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ABSTRACT

In this paper, we develop a new method for weighted
least squares 2D linear-phase FIR filter design. It poses the
problem of filter design as the problem of projecting the de-
sired frequency response onto the subspace spanned by an
appropriate orthonormal basis. We show how to compute
the orthonormal basis efficiently in the cases of quadrantally-
symmetric filter design and centro-symmetric filter design.
The design examples show that the proposed method is fast-
er than a conventional weighted least squares filter design
me-thod. Also, the amount of storage required to compute
thefilter coefficientsis greatly reduced.

1. INTRODUCTION

Theleast-squares design of two-dimensional filters has been
studied in anumber of references[2]-[5]. Thiskind of filter
design has been studied in [2] for quadrantally-symmetric
filtersand in [3] and for centro-symmetric filters. Although
these methods are extremely fast, they require the specifi-
cation of a desired frequency response over the whole fre-
guency grid (including the transition band), and do not al-
low for different weights to be specified on the passband
and the stopband. On the other hand, the general method of
weighted least squares filter design is very simple and has
been well-established [6]. In theory, this method could be
applied to the design of weighted least squaresfiltersin two
dimensions. However, in practice, the computational com-
plexity can be overwhelming for the two-dimensional case.
Moreover, as the filter order increases numerical problems
may arise.

Inthis paper, theaimisto extend the method in [1] to the
two dimensional case, both for quadrantally-symmetric fil -
ter design and for centro-symmetric filter design. By using
this technique, the computational complexity of the general
weighted least squares design method is greatly reduced.

2. PRELIMINARY DEFINITIONS

Thefreguency responseof a(2M +1) x (2N +1) 2D FIR
filter is given by

N M
H(¢,¢)= Z Z h(m,n)e_jm¢e—jm/{ 1)

n=—Nm=—M

In order to obtain azero-phasefilter thefollowing symmetry
is usually assumed

h(m,n) = h(—m, —n). 2

Thefilters obtained in thisway are known as centro-symme-
tric filters. When the symmetry of (2) holds, the frequency
response of (1) can be written as follows

N M
H(p,0) = Z Z 2h(m, n) cos(me + nw)

n=—N m=1
N
+ h(0,0) + Z 2h(0, n) cos(nw). (3)
n=1

This last equation can also be written as

N N

H($,¥) = > mn cos(me) cos(nih)+

n=0m=0

N M
+ Z Z bmn sin(ma) sin(na). 4

n=1m=1

The basic idea of the method proposed in this paper is to
project the desired frequency response onto the subspace
spanned by an appropriate basis. From (4), the basis of the
filter subspace for the centro-symmetric case is
{{{cos(me) cos(ny)) }M_ }N,
{{sin(me) sin(ny) 1}l ).

Similarly, the frequency response for a quadrantally-sy-
mmetric filter can be expressed as

N M
H($,%) =Y > amn cos(me) cos(nip).  (5)

n=0m=0



From (5), the basis of thefi Iter subspaceinthiscaseisgiven

by {{{cos(m¢) cos(ny)} o }n"0 -
The dot product is defi ned in the following way

<f(¢7w>7 (¢,0)) =
Ly—1Ly—1
Lm Z; ;} (6, 95) f (D0 05)9(¢1,10) (B)

where L4 is the number of frequency points along the ¢ di-
rection and L., is the number of frequency points along the
1 direction. The optimal filter coefficients according to the
weighted least squares criterion are obtained by projecting
the desired frequency response onto the subspace spanned
by the appropriate basis and then taking an inverse FFT.
Normalized functions are denoted using a bar asin f.

3. QUADRANTALLY-SYMMETRIC FILTERS

Using Chebyshev polynomials, we can write

Zakcos o)( Zbkcos ).

Having thisin mind, we now present the following pro-
cedureto computethe orthonormal basisfor the quadrantally-
symmetric case.

cos(ma) cos(ny) =

Algorithm 1 Consider the set of functions
{H{ fon(d, )} M_ 3N, defined in the following recursive
way:
Joold, ) =1. )
fro(9,0) = cos(6) = pitofoo(é. ). (9)
Form=2...,M,

m—1
)fm—l,O_ Z Mmozfz()

fm,0(¢, ) = cos(¢ (10)
i=m—2
Form=0,..., M,
fm,1(¢a 1/1) = (COS w)f_m,O(QSa 1/1) -
M m—1
- Z agr{,?tifiﬁ - Z M%r)nﬁ,n- (11)
1=0 =0

Forn=2,..., N,
Form=0,..., M,

M
fm,n(¢7¢) = Cos(w)fm,n—l - Za;{%iﬂ,n—l -

=0
M B m—1 B
S 8D Fonee =S i (12)
i=m =0
end.
end.

The coefficients o, 5 and 1 in the previous equationsare
the dot-products between thefirst termin the right hand side
of the equation and the factor at the right of the coefficient.

For example, in (12): 1Y) = (cos(¥)) frnm—1, fin) fOri =
0,...,m — 1. Care should be taken in implementing the
previous algorithm in order to avoid computing the same
dot-product more that once.
Theorem 1 The set of functions {{{ fimn (¢, ¥)}M_ 2,
computed using Algorithm 1 is an orthonormal basis that
spans the same space that the set of functions
{{{cos(me) cos(ni)} Mo }N_} does.
The proof of thlstheorem can befoundin [7].
Algorithm 1 allows us to compute the orthonormal ba-
sis efficiently. Once the orthonormal basis has been deter-
mined, the actual frequency response can be obtained from

M N

D> (DG, Frn(6,0)) Fnn (6, ).

m=0n=0 (13)

Oncethefrequency response has been computed, thefil-

ter coefficients can be recovered efficiently using an inverse
2D FFT.

