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ABSTRACT 

In thas paper, we have developed an appronch for fzp- 

proximating the signal and noise suhspnws which avoid 
the costly eigendecomposataon or SVD. Th~sc subspac~s 
were approximated using ratzonal and power-lake meth- 
ods applied to the sample covariance matrix. It 2s 
shown that MUSIC nnrl Minirnulrr Norm frequency es- 
timators can he derived using these approxamated suh- 
spaces. These approximate estimators are #shown to 
be robust against noise and overestimation of num- 
ber of sources. A su6stantaal r~oinp~ltfrtioi~rll savan!g 
would be gained compared with those associated with 
the eigendecomposition-based methods. Simulations re- 
sults show that these npprozinwtcci estimators hnac 
comparable performance at low si!lnnl-to-rloasr: ratio 
(SNR) to their standard counterparts and are robust 
agaanst overestimatang the number of inlpan9ang sag- 
nals. 

1. INTRODUCTION 

Estimation of sinusoidal frequencies and direction of 
arrival (DOA) embedded in white noise is a problem 
of interest, in many fields of signal procrssing ~11~11 as 
geophysics, radar, and sonar. Several high rcsoliltiou 
techniques emerged during the years for solving t,his 
problem. For useful articles and books the reader is 
referred to [2], [5]-[9] and tt ie references therein. SW- 
era1 subspace approximation techniques were proposed 
in the literature (21, [6]-[9]. In this paper, we proposed 
an invariant, subspace decomposition based on rational 
approximation. 

The DOA can be described as follows. Consider 
a linear array of p sensors and q multiple narrow- 
band signals impinging on the array with DOA angles 
&,82,*.. ,d4. The received signal at the array cal be 
expressed as 

y(k) = A(B)s(k) + v(k), (1) 

where s(k) E C’J (C is the field of co~nl~lcx num- 
hers) is a vector of complex signals of (1 wavefronts 

s(k) -- [s,(k) .s?(k) ... ,s,,(k)]“‘, v(k) is a 11 x 
1 Vcv’tor of iItl(lll,lVP noistl in SCIlSorS wit,li V(k) = 

[/q(k) tJ2(k) ... ” 1~ (k) 1’ and .4 is 11 x q matrix 
.-l(G) = [a(el) a(027 ... a( with a(a) being 
t,lirb stt>Pring vrc:t,or of the array toward the direction 19. 
It is also assumed t,hat, t,he signals and additive noise 
at-r stationary and zero-mean ergodic complex-valued 
random proresses such that E[q(k)v,‘(k)] = aE6ci - j) 

for i,j = l....,y. Here E, and * denote the ex- 
pectation, and conjugate transpose operators, respec- 
tively. Thus the spatial p x 1) covariance matrix of 
t,llC i11‘1’ily Ollt~lllt, is given by ZEy = E[y(k)y’(k)] = 

A(H)Rs.4(H)’ $ nfl,, with Rs = E[s(k)s’(k)] is (I x q 
matrix of amplitudes of s and I,, is the p x p identity 
matrix. If the H’s are all distinct, the unknown matrix 
.1 E PYq is of rank Q. The main ol)jec:tive is t,o cst,i- 
mate (I and il from the noisy data {y(k)}fv=,. In the 
next tlieorrm we present, a rational approximation of 

the eigcnspacr of t,lie sample covariance matrix, i?y . 

Theorem 1. Let fiy = Cf=, X,u,u;, where X, and 
II, be the itb eigenvalue and corresponding eigenvector. 
i\SSflIIIf? tlJ<d ,\, > /!2 . . . 2 ,\, > A,,+1 = . . = $, = f7; 

and u; 11) = (5-j. Lf?t {l)i}~=l be a set Of real nunI- 
her suctl that 0 < b, < b2 < ..+ < b,, and set 
n0 = Cj:,\,<h, U,U;, Ui = Cj.h,<,\,ch +, UjUT for . I 
i = l;.,,r. 7h?11 

In Theorem 1 if r = 1 and bl is a threshold that 
separates the signal and noise eigenvalues, then a ra- 
tional approximation of the signal and noise subspaces 
can be obtained as in the following result,. 

