RATIONAL SIGNAL SUBSPACE APPROXIMATION
WITH APPLICATIONS TO DOA ESTIMATION

Mohammed A. Hasan! and Jawad A. K. Hasan?
JrDept. of Electrical & Computer Engineering, University of Minnesota, Duluth, MN 55812

iDept. of Electrical Engineering, University of Baghdad, Baghdad, Iraq
[.mail: mhasan@@d.umn.edu

ABSTRACT

In this paper, we have developed an approach for ap-
prozimating the signal and noise subspaces which avoid
the costly eigendecomposition or SVD. These subspaces
were approzimated using rational and power-like meth-
ods applied to the sample covariance matriz. It 1s
shown that MUSIC and Minimum Norm frequency es-
timators can be derived using these approzunated sub-
spaces. These approrimate estimators are shown to
be robust against noise and overestimation of num-
ber of sources. A substantial computational samng
would be gained compared with those associated with
the eigendecomposition-based methods. Simulations re-
sults show that these approrimated estimators have
comparable performance at low signal-to-noise ratio
(SNR) to their standard counterparts and are robust
against overestimaling the number of impinging sig-
nals.

1. INTRODUCTION

Estimation of sinusoidal frequencies and direction of
arrival (DOA) embedded in white noise is a problem
of interest in many fields of signal processing such as
geophysics, radar, and sonar. Several high resolution
techniques emerged during the years for solving this
problem. For useful articles and books the reader is
referred to {2], [5]-[9] and the references therein. Sev-
eral subspace approximation techniques were proposed
in the literature 2], [6]-[9]. In this paper, we proposed
an invariant subspace decomposition based on rational
approximation.

The DOA can be described as follows. Consider
a linear array of p sensors and ¢ multiple narrow-
band signals impinging on the array with DOA angles
61,02,---,8,. The received signal at the array can be
expressed as

y(k) = A(f)s(k) + v(k), (1)

where s(k) € C7 (C is the field of complex num-
bers) is a vector of complex signals of ¢ wavefronts

s(k) = [si(k)  sa(k) s,k )", v(k) is a p x
1 vector of additive noise in sensors with v(k) =
[mk) wv(k)y - v (k)]l and A is p x ¢ matrix
AB) = [a(f) a(6s) a(8,)] with a(6) being
the steering vector of the array toward the direction 8.
It is also assumed that the signals and additive noise
are stationary and zero-mean ergodic complex-valued
random processes such that Efv;(k)v] (k)] = o28(i~j)
for i,j = 1,---,q. Here E, and * denote the ex-
pectation, and conjugate transpose operators, respec-
tively. Thus the spatial p x p covariance matrix of
the array output is given by Ry = Ely(k)y*(k)] =
A Rs A(0)" + 021, with Rs = E[s(k)s*(k)] is ¢ x ¢
matrix of amplitudes of s and I, is the p x p identity
matrix. If the 8's are all distinct, the unknown matrix
A € Cr % s of rank ¢. The main objective is to esti-
mate q and A from the noisy data {y(k)}",. In the
next theorem we present a rational approximation of

the eigenspace of the sample covariance matrix, Ry.

Theorem 1. Let Ry = 3.7, \u,u;, where A, and
u, be the ith eigenvalue and corresponding eigenvector.
Assume that \y > Ap -+ 2> Ay > Agp1 = - = \, = 02
and uju, = 6;_;. Let {b;};_, be a set of real num-
ber such that 0 < by < by < --- < b, and set
Uo = 2jx,en, W Ui = 3050 on ap,y, W5 for
i=1,---,r. Then

i T (07T, ~ B, + B~ =S (-1).
=0
(2)

Proof: See [6].

In Theorem 1 if r = 1 and b; is a threshold that
separates the signal and noise eigenvalues, then a ra-
tional approximation of the signal and noise subspaces
can be obtained as in the following result.

Corollary 2. Let Ry =3P \uu} such that Ay >
Agoos 2 Xy > Mgyt = = Ay =02 and uju, = §;_j,
where A, and u; are the ith eigenvalue and correspond-
ing eigenvector. Let b > 0 be such that Ay > b > Agyy
and let Ug = "1 u,ul and Uy, = Zf___pH w,ul, then



(i) (™I, — I?;")(b'"[,, + I?;;‘)_' converges to I/ =

i i 3 A T I, -U

Un — Us (as m — o0). and therclore Uy = E5—
I, +1/

and U, = X2,

(ii) f?;}‘(b"‘[,, + f?;/”)“‘ converges to U, (asm - ~0).

