τ [k] and phaseϕt−∆τ [k]
then leads to the amplitudeξt,t−∆τ [k] of the superimposed signal,
as given in Eq. 1.

At this point, the questions remain how the time delay∆τ
as well as the phase shiftθk are to be chosen. Since the details
of the above mentioned feedback loop are not completely known,
these parameters will be optimized empirically so as to maximize
speech recognition performance. For the time being, we chose a
phase shift ofθk = 0. The value of the time delay∆τ will be
combined with a smoothing in the time domain. The characteris-
tics of the smoothing including the time delay will be varied in the
corresponding experiments.

3.2. Smoothing

Let us define time intervals∆τi = i · ∆t with i = −I, . . . , I
and a time step size∆t. Based on the superposition amplitudes
ξt,t−∆τ [k] we define the following smoothed superposition feature
ξt[k]:

ξt[k] =
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2I + 1
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In our experiments, smoothed superposition features were calcu-
lated every 10ms. In combination with the value of the time step
size∆t, the value ofI defines the range of the temporal smooth-
ing. The step size has been chosen to be∆t = 2ms. The range
has been set toI = 2, which corresponds to a time window of
2 · I ·∆t = 8ms.

3.3. Data Reduction

Subsequently, a mel filterbank identical to the case of the MFCCs
is applied, where each output is the logarithm of the sum of the
weighted smoothed superposition features, cf. Section 2. Then,
15 smoothed superposition cepstral coefficients are computed by
applying a discrete cosine transform for the 15 outputs of the
smoothed superposition mel filterbank. Finally, the MFCCs based
on the amplitude, as presented in Section 2, are subtracted from
the corresponding smoothed superposition cepstral coefficients, in
order to enforce the phase contribution of these features. As for the
case of standard MFCCs, a cepstral mean normalization is carried
out on the superposition cepstrum for every utterance.

ξt,t−∆τ [k] =
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4. ACOUSTIC PHASE FEATURES

In this section, we will present acoustic features, which are based
purely on phase information.

4.1. Phase Dependence of Interference

In the case of interference, cf. Eq. (1), the only phase dependence
is introduced by the cosine of the phase difference between two
signals at timest andt − ∆τ , including the phase shiftθk intro-
duced by the feedback loop. This defines our base phase feature
ζt,t−∆τ [k] for frequency channelk:

ζt,t−∆τ [k] = cos
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4.2. Phase Evolution

The evolution of phase over a restricted period of time could now
be obtained by fixing a center timet and varying the time step∆τ .
In order to obtain an estimate of the local phase change, we calcu-
late the average of the absolute difference between the base phase
features for adjacent time steps∆τi, ∆τi−1 over a restricted period
of time , i.e. fori = −I + 1, . . . , I. The resulting featureζt[k]
will be called smoothed phase feature in the rest of this paper:

ζt[k] =
1

2I
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In our experiments, smoothed phase features were calculated each
10ms. In all cases, the range2 · I · ∆t of the averaging has
been chosen to be 20ms. The time step sizes considered were
∆t = 0.125ms (equivalent to 1 sample) withI = 80, ∆t = 2ms
with I = 5, and∆t = 10ms withI = 1.

4.3. Data Reduction

Subsequently, a mel filterbank identical to the case of the MFCCs
is applied, where each output is the logarithm of the sum of
the weighted smoothed phase features, cf. Section 2. Then, 15
smoothed phase cepstral coefficients are computed by applying a
discrete cosine transform for the 15 outputs of the smoothed phase
mel filterbank. As for the case of standard MFCCs, a cepstral mean
normalization is carried out on the smoothed phase cepstral coef-
ficients for every utterance.

5. EXPERIMENTAL RESULTS

Experiments were performed on theSieTillcorpus [11, 12] for tele-
phone line recorded German continuous digit strings. TheSieTill
corpus consists of approximately 43k spoken digits in 13k sen-
tences for both training and test. The number of female and male
speakers is balanced.

The baseline recognition system for theSieTill corpus is built
with whole word HMMs using continuous emission distributions.
It is characterized as follows:

• vocabulary of 11 German digits including ’zwo’

• gender-dependent whole-word HMMs, with every two sub-
sequent states being identical

• for each gender 214 distinct states plus one for silence,

• Gaussian mixture emission distributions,

• global pooled diagonal covariance matrix,

• 12 cepstral features plus first order regression coefficients
and the second order regression coefficient of the energy,

• optional LDA with three adjacent frames as input features.

The baseline recognizer applies ML training using the Viterbi ap-
proximation. A detailed description of the baseline system could
be found in [14]. In particular cases, we also applied discrimi-
native training. The corresponding training system is described
in [11, 12] and the papers cited therein.