Corollary 2. Let Ay = X:=1 XiUiUf SUCh that X1 2 
x2 . . . 2 A, > X,+1 = ... = X, = f7: anti UtUJ = di-j, 

rvhcrc A, ;Ultl Iii ill’f! thf? itb cigcrlrahc ;lUff wrrcspontf- 
ing Pigmvector. Let b > 0 hc mch that X,, > 6 > A,+, 
and let U, = xi=, u,u; and U,, = C&+, utu:, tllen 



hm(bmZp + ii?)-’ converges to lr,, (as 111 + w). 

Proof: follows frown ‘IY’corrni 1 I)y sclttii’g 7’ = 1. 

2. HIGH RESOLUTION 
ESTIMATORS 

Given the projections Li, and Ir,, ont,o the signal nncl 
noise subspaces, the exact hIUSIC arid mi’iinir’m norm 
estimators are given by 

and 

(36) 

wl’ere el is the first column of the p x p ident.it,y matrix. 
Let b be a number that separates the signal and 

noise eigenvalues, i.e., X, < b < X, for i = 1, ...q and 
j = q+ I,... , p. Then an approximated hIUSIC anal 
Minimum-Norm estimators based on (ii) of C’orollnry 
2 can be written as 

P,(,%,src (0) = 
I 

Ip - a*(e)li;:{b”‘Ip + ii.~}-la(H)I 

and 

Pj$B) = 
1 

^ 171 _ 111 la’(H)&, - R, (DnlZ,, + R,, )-‘)qI 

A rough estimate of a threshold 0 is “‘F’!‘). This idea 

along with part (i) of Corollary 2 are incorporated in 
the following algorithms. Here we used Tr( A) to mean 
the trace of A. 

Algorithm (Rational-MUSIC and Rational- 
Min-Norm) 

(i) 

(ii) 

Compute h,(l)) = [r,(j + 1,k + l)], where 
r,(j, k)) = E’{?&rr + j)f(m + k)}. 

Choose m > 1, 1 2 p and compute 

F(I) = (pw~ )I,,, 
m 

_ fi 

P 
P I 

(/)“1) 

(( wG/(~)) 

P 
)“I, + ii;‘(l))-‘, 

all’~ I& $0 _ F::‘+F:I” ,, m - 2 ’ 

(iv) Compute PL:ijrisrc.(8) and P&i(H) using 

and locate the peaks. The frequencies are esti- 
mat,4 as the angular positions of the peaks. 

3. OPERATION COUNT 

‘I’lifJ mrtliocls prf5cW4 in tlic previous sections arc 

multiplication rich in that for a given m, fir is re- 
qiiirctl aii’l followrd by ot’c n’a.trix inversion operation. 
hlnt,rix “‘iilt~il’lic::~t~io” cm be obtninc7l very efficiently 
applying t,lie Strassen nlgorithni [4]. In this algorithm, 
if ‘4 E Ii?‘” and 13 E RPyP with p is a 
C = .4B can be obtained with s z p B 

ower of 2, then 
.*07 multiplica- 

tions. Thus asymptotically, the number of multiplica- 
t,ions in the Strassrii algorit,li’n is O(p2 ‘07) compared 
with O(J)‘) in tl’e conventional method. It should be 
mentioned that in [I], Bailey implemented a Strassen 
approach that required only 60% of the time needed 
by the conventional niult,iplicat,ion. 

The number of flops in computing (h”‘1, - 

&)-‘(b”‘I,+&‘) consists of approximately the num- 

ber of flops in computing I?; and the matrix inverse. 
Assi’r’iing t,tiat, 711 = 2’, I)oth of t,hcsc proc*essf9 c*ost 

;rl,ollt, rpz.8’)7 + zg. 