(iif) 6™ (b™I, + R")~! converges to U, (asm — ).
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2. HIGH RESOLUTION
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noise subspaces the
estimators are given by

1
Prvsic0) = — (3a)
¢ \Vjvns AV

and ,
P\[ ¢) = —————:———,—, 3()
h N( ) |a*(0)(/,nelil ( )
where e is the first column of the p x p identity matrix.
Let b b number that separates the signal and
noise eigenv lues, ie, Ay <b< A fori=1,---qand
Jj=q+1,---,p. Then an approximated MUSIC and

Minimum-Norm estimators based on (ii} of Corollary
2 can be written as

pm o (8) = _ ! i
PMUSICES ™ p — a*(O)Ryp {b™ 1, + R}~ a(9)]
and
1
P{Tn(8) =

la* () (I, — R (b™ 1, + 1) ~1)e |
R S Tr()
A rough estimate of a threshold b is ——<. This idea
along with part (i) of Corollary 2 are incorporated in
we
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Aloarithm (Matianal.MTIQT(Y and ational.
Algorithm (Rational-MUSIC and Rational
Min-Norm)

(i) Compute R,()) = [r,(j + Lk + 1)], where

ry(4, &)} = E{y(m + )y (m + k)}.
(ii) Choose m > 1, > p and compute

Ry(l)m)
) p
((Tr(iy(l)))m[ +R;l(l))—l,
FU L pin*

(iii) Compute the approximated noise subspace U,, =

IJ_f
pTfm
) .

(iv) Compute lb Musr( -(f) and t’w';\,(H') using

1

P(m) 0) = —-—t—‘
batursic(9) la*(§)Una(®)|’
l 1
Pi9) = T

la*(8)Unei|

and locate the peaks. The frequencies are esti-
mated as the angular positions of the peaks.

3. OPERATION COUNT

The methods presented in the previous sections are
multiplication rich in that for a given m, RL" is re-
quired and followed by one matrix inversion operation.
Matrix muitipiication can be obtained very efficiently
applying the Strassen algorithm [4]. In this algorithm,
if A € RP? and B € RP*P with pis a power of 2, then
C = AB can be obtained with s = p§'8°7 multiplica-
tions. Thus asymptotically, the number of multiplica-
tions in the Strassen algorithin is O(p* 8%7) compared
with O(p?) in the conventional method. It should be

vnonhnnnl{ that in h] Railev imnlemented a Strassen
menvionea uilat in 2Sanly inpiementea a ovrassen

approach that reqmred only 60% of the time needed
by the conventional multiplication.
The number of flops in computing (™I, —

1}’y" )TN T, + IAIL") consists of approximately the num-

ber of flops in computing ?)" and the matrix inverse.

Assuming that m = 27, hoth of these processes cost
about rp*897 4 2

The number o(! flops required to compute the SVD
of R, by the Golub-Reinsch algorithm is 21p® [3]. For
example, if we choose r to be 4 which correspond to

m = 16, a value that is very | hm'h in most annhr‘ahnnqy
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the mlmbpr of flops required i m the rational MUSIC is

4p*807 4 —L which is still much less than 21p® using
the Golub-Reinsch Algorithm [3].

Efficient matrix inversion can be computed using
the LU decomposition. Once the LU factorization of
A is known, Lho inverse matiix A~! can be computed
in 22= !‘:2' flops [3]-[4]. Thus the total number of
flops involved in computing (b™ I, — R™)~* (b™ [, + R™)
is about 2% 4 2rp® = (2r + 1.333)p*. This number
is still far less than the ﬂosp count for computing the

SV which is ahout 215 far » < 10 Naote that
< iU
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r= 9 corresponds to m = 512 which is extremely large
for most applications. Thus for all practical purposes
these algorithms which are based on Corollary 2 are
less costly than the truncated SVD-based methods.




4. SIMULATION RESULTS

In this section, the frequency estimators described ear-

lier were examined on several data sets «)nnurﬂfn(] by
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the equation

y(n) = alejiifrf1n+wl) + a2P]i2W]27l+vf>2) +o(n), (1)
whprp a = 1.0 = 1.0, f{ = 0.5, fo = 0.52 and
ere a; 1.U, a2 Yy J1 y J2

=
H
-

}\3

«+,N = 25. The ¢; are independent ran-
dom varlables uniformly distributed over the interval
[-m, 7). The noise v(k) is assumed to be white aml

uncorrelated with the signal. Note that f, — fi < N

The SNR for either sinusoids is defined as 10 logo( ;.Z}I),

where (n) = a ! TN td0) gy fanide) qnd o2
o? are the variances of z{n) and n(n). respectively.
The covariance matri‘c is constructed using forward-
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backward method to increase robustness. The size of

the covariance matrix is chosen to be p = 10 which in
the absence of noise has effective rank two. We per-
formed experiments to compare the proposed methods
versus the truncated SVD-based method. The SVD

rontine aon MATT AR ic usod for the comnutation of
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the signal subspace eigenvectors and cigenvalues re-
quired to implement a SVD-based method for com-
parison. For each experiment (with data length and
SNR fixed), we performed 100 imlf'pomlonr trials to
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mance criterion {RMSE)
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pendent realizations, and f, is the estiunate pmvulod
from the ith realization. The simulations results of
applying the Rational-MUSIC are summarized as fol-
low. A set of 100 random experiments for different

