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ABSTRACT

In this paper, we develop a new method for weighted
least squares 2D linear-phase FIR filter design. It poses the
problem of filter design as the problem of projecting the de-
sired frequency response onto the subspace spanned by an
appropriate orthonormal basis. We show how to compute
the orthonormal basis efficiently in the cases of quadrantally-
symmetric filter design and centro-symmetric filter design.
The design examples show that the proposed method is fast-
er than a conventional weighted least squares filter design
me-thod. Also, the amount of storage required to compute
the filter coefficients is greatly reduced.

1. INTRODUCTION

The least-squares design of two-dimensional filters has been
studied in a number of references [2]-[5]. This kind of filter
design has been studied in [2] for quadrantally-symmetric
filters and in [3] and for centro-symmetric filters. Although
these methods are extremely fast, they require the specifi-
cation of a desired frequency response over the whole fre-
quency grid (including the transition band), and do not al-
low for different weights to be specified on the passband
and the stopband. On the other hand, the general method of
weighted least squares filter design is very simple and has
been well-established [6]. In theory, this method could be
applied to the design of weighted least squares filters in two
dimensions. However, in practice, the computational com-
plexity can be overwhelming for the two-dimensional case.
Moreover, as the filter order increases numerical problems
may arise.

In this paper, the aim is to extend the method in [1] to the
two dimensional case, both for quadrantally-symmetric fil-
ter design and for centro-symmetric filter design. By using
this technique, the computational complexity of the general
weighted least squares design method is greatly reduced.

2. PRELIMINARY DEFINITIONS

The frequency response of a (2M + 1)× (2N + 1) 2D FIR
filter is given by

H(φ, ψ) =
N∑

n=−N

M∑
m=−M

h(m,n)e−jmφe−jnψ. (1)

In order to obtain a zero-phase filter the following symmetry
is usually assumed

h(m,n) = h(−m,−n). (2)

The filters obtained in this way are known as centro-symme-
tric filters. When the symmetry of (2) holds, the frequency
response of (1) can be written as follows

H(φ, ψ) =

[
N∑

n=−N

M∑
m=1

2h(m,n) cos(mφ + nψ)

]

+ h(0, 0) +
N∑
n=1

2h(0, n) cos(nψ). (3)

This last equation can also be written as

H(φ, ψ) =
N∑
n=0

N∑
m=0

amn cos(mφ) cos(nψ)+

+
N∑
n=1

M∑
m=1

bmn sin(mφ) sin(nψ). (4)

The basic idea of the method proposed in this paper is to
project the desired frequency response onto the subspace
spanned by an appropriate basis. From (4), the basis of the
filter subspace for the centro-symmetric case is
{{{cos(mφ) cos(nψ)}Mm=0}Nn=0,
{{sin(mφ) sin(nψ)}Mm=1}Nn=1}.

Similarly, the frequency response for a quadrantally-sy-
mmetric filter can be expressed as

H(φ, ψ) =
N∑
n=0

M∑
m=0

amn cos(mφ) cos(nψ). (5)



From (5), the basis of the filter subspace in this case is given
by {{{cos(mφ) cos(nψ)}Mm=0}Nn=0}.

The dot product is defined in the following way

〈f(φ, ψ), g(φ, ψ)〉 =

1
LφLψ

Lφ−1∑
i=0

Lψ−1∑
j=0

W (φi, ψj)f(φi, ψj)g(φi, ψj)(6)

where Lφ is the number of frequency points along the φ di-
rection and Lψ is the number of frequency points along the
ψ direction. The optimal filter coefficients according to the
weighted least squares criterion are obtained by projecting
the desired frequency response onto the subspace spanned
by the appropriate basis and then taking an inverse FFT.
Normalized functions are denoted using a bar as in f̄ .

3. QUADRANTALLY-SYMMETRIC FILTERS

Using Chebyshev polynomials, we can write

cos(mφ) cos(nψ) = (
m∑
k=0

ak cosk φ)(
n∑
k=0

bk cosk ψ). (7)

Having this in mind, we now present the following pro-
cedure to compute the orthonormal basis for the quadrantally-
symmetric case.

