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ABSTRACT

In this paper, a concept of integer fast Fourier transform
(IntFFT) for approximating the discrete Fourier transform
is introduced. Unlike the fixed-point fast Fourier trans-
form (FxpFFT), the new transform has properties that it is
an integer-to-integer mapping, power adaptable and also
reversible. Lifting scheme is used to approximate com-
plex multiplications appearing in the FFT lattice struc-
tures. Split-radix FFT is used to illustrate the approach
for the case of 2% -point FFT. The transform can be imple-
mented by using only bit shifts and additions but no mul-
tiplication. While preserving the reversibility, the IntFFT
is shown experimentally to yield the same accuracy as the
FxpFFT when their coefficients are quantized to a certain
number of bits. Complexity of the IntFFT is shown to be
much lower than that of the FxpFFT in terms of the numbers
of additions and shifts.

1. INTRODUCTION

Discrete Fourier transform (DFT) is one of the most funda-
mental operations in digital signal processing. Because of
the efficiency of the convolutional property, the DFT is of-
ten used in linear filtering found in many applications such
as quantum mechanics [1], noise reduction [2] and image re-
construction [3]. However, the computational requirements
for completing the DFT of a finite length signal are rela-
tively intensive. In particular, if the input signal has length
N, directly calculating its DFT requires N2 complex mul-
tiplications (4N? real multiplications) and some additional
additions. In 1965, Cooley and Tukey introduced the fast
Fourier transform (FFT) which efficiently and significantly
reduces the computational cost of calculating N-point DFT
from O(N?) to O(NlogsN) [4]. Since then, there have been
numerous further developments that extended Cooley and
Tukey’s original contribution. Many efficient structures for
computing DFT have been discovered by taking advantage
of the symmetry and periodicity properties of the roots of
unity ¢’?™*/N guch as the radix-2 FFT, radix-4 FFT and
split-radix FFT [6]. In this paper, since we mainly focus on
the fast structures of the DFT, the terms DFT and FFT
will be used interchangeably.

The order of the multiplicative complexity is commonly
used to measure and compare the efficiency of the algo-
rithms since multiplications are intrinsically more compli-
cated among all operations [5]. It is well-known in the field
of VLSI that among the digital arithmetic operations (ad-
dition, multiplication, shifting and addressing, etc.), multi-
plication is the operation which consumes most of the time

and power required for the entire computation, and there-
fore causes the resulting devices to be large and expensive.
Therefore reducing the number of multiplications in digital
chip design is usually a desirable task. In this paper, uti-
lizing the existing efficient structures, a novel structure for
approximating the DFT is presented. This proposed struc-
ture is shown to be a reversible integer-to-integer mapping
called Integer FFT (IntFFT). All coefficients can be rep-
resented by finite-length binary numbers. The complexity
of the proposed IntFFT will be compared with the conven-
tional fixed-point implementation of the FFT (FxpFFT).

The invertibility of the DFT is guaranteed by orthogo-
nality. The inverse (the IDFT) is just the conjugate trans-
pose. In practice, fixed-point arithmetic is often used to
implement the DFT in hardware since it is impossible to re-
tain infinite resolution of the coefficients and operations [6,
7). The complex coefficients of the transform are normally
quantized to a certain number of bits depending on the
tradeoff between the cost (or power) and the accuracy of the
transform. However, direct quantization of the coefficients
used in the conventional structures, including both direct
and reduced-complexity (e.g. radix-2, radix-4, etc.) meth-
ods, destroys the invertibility of the transform. The novel
approach presented in this paper guarantees the invertibil-
ity property of the transform while keeping the coefficients
of the forward and inverse transforms to be finite-length
binary numbers.

In this paper, we refer a real integer to a quantity whose
real part has integer value and imaginary part is zero. Sim-
ilarly, a complex integer is defined as a quantity whose real
and imaginary parts have integer values.

1.1. Previous Works

Recently, there has been a reasonable amount of attention
in trying to approximate the existing floating-point orthog-
onal transforms such as the DCT [8, 9, 10] or DFT [11] with
invertibility property preserved. In [8], the 8-point DCT
which is used in the image and video coding standards is
approximated by a brute force technique i.e. the transform
coefficients are optimized over the set of real integers by
having orthogonality property (a system of nonlinear equa-
tions) as a constraint. The same approach is extended to
the case of 8-point DFT whose coefficients are selected from
the set of complex integers [11]. Although this approach is
simple and straight forward, it is very difficult to extend
the approach to the case of large N—imagine of solving a
big system of nonlinear equations. In addition, once a set of
coefficients is obtained, it is not trivial how to adjust them



for different transform accuracy unless one re-optimizes the
coefficients.