H(¢,¢) =

4. CENTRO-SYMMETRIC FILTERS

Using again Chebyshev polynomials, sin(me) sin(n) can
be written as

m—1

sin ¢( Z cy cost @) -

sin(ma) sin(ny) =

m—1

-sin ) ( Z dy cos® ). (14)

k=0
We now present the following procedureto computethe
orthonormal basis for the centro-symmetric case.

Algorithm 2 Consider the sets of functions

{{fmn(¢ 1/})}”1 O}n —0 > U Imn (0, 1/)) 1}n 1, definedin

the following recursive way:

foo(é, ) = 1. (15)
Fro(é,v) = cos(9) — pifhfoo(d,v).  (16)
Form=2...,M
m—1
fm,o(¢7¢) = COS fm 1,0 — Z /-lmoz i,0- (17)

i=m—2

Form=1,...,M

Z a;g)hfz 0— Z thgz 1-

(19

G (6,49) = sin(me) sin(y



Form=0,...,.M

M
Funa(0.9) = (cost)fmo(¢0) — > all) fio —
1=0

M m—1
- Z’Yir{fi!?i,l - Z W) Fore (19)
i=1 i=0

Form=1,...,M
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Zﬂgg%ifi,l Z'Vfr?%igm,l - Z Vfr?%igi,? (20)
i=0 i=1 i=1

Forn=2,... N,
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=0
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= B Fima = Y AT —
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=1 =0

end.
If n < N then
Form=1,..., M,

M
gm,nJrl(d)vw) = (COS1Z))§m,n - Zagg?n_;_l?if_'i,nfl -
=0

M M
- ng,)nJrl,igi,n - Z 5,(,!5})n+17igi,n—1 -
i=1

i=m
M m—1
- Zugz,)nJrl,ifivn - Z Vg,)n+1,i§i7n+1 (22)
=0

i=1

end.
end.
end.

Theorem 2 The set of functions

{{{ Frn (0, 0) =0 100y {{Gmn (&, ) b= 10}

computed using Algorithm 2 is an orthonormal basis that
spans the same space that the set of functions
{{{cos(me) cos(n)) } o} 2o,
{{sin(m¢) sin(nv) };7_, }7_, } does.
Proof: The proof of this theorem can befoundin [7].

Again, this theorem allows us to compute the orthonor-
mal basis for the centro-symmetric case efficiently. Once
the orthonormal basis has been determined, the actual fre-
guency response can be obtained from

H(¢,v)

M N
SN UDG ), Fan (6,9)) Frun (6,0) +
0n=0

M N
DD AD(G ) Goan (6, 9)) G (6, 90). (23)
m=1n=1

The filter coefficients can be recovered from the fre-
guency response using an inverse 2D FFT.

5. EXAMPLES

In order to demonstrate the applicability of the proposed
algorithm, a number of filters have been designed for the
quadrantally-symmetric case and for the centro-symmetric
case aswell.

Example 1. In the first example, we design a quadran-
tally-symmetric filter using Algorithm 1. The desired fre-
quency response has rhombic shape. Inthiscase, theweight-
ing functionis 5 over the passhand and 1 over the stopband.
The number of floating point operations required to com-
pute the filter coefficients and the TSE for different filter
sizesisdepicted in table 1. In every case the number of fre-
quency pointswas Ly = L,, = 64 from 0 to 7. The actual
frequency responsefor M = N = 14 isshownin figure 1.
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Figure 1. Frequency response for Example 1

Example 2: In the second example, we design a centro-
symmetric filter using Algorithm 2. The passband has an
elliptic shaperotated 30° with respect to the horizontal axis.
The major axis of the passband edge is 0.47 and the minor



Table 1: Number of floating point operationsfor Example 1

Filter ON basis | General WLS | TSE
size method method
M =N =13 | 74770967 168705314 | 0.6095
M =N =14 | 91552909 220894869 | 0.4291
M = N =15 | 110673299 284598674 | 0.2875
M = N =16 | 132284627 361464751 | 0.1946

Table 2: Number of floating point operationsfor Example 2

Filter ON basis | General WLS | TSE
size method method
M 12 [ 396318891 812961640 | 1.3078
M = N =13 | 498552642 | 1.1008 x 10° | 0.8450
M =14 | 617036783 | 1.4603 x 109 | 0.6016
M= 5 | 752972466 | 1.9029 x 10° | 0.4505

axisis 0.37. The mgjor axis of the stopband edge is 0.57
and the minor axis is 0.3757. In this case, the weighting
functionis 1 over the passband and 1 over the stopband. The
number of floating point operationsrequired to compute the
filter coefficients and the TSE for different filter sizesis de-
picted in table 2. In every case the number of frequency
pointswas Ly = 64 from0to = and L, = 128 from —=
to w. The actua frequency responsefor M = N = 14 is
shown in figure 2.
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Figure 2: Frequency response for Example 2

6. CONCLUSIONS

In this paper, a fast algorithm for weighted least squares
2D linear-phase FIR filter design has been presented for
both quadrantally-symmetric and centro-symmetric filters.
It presents the problem of filter design as the problem of
projecting a desired frequency response onto an appropri-
ate subspace. An efficient way to compute an orthonormal
basis that spans that subspace has been developed. By do-
ing this, the usual matrix inversion involved in least squares
filter design and the computational burden associated with
it are avoided. Moreover, the specia structure of the co-
sinebasisallowsfor asubstantial reduction of the amount of
computation required to get the orthonormal basis. The ap-
plicability of the proposed a gorithm has been demonstrated
through examples.
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