The number oi flops required to compute the SVD 

of & by the Golub-Reinsch algorithm is 21p3 [3]. For 
example, if we choose T to be 4 which correspond to 
m = 16, a value that is very high in most applications, 
tlir: nuniher of flops required in the rational MUSIC is 
4p2.807 + T which is still much less than 21p3 using 

the Golub-Reins& Algorit.hm [3]. 
Efficient matrix inversion can be computed using 

the LU decomposition. Once the LU factorization of 
.4 is known, the invcrsc matrix A-’ call be co’nputed 

in p(P-1!~2p-1~ flops [3]-[4]. Tl ius the total number of 

flops involved in computing (bmlp-Ay)-l (Pl,+&) 

is nboi’t 32 + 2l7 7 = (2~ + 1.333)~~. This nrin’l~er 
is still far 1 ess than the flo couiit for computing the 

Y SVD, which is about 2111 , for T < 10. Note that 
T = 9 corresponds to 711 = 512 which is extremely large 
for most applications. Thus for all practical purposes 
these algorithms which are based on Corollary 2 are 
less c‘ostly than the truncated SVD-based methods. 



4. SIMULATION R.ESUILl’S 

In this section, the frequency estimators tl(lsc%be(l or- 
lier were examinetl on several data sf+i gt~rir~rnt.ed b! 
the equation 

l?/(n) = ale 
J(zafln+Ol) + n2pJ(h/s71+lb?) 

+ lqrr), (4) 

where al = 1.0, ~2 = 1.0, fl = 0.5, f2 = 0.52 ant1 
n = 1,2;..,N = 25. The & are intlep~ntlent ran- 
dom variables uniformly distributed over the interval 
[--K, TT]. The noise u(k) is nssr~rrr~d to tw white ant1 
uncorrelated with the signal. Notr that /2 - /I < 8. 

The SNR for either sinusoids is defined as 10 loglo( $), 

w},err 2(71) = tL,pJ(~n/~‘~+ 61) .+- ,,,2pJ(“n/2” 1 d’?) ;,,,,I u;, 

gf are the variances of 2(n) and fl(71). rr~sp~~rt.ivr~ly. 
The covariance mat,rix is constrllcte‘tl using forwnrcl- 
backward method t,o increase rot)llst,nrss. ‘1’1~ size of 
the covariance matrix is chosen to b(> 1) = 10 wliic+ in 
the absence of noise has effective rank two. \{:P pcr- 
formed experiments to compare the proposed mrthotls 
versus the truncated SVD-based method. Thea SVD 
routine on MATLAB is used for the comp~~tation of 
the signal subspace eigenvectors ant1 eigenvnlucs re- 
quired to implement a SVD-based method for CYNIC- 

parison. For each experiment, (with (liLta length x11t1 

SNR fixed), we performed 100 intlr~pcnclcnt, trials to 
estimate the frequencies. We IISP t,lic following pfsrfor- 
mance criterion (RhISE) 

to compare the results. Here N, is the numbc~r of intlc- 

pendent realizations, and fl is the cst,imat,r provided 
from the it.11 realization. The simulations results of 
applying the Rational-IMUSIC are summarized as fol- 
low. A set of 100 random experiments for different 

(SNR=20, 15, 10 dI3) using &! with fn = 3 were usrtl. 
The threshold b in these simulations was ~stilllatc~l t)j 

b= . Tr(&) Tit e peak spectrum was comput,ed using 
1000 f&ucncy bins covering a norinnlizctl frf~cl1iriic.y 
range of 0 t,o 1. The mem and RMSE are t,;tk(an ol~ly 
over realizations where two peaks have ocrured. The 
mean values and the RMSE of t,he estimated frequen- 
cies are given in Table 1. As can be noticed, the per- 
formance in these cases are almost identical to those 
obtained from using the exact decomposition. iTe 
repeated the experiment using the standard-MUSIC 
estimator. The results of testing this algorithm for 
different SNR were averaged over 100 trials and the 
mean and RMSE of each frequency was presented in 
Table 2. Figure 1 shows the peaks rcsultcld from ap- 
plying Rational-MUSIC for 30 intl~~pcn~lcnt, trials with 
SNR=15 dB and usirlg n,( 1,)“’ for 711 = 3. ‘L’lw c’oi rc- 
sponding results obtained using t,he standard hIUSIC 
arc shown in Figllrr 2. As (WI t)fl notic*r‘(l from ‘I’at)l(a9 