In [9] and [10], lifting factorization is proposed to replace
the 2 X 2 orthogonal matrices appearing in the 8-point DCT
using, respectively, the fast structure and the Hadamard
structure [12]. The resulting transforms are shown to be
simple and invertible even though the lifting coefficients
are quantized, and also are power-adaptable, i.e. different
quantization step-sizes can be used to quantize the lifting
coefficients without destroying the invertibility. In this pa-
per, lifting factorization is proposed to be used in the fast
structures of the DFT where complex multiplications are
expressed in terms of liftings. The approach can be used in
many existing structures such as radix-2, radix-4 and split-
radix with arbitrary sizes. However, the split-radix struc-
ture will be used to illustrate the proposed method which
can also be extended to other existing FFT structures as
well.

2. THE DISCRETE FOURIER TRANSFORM

The DFT of an N-point discrete-time signal x(n) is defined
by

N—-1
X(k) =" a(n)Wy", for k=0, 1, ---,N—1 (1)
n=0

where Wy = e772™/N_ Similarly, the IDFT can be given by

N

—1
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which follows from the orthogonal property of the DFT ma-
trix.

Discarding the factor 1/N in (2), it is clear that, in order
to calculate one coefficient of the DFT or IDFT, it requires
N complex multiplications and N — 1 complex additions.
Therefore the total number of complex multiplications for
computing an N-point DFT is N2. However this direct
computation is inefficient and can be significantly simplified
by taking the advantages of the symmetry and periodicity
properties of the twiddle factor Wy, i.e. WJ@+N/2 =Wk
and WEHN = Wk,

There are many existing fast structures to compute the
DFT depending on the length of the input. In this paper,
the split-radix structure which is suitable for input with
length of N = 2% will be used to illustrate the proposed
approach of IntFFT. The approach can also be applied to
other structures such as radix-2 and radix-4 as well. In this
paper, the split-radix FFT is chosen to demonstrage the
paper where all the twiddle factor W% are implemented by
the proposed lifting steps as described following.

3. CONVERTING COMPLEX NUMBERS TO
REAL LIFTING STEPS

Recall that all the coefficients appearing in the FFT and
IFFT structures are complex numbers with magnitude one,
i.e. every coefficient can be expressed as e’ where 6 is
some real number. Since these coefficients are scalar with

magnitude one, the inverses are simply their complex con-
jugates. However, if a coefficient is quantized, the inverse
of the new coefficient is no longer guaranteed to be its com-
plex conjugate. Specifically, let a be a complex number
with magnitude one, i.e.

a=c+7Js,

where ¢ and s are real numbers and ¢® + s> = 1. Let a? be
the quantized version of a, i.e.

a? ="+ js*

where ¢? and s? are finite-word length approximations of ¢
and s respectively. Hence the reciprocal of a? is
1 c? . s

at ~ Jae? " Tae?

In general, |a?| is not one although |a| = 1. Instead, 1/a?
may not even be a finite word-length complex number even
though a? is. This is the reason why the conventional fixed-
point arithmetic does not preserve the PR property.

The PR property can be preserved via the lifting scheme.
Each complex multiplication is equivalent to four real mul-
tiplications. Specifically, let * = =, + jx; be a complex
number and hence y = az = (cx, — sz;) + j(cx; + szy) or
in the vector-matrix form:

| Bl | I B3 B

c —S

where R = ] . Figure 1 shows the butterfly struc-

ture of a single complex multiplication. Notice that a has

Figure 1: A butterfly structure for implementing a complex
multiplication.

magnitude one if and only if R is an orthonormal matrix.
Assuming that ¢* + s> = 1 with s # 0 (if s = 0 then
a =1 or — 1 which does not need to be quantized), it is
easy to see that R can be decomposed into three lifting
steps as follow [13]:

c —s 1 =t 1 o0 1 =2
e e R P | A
(4)
Figure 2 illustrates the conversion from one complex mul-
tiplication to three-step lifting scheme. In order to distin-

guish the coefficients in the lifting structure from the origi-

nal coefficients ¢ and s, we now call the new coefficients Czl
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Figure 2: A lifting structure for implementing a complex
multiplication and its inverse.

and s as lifting coefficients and refer the original coefficients
c and s as butterfly coefficients.

The advantages of this factorization are two fold. First
the number of real multiplications is reduced from four to
three although the number of real additions is increased
from two to three. Secondly, it allows for quantization of
the lifting coefficients and the quantization of the result of
each multiplication without destroying the PR property. To
be specific, instead of quantizing a directly, the lifting co-
efficients s and 0;1 are quantized and therefore its inverse
% also consists of three lifting steps with the same lifting
coefficients but with opposite signs. Further than that, non-
linear operators can also be applied to the product at each
lifting step.

The dynamic range at the internal nodes is one of im-
portant factors. In order for the transform to be perfectly
reversible, the number of bits at internal nodes NN,, has to
be at least this dynamic range. Under an assumption that
the resolution of each quantizer (of a lifting coefficient or
the product after a lifting coefficient) is sufficiently high,
the following conclusion can be made.