Algorithm 1 Consider the set of functions
{{f̄mn(φ, ψ)}Mm=0}Nn=0, defined in the following recursive
way:

f0,0(φ, ψ) = 1. (8)

f1,0(φ, ψ) = cos(φ) − µ
(f)
100f̄0,0(φ, ψ). (9)

For m = 2, . . . ,M ,

fm,0(φ, ψ) = cos(φ)f̄m−1,0 −
m−1∑
i=m−2

µ
(f)
m0if̄i,0. (10)

For m = 0, . . . ,M ,

fm,1(φ, ψ) = (cosψ)f̄m,0(φ, ψ) −

−
M∑
i=0

α
(f)
mnif̄i,0 −

m−1∑
i=0

µ
(f)
mnif̄i,n. (11)

For n = 2, . . . , N,
For m = 0, . . . ,M,

fm,n(φ, ψ) = cos(ψ)f̄m,n−1 −
M∑
i=0

α
(f)
mnif̄i,n−1 −

−
M∑
i=m

β
(f)
mnif̄i,n−2 −

m−1∑
i=0

µ
(f)
mnif̄i,n (12)

end.
end.

The coefficients α, β and µ in the previous equations are
the dot-products between the first term in the right hand side
of the equation and the factor at the right of the coefficient.
For example, in (12): µ(f)

mni = 〈cos(ψ)f̄m,n−1, f̄i,n〉 for i =
0, . . . ,m − 1. Care should be taken in implementing the
previous algorithm in order to avoid computing the same
dot-product more that once.
Theorem 1 The set of functions {{{f̄mn(φ, ψ)}Mm=0}Nn=0}
computed using Algorithm 1 is an orthonormal basis that
spans the same space that the set of functions
{{{cos(mφ) cos(nψ)}Mm=0}Nn=0} does.

The proof of this theorem can be found in [7].
Algorithm 1 allows us to compute the orthonormal ba-

sis efficiently. Once the orthonormal basis has been deter-
mined, the actual frequency response can be obtained from

H(φ, ψ) =
M∑
m=0

N∑
n=0

〈D(φ, ψ), f̄mn(φ, ψ)〉f̄mn(φ, ψ).

(13)
Once the frequency response has been computed, the fil-

ter coefficients can be recovered efficiently using an inverse
2D FFT.

4. CENTRO-SYMMETRIC FILTERS

Using again Chebyshev polynomials, sin(mφ) sin(nψ) can
be written as

sin(mφ) sin(nψ) = sinφ(
m−1∑
k=0

ck cosk φ) ·

· sinψ(
m−1∑
k=0

dk cosk ψ). (14)

We now present the following procedure to compute the
orthonormal basis for the centro-symmetric case.

Algorithm 2 Consider the sets of functions
{{f̄mn(φ, ψ)}Mm=0}Nn=0 , {{ḡmn(φ, ψ)}Mm=1}Nn=1, defined in
the following recursive way:

f0,0(φ, ψ) = 1. (15)

f1,0(φ, ψ) = cos(φ) − µ
(f)
100f̄0,0(φ, ψ). (16)

For m = 2, . . . ,M

fm,0(φ, ψ) = cos(φ)f̄m−1,0 −
m−1∑
i=m−2

µ
(f)
m0if̄i,0. (17)

For m = 1, . . . ,M

gm,1(φ, ψ) = sin(mφ) sin(ψ)−
M∑
i=0

α
(g)
m1if̄i,0−

m−1∑
i=1

ν
(g)
m1iḡi,1.

(18)



For m = 0, . . . ,M

fm,1(φ, ψ) = (cosψ)f̄m,0(φ, ψ) −
M∑
i=0

α
(f)
m1if̄i,0 −

−
M∑
i=1

γ
(f)
m1iḡi,1 −

m−1∑
i=0

µ
(f)
m1if̄i,1. (19)

For m = 1, . . . ,M

gm,2(φ, ψ) = (cosψ)ḡm,1 −
M∑
i=0

α
(g)
m2if̄i,0 −

M∑
i=0

µ
(g)
m2if̄i,1 −

M∑
i=1

γ
(g)
m2iḡm,1 −

m−1∑
i=1

ν
(g)
m2iḡi,2. (20)

For n = 2, . . . , N ,
For m = 0, . . . ,M ,

fm,n(φ, ψ) = cos(ψ)f̄m,n−1 −
M∑
i=0

α
(f)
mnif̄i,n−1 −

−
M∑
i=m

β
(f)
mnif̄i,n−2 −

M∑
i=1

γ
(f)
mniḡi,n −

−
M∑
i=1

δ
(f)
mniḡi,n−1 −

m−1∑
i=0

µ
(f)
mnif̄i,n (21)

end.
If n < N then

For m = 1, . . . ,M ,

gm,n+1(φ, ψ) = (cosψ)ḡm,n −
M∑
i=0

α
(g)
m,n+1,if̄i,n−1 −

−
M∑
i=1

γ
(g)
m,n+1,iḡi,n −

M∑
i=m

δ
(g)
m,n+1,iḡi,n−1 −

−
M∑
i=0

µ
(g)
m,n+1,if̄i,n −

m−1∑
i=1

ν
(g)
m,n+1,iḡi,n+1 (22)

end.
end.

end.