SNII 
._ .- -.------ ___-- ..-__ 

Jl I2 Rib1 SE,, llLZ1 SEf2 ___-____ -- 
20 (II3 0.500556 0.522322 0.005G3 0.012522 

15 dB O.WOi’29 0.521735 0.00652 0.014531 

10 dB 0.500961 0.524952 0.00513 0.019204 

Table 1: Rational-MUSIC:Rlean and standard devia- 

tion of frequencies for dat,a of two complex sinusoids at 

frrquencic~s 0.50 nncl 0.52 in whit,e noise with ‘SNR=20, 

1.5. 10 1lI3, tliirifwsioii of data vectors p=lO. 

‘20 (II3 0.:,0022 o.r,2177 

~ 

Table 2: Standard-MUSIC: Mean and RMSE of fre- 

qliPnc-iPs for tlnt,n of two complex sinusoids at frequcn- 

ties 0.50 and 0.52 in whit,e noise with SNR.=20, 15, 10 

tlB, dimensions of (lilta vc>ct.ors and signal subspace are 

1) = 1o.q = 2. 

l-2 amI Figurrs l-2, both R,ational-MUSIC and the 
st,nndartl MUSIC are seen t,o have virtually ident,ical 
l~crformancc~. 

\~%en nz is small, it, is observrd that overestima- 
tion of (1 leads t,o better estimation of the frequencies. 
Thr robustness of t,he methods against overestimation 
of the number of sources (I can be explained as fol- 
lows. Overestimation of q means additional vectors 
are included in the basis of the signal subspace. In our 
approximation, these vectors are not, pllrely noise but 
c,otrt.niii some signal corllpoiieiit. 111 tlir StaUtliWtl MU- 
SIC, if ad~litionnl vector is iUl(led to the basis, a purely 
noise vector is included in the signal subspace causing 
spuriolis peaks. Note that, when 711 is small the first 
few signal vWt.ors (~oiitain noise components since thr! 
noise and signal vectors are not well-separated. Thus 
we have to consider more vectors to capture the sig- 
nal subspace. However, this separation becomes more 
promenarit as 711 increases. 

5. CONCLUSION 

Eig~rltle~onl1)ositioll-l)~~~(l mcthotls such as MUSIC 
nncl hlinimum Norm, cstimntors arr pop~llar for their 
high resolution property in sinusoidal and direction 
of arrival estimation but they arp also known to be 
of lligli c,oiliy)litnt,ioriaI clc~ninr~tl. Iii this paprr, uf~w 



*fast and robust algorithms for DOA and sitt~tsoidal 
frequency estimation are present,etl. These nlgorithtns 
approxitriat,e the rrquirctl subspnc~r ltsittg tXt,iOtlitl atit 
power-like tttet,hods applied t,o t,hP satttplc rovariam~c 
matzix. The operation routtt of thrsc algorit,httts WVPI’P 
shown to be tnuch less than t,llilt. nssoc+ntrcl with t,lir 
~ig~tttlrcottlpositioll-l,;lsetl tit~~tJtotls. Furt~ltf~rtnor~~, t.his 
apprctnrh c.ntt 1~ rf>fittrxtl to c*otttllttt.c~ ittv;tri:lttt, sltl~- 
spaces of any romplrx ttt;tt,rix in clilf~~rc~nt. tvgiotis itt 
t,he complex plane. 
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l”igttt(l 1: Sp~‘c:tr;ll peaks at, jl = 0.5 atttl fz = 

0.52 with SN R = 15~113, rrsulted from applyittg the 
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Figure 2: Sltcct.r;tl pcnks at, ft = 0.5 and fi = 0.52 

with SNR = 15dB, resulted from applying SVD-based 

MUSIC 0x1 30 independent t,rials with y = 2 and p = 

10. 