Theorem 3.1 The lifting implementation of each twiddle
factor increases the resolution of its input by at most one
bit.

The detailed discussion can be found in [14]. Let us consider
the case of split-radix FFT with size N = 2*. Define f(k)
to be least upper bound of the number of bits at internal
nodes which guarantees the reversibility of the transform.
The following theorem gives an upper bound for f(k).

Theorem 3.2 f(2r) < N;+3r—1 and f(2r+1) <
N;+3r+1, where r > 1, where N; is the number of bits
used to represent the input signal.

4. PERFORMANCES AND COMPLEXITIES

4.1. The Accuracy of the IntFFT

In this section, the performances of the IntFFT are exper-
imentally evaluated and compared with the conventional
FxpFFT. The experiment is performed for the case of N =
256. The input signal is quantized to 16 bits while the in-
ternal nodes of both structures are set to 27 bits. Obtained
from Theorem 3.2, 27 bits will ensure that the IntFFT is re-
versible, and thus zero reconstruction error. Figure 3 com-
pares the errors of the Fourier transform using the FxpFFT

and the IntFFT for different values of N.. In the structure
of the FxpFFT, N. is the number of bits used to quantize
the twiddle factors while, in case of the IntFFT case, N, is
the number of bits used to quantize the lifting coefficients.
It is evident that the proposed IntFFT is slightly more ac-
curate than the conventional FxpFFT especially when N, is
high. Figure 4 shows the reconstruction error for the case
of FxpFFT and FxpIFFT while the reconstruction error of the
proposed IntFFT and IntIFFT remains zero.

A — = FxpFFT
—60k- — IntFFT

Error of the DFT output (dB)
i
o
o
T

i i
0 5 10 15 20 25
Number of coefficients bits (NC)

Figure 3: A comparison of the accuracy of the conventional
fixed-point arithmetic FFT and the new IntFFT measured
in frequency domain.
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Figure 4: The reconstruction error of the conventional fixed-
point arithmetic FFT.

4.2. Complexity of the IntFFT

In this section, the method for minimizing the number of
adders discussed in section V of [14] is used to estimate the
computational complexities of FxpFFT and IntFFT of differ-
ent sizes. In particular, the numbers of 1’s used in the 10-bit
binary representations of the butterfly coefficients in FxpFFT
and of the lifting coefficients in IntFFT are counted. Table 1
summarizes the numbers of real multiplications and real
additions needed to perform N-point split-radix FFT [15],



Table 1: Computational complexities of the split-radix FFT and the integer versions (FxpFFT and IntFFT) when the coeffi-

cients are quantized to N. = 10 bits.

FFT FxpFFT IntFFT

N Multiplications | Additions || Additions | Shifts || Additions | Shifts
16 20 148 262 144 202 84

32 68 388 746 448 559 261

64 196 964 1910 1184 1420 694
128 516 2308 4674 2968 3448 1742
256 1284 5380 10990 7064 8086 4160
512 3076 12292 25346 16472 18594 9720
1024 7172 27652 57398 37600 41997 22199

and the numbers of real additions and shifts required in [2] L. Krasny and S. Oraintara, “Noise reduction for

N-point FxpFFT and IntFFT. From Table 1, the numbers
of additions of FxpFFT and IntFFT are approximately 100%
and 50% more than that of the exact FFT, however, no real
multiplication is needed. Comparing between FxpFFT and
IntFFT, the number of additions of IntFFT is 29 - 37% less
than FxpFFT while the number of shifts is 69 - 72% less.

5. CONCLUSION

In this paper, we have presented a concept of IntFFT which
can be used to construct FFT with integer coefficients. It
provides a new method for approximating the DFT with-
out using any multiplication, and can simply be applied
to the case of large-size DFT. Unlike the FxpFFT which is
the fixed-point arithmetic version of FFT, the IntFFT is
reversible when the coefficients are quantized. Its inverse
IntIFFT can be computed with the same computational
cost as that of the forward transform. The new transform
is suitable for mobile computing and any handheld devices
which run on batteries since it is adaptable to available
power resources. Specifically, the coefficients appearing in
the proposed structures can be quantized directly for dif-
ferent resolutions, i.e. different computational costs, while
preserving the reversibility property.

Although a large class of FFT structures such as radix-
2, radix-4 and split-radix, can be approximated by this
approach, however, the split-radix structure is used to il-
lustrate the technique. According to the simulation, the
complexity of IntFFT is lower than that of FxpFFT by a
significant margin.

The accuracy of the transforms is compared experimen-
tally. It is evident from the simulations that both IntFFT
and FxpFFT have approximately the same distortion from
ideal FFT when computing forward transform. On the
other hand, when the inverse transform is performed af-
ter the forward transform, fixed-point arithmetic approach
results in reconstruction error while the proposed approach
can reconstruct the input perfectly for any fixed resolution
of the coefficients.
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