Theorem 2 The set of functions

{{{f̄mn(φ, ψ)}Mm=0}Nn=0, {{ḡmn(φ, ψ)}Mm=1}Nn=1}

computed using Algorithm 2 is an orthonormal basis that
spans the same space that the set of functions
{{{cos(mφ) cos(nψ)}Mm=0}Nn=0,
{{sin(mφ) sin(nψ)}Mm=1}Nn=1} does.

Proof: The proof of this theorem can be found in [7].

Again, this theorem allows us to compute the orthonor-
mal basis for the centro-symmetric case efficiently. Once
the orthonormal basis has been determined, the actual fre-
quency response can be obtained from

H(φ, ψ) =
M∑
m=0

N∑
n=0

〈D(φ, ψ), f̄mn(φ, ψ)〉f̄mn(φ, ψ) +

M∑
m=1

N∑
n=1

〈D(φ, ψ), ḡmn(φ, ψ)〉ḡmn(φ, ψ). (23)

The filter coefficients can be recovered from the fre-
quency response using an inverse 2D FFT.

5. EXAMPLES

In order to demonstrate the applicability of the proposed
algorithm, a number of filters have been designed for the
quadrantally-symmetric case and for the centro-symmetric
case as well.

Example 1: In the first example, we design a quadran-
tally-symmetric filter using Algorithm 1. The desired fre-
quency response has rhombic shape. In this case, the weight-
ing function is 5 over the passband and 1 over the stopband.
The number of floating point operations required to com-
pute the filter coefficients and the TSE for different filter
sizes is depicted in table 1. In every case the number of fre-
quency points was Lφ = Lψ = 64 from 0 to π. The actual
frequency response for M = N = 14 is shown in figure 1.
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Figure 1: Frequency response for Example 1

Example 2: In the second example, we design a centro-
symmetric filter using Algorithm 2. The passband has an
elliptic shape rotated 30o with respect to the horizontal axis.
The major axis of the passband edge is 0.4π and the minor



Table 1: Number of floating point operations for Example 1

Filter ON basis General WLS TSE
size method method

M = N = 13 74770967 168705314 0.6095
M = N = 14 91552909 220894869 0.4291
M = N = 15 110673299 284598674 0.2875
M = N = 16 132284627 361464751 0.1946

Table 2: Number of floating point operations for Example 2

Filter ON basis General WLS TSE
size method method

M = N = 12 396318891 812961640 1.3078
M = N = 13 498552642 1.1008× 109 0.8450
M = N = 14 617036783 1.4603× 109 0.6016
M = N = 15 752972466 1.9029× 109 0.4505

axis is 0.3π. The major axis of the stopband edge is 0.5π
and the minor axis is 0.375π. In this case, the weighting
function is 1 over the passband and 1 over the stopband. The
number of floating point operations required to compute the
filter coefficients and the TSE for different filter sizes is de-
picted in table 2. In every case the number of frequency
points was Lφ = 64 from 0 to π and Lψ = 128 from −π
to π. The actual frequency response for M = N = 14 is
shown in figure 2.
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Figure 2: Frequency response for Example 2

6. CONCLUSIONS

In this paper, a fast algorithm for weighted least squares
2D linear-phase FIR filter design has been presented for
both quadrantally-symmetric and centro-symmetric filters.
It presents the problem of filter design as the problem of
projecting a desired frequency response onto an appropri-
ate subspace. An efficient way to compute an orthonormal
basis that spans that subspace has been developed. By do-
ing this, the usual matrix inversion involved in least squares
filter design and the computational burden associated with
it are avoided. Moreover, the special structure of the co-
sine basis allows for a substantial reduction of the amount of
computation required to get the orthonormal basis. The ap-
plicability of the proposed algorithm has been demonstrated
through examples.
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