5.1. Results for Superposition Features

In Table 5.1, the experimental results are summarized for the case
of single Gaussian densities using additional interference features
in comparison to MFCCs only. Without using LDA, a relative im-
provement in word error rate of about 7% is obtained using addi-
tional interference features. On the other hand, with LDA, a mi-
nor relative improvement of only 2.5% is obtained. Therefore, we
assume that the improvement without LDA is mainly due to the
increased acoustic feature dimension. All in all, although some
improvement could be observed, the interference features do not
perform as well as expected.

Table 1: Word error rates on theSieTill test corpus obtained for
standard MFCCs and for additional interference features (IF), as
defined in Section 3. In these experiments, single Gaussian emis-
sion distributions were used. In case of LDA, the number of fea-
tures gives the output dimension of the LDA transformation.

LDA acoustic features error rates[%]
type # del - ins WER SER

no MFCC 25 1.07-0.78 4.33 10.87
+IF 37 0.70-0.82 4.02 10.43

yes MFCC 40 0.67-0.52 3.57 9.19
+IF 40 0.66-0.49 3.48 9.10

5.2. Results for Phase Features

In Table 5.2, the experimental results using additional phase fea-
tures in comparison to MFCCs only are summarized for the case
of Gaussian mixture densities. For the case without LDA, exper-
iments have only been performed using single Gaussian emission
distributions. For a time step size of∆t = 10ms, a relative im-
provement in word error rate of more than 10% is obtained. On
the other hand, for∆t = 2ms and0.125ms, considerable dete-
riorations in word error rate could be observed. Since the Gaus-
sian emission distributions are modeled with diagonal variances,
this effect could be due to correlations introduced by the new fea-
tures. For the improvement in case of∆t = 10ms without LDA,
it should again be noted that the feature dimension differs consid-
erably and could partly be responsible for the improvement.

With LDA, experiments have been performed for single Gaus-
sian densities, as well as mixture densities with empirically opti-
mized number of densities per mixture. Using LDA, the results for
the phase features are clear cut: for single densities and all choices
of the time step size, relative improvements in word error rate of



at least 12% are obtained for comparable numbers of acoustic fea-
tures after LDA. Using mixture densities, the results remains the
same: for time step sizes of both 2ms and 10ms relative improve-
ments of at least 13% are obtained in comparison to the best result
using standard MFCC features before LDA. Using ML training,
the best result is1.51% word error rate. Using subsequentDis-
criminative Training(DT) [12], this could even be improved to
1.28% word error rate, which compares to1.67% word error rate
using MFCC features only.

Table 2: Word error rates on theSieTill test corpus obtained for
standard MFCCs and for additional phase features (PF), as defined
in Section 4. In these experiments, Gaussian mixture emission
distributions were used, where ’dns’ gives the average number of
densities per mixture. In case of LDA, the number of features is
the output dimension of the LDA transformation.

LDA dns train acoust. feat. ∆t error rates[%]
crit. type # [ms] del - ins WER SER

no 1 ML MFCC 25 – 1.07-0.78 4.33 10.87
+PF 40 10 0.67-0.61 3.85 9.94

2 1.09-1.37 5.68 14.55
1/8 1.04-1.17 5.08 12.85

yes 1 ML MFCC 40 – 0.67-0.52 3.57 9.19
+PF 40 10 0.65-0.32 3.14 8.31

2 0.50-0.40 3.01 8.04
1/8 0.66-0.43 3.14 8.30

32 ML MFCC 40 – 0.49-0.40 1.78 4.72
+PF 40 10 0.39-0.31 1.54 4.16

2 0.33-0.35 1.51 4.20
DT MFCC 40 2 0.41-0.37 1.67 4.50

+PF 40 2 0.36-0.18 1.28 3.55

6. CONCLUSIONS

In this work, new acoustic features for continuous speech recog-
nition based on the short-termFourier phase spectrum were in-
troduced for mono (telephone) recordings. The new phase based
features were added to standardMel Frequency Cepstral Coeffi-
cients(MFCC). Experiments were performed on theSieTillcorpus
for telephone line recorded German digit strings. Using standard
MFCCs and LDA gave a baseline word error rates of 1.78% us-
ing ML training and 1.67% using discriminative training. Using
additional acoustic features, which are purely based on short-term
Fourier phase, the baseline results could be improved to word error
rates of 1.51% absolute with ML training and finally 1.28% abso-
lute using discriminative training. In the case of discriminative
training the relative improvement in word error rate using short-
term phase is 25% compared to MFCC features alone.
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