(SNR=20, 15, 10 dB) using hf”‘ with m = 3 were used.
The threshold b in these smmlamms was estimated by

. Tr(R,) . . .
0 = —*¥. l'he peak spectrum was computed using
1000 frequency bins covering a norwmalized frequency

range of O to 1. The mean and RMSE are taken unlv

over realizations where two peaks have occured. The
mean values and the RMSE of the estimated frequen-
cies are given in Table 1. As can be noticed, the per-
formance in these cases are almost identical to those
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repeated the experiment using the standard-MUSIC
estimator. The results of testing this algorithm for
different SNR were averaged over 100 trials and the
mean and RMSE of each frequency was presented in

Tahla 92 F‘nnnrn 1 echnwe tha noalre racnttad fram an
i1ad:e 2. Ure 1 Sia0ws wil peans Tostled iront ap

plying Rational-MUSIC for 30 independent. trials with
SNR=15 dB and using Ry (10)™ for m = 3. The corre-
sponding results obtained using the standard MUSIC
are shown in Figure 2. As can be noticed from Tables

N r £ DALCI A

gn 1 J1 J2 u.u'l'aljh uufSL'fz
20 dB | 0.500556 | 0.522322 | 0.00563 | 0.012522
15 dB | 0.500729 | 0.521735 | 0.00652 | 0.014531
10 dB | 0.500961 ( 0.524952 | 0.00813 | 0.019204
Table 1: Rational-MUSIC:Mean and standard devia-
tion of frequencies for data of two complex sinusoids at
frequencies 0.50 and 0.52 in white noise with SNR=20,
15, 10 dB, dimension of data vectors p=10.
SNR fi fo RMSE; | RMSEy,
20 dB | 0.50022 | 0.52133 | 0.00442 0.00514
15 dB 1 050076 | 0.52182 1 0.00781 0.00846
10 dB | 0.50123 | 0.52214 | 0.01307 0.01045

Table 2: Standard-MUSIC: Mean and RMSE of fre-
quencies for data of two complex sinusoids at frequen-
cies 0.50 and 0.52 in white noise with SNR=20, 15, 10

dB, dimensions of data vectors and signal subspace are
p=10,q= 2.

1-2 and Figures 1-2, both Rational-MUSIC and the
standard MUSIC are seen to have virtually identical
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When m is small, it is observed that overestima-
tion of ¢ leads to better estimation of the frequencies.
The robustness of the methods against overestimation
of the number of sources q can be explained as fol-

lowe QOvarectimation nf a means additional vectors
1OWS. UVETEOSUIITIAVION § means aGaiviOlla: YeLLors

are included in the basis of the signal subspace. In our
approximation, these vectors are not purely noise but
contain some signal component. In the standard MU-
SIC, if additional vector is added to the basis, a purely

n:ugn voaetor ic inelnded in fha cnrng] cn‘\cnaln r"\ucnnr
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spurious peaks. Note that when m is small the first
few signal vectors contain noise components since the
noise and signal vectors are not well-separated. Thus
we have to consider more vectors to capture the sig-
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nal Supspace. riowever, this bcpcuamuu DECOIIIES II10IT
promenant as m increases.
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and Minimum Norm, estimators are popular for their
high resolution property in sinusoidal and direction
of arrival estimation but they are also known to be
of high computational demand. In this paper, new




fast and robust algorithms for DOA and sinusoidal
frequency estimation are presented. These algorithins
approximate the required subspace using rational and
power-like methods applied to the sample covariance
matrix. The operation count of these algorithms were
shown to be much less than that associated with the
eigendecomposition-based methods. Furthermore, this
approach can be refined to compute invariant sub-
spaces of any complex matrix in different regions in
the complex plane.
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Figuie 1: Spectral peaks at f; = 0.5 and f, =
(.52 with SNR = 15dB, resulted from applying the
Rational-MUSIC, with m = 3 for 30 independent tri-

als.
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Figure 2: Spectral peaks at fi = 0.5 and f; = 0.52
with SN R = 15dB, resulted from applying SVD-based
MUSIC on 30 independent trials with ¢ = 2 and p =
10.




