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ABSTRACT 

The tracking problem in identification of certain classes of 

time-varying nonlinear systems is addressed. In particular. 

a Hammerstein type system which consists of a nonlinear 

part, given on a state space description, followed by a time- 

varying linear part is considered. A Recursive Prediction 

Error Method. RPEM combined with a method for on-line 
adjustment of the forgetting factor is proposed. This al- 

gorithm does not require estimation of the statistics of the 

noise and the dynamics of the true system. It is shown how 

the proposed scheme can be used for identification of cer- 

tain nonlinear time varying acoustic echo paths. Thus. the 

suggested algorithm is applicable to for instance, conference 

telephony and mobile telephone handsfree. 

1. INTRODUCTION 

Certain classes of nonlinear systems can be successfully 

identified using models that consist of various combinations 

of a dynamic linear block and a static nonlinearity. 

In this paper a class of Hammerstein type systems which 

consists of a nonlinear part given on a state space model in 

cascade with a linear part represented by a time-varying 

finite-impulse-response filter, FIR is considered. It is often 

convenient to use this model as many nonlinear systems 

can be described in state space form by a set of nonlinear 

ordinary differential equations. 

The problem of tracking time-varying Einenrsystems has 

been widely studied, see e.g. [l] and the references therein. 

Among the different methods that have been suggested, it is 

possible to distinguish three main approaches, namely the 

LMS-, RLS- and Kalman algorithms. 

The problem of tracking time-varying nonlinearsystems 

has been treated in e.g. [2,3,4]. In these papers the out- 

put error method was adopted. In [2] a recursive algorithm 

based on the maximum likelihood function was proposed. 

However, it was assumed that there were no output mesure- 

merat nozse, (as well as slowly changing parameters). In [3] 

a more general formulation of a recursive prediction error 

algorithm was given. Several different criterion functions 

were considered. A recursive prediction error algorithm 

for identification of certain time-varying nonlinear systems 

given on a state space form was suggested in [4]. How- 

ever, there was no correspondence to a variable forgetting 

factor to enhance the tracking capability in this algorithm. 

The problem of identifying time-varying Hammerstein sys- 

tems using a subspace-based technique was addressed in [5]. 

The static nonlinearity was represented with a fixed poly- 

nomial and the linear block was assumed to consist of a 

time-varying filter. 

Although, an extended Kalman filter t,ype algorithm 

can be expected to yield good performance for the problem 

treated in the present paper, cf. [6], the associated computa- 

tional burden may be considered too high. In particular, as 
this algorithm requires knowledge or estimates of the statis- 

tics of the noise and the dynamics of the true system. In 

practice these quantities are often unknown and hence need 

to be estimated. Furthermore, it is not possible to directly 

apply equation error based RLS to nonlinear models, since 

the regressions are assumed to contain the input and out,- 

put measurements of a presumably linear system. However, 

the Recursive Prediction Error Method, RPEM applied to 

an output error model may be considered. In the following 

this method will be tailored to the specific class of nonlinear 

systems considered here. 

2. SYSTEM AND MODEL DESCRIPTION 

Thus, consider Hammerst,ein type systems where the 

nonlinear part can be described by a discrete &ate space 

model 

yn(t) = CT g(t) + bu(t), (2) 

where T is used to denote the sampling period assuming 

that the discrete time formulation (1,2) has been obtained 

from sampling a continuous time system. Here u(t) and 

yn(t) denote the input and output of the nonlinearity re- 

spectively. 1 19~ represents the time-invariant parametriza- 

tion of the nonlinear part and g(t), with dimension M x 1. 

is used to denote the state vector. Furthermore, f: is a fixed 

real valued vector and a direct term with the coefficient b 
has been included. It is assumed that the nonlinear func- 

tion f, with dimension M x 1, is continuously differentiable 

withqespect to x(t) and &. 

lit may be noted that the commonly adopted definition of 
Hammerstein systems assume a statzc nonlinearity. However, 
here the nonlinear part exhibits a memory, (via CZ). Thus, the 
considered systems can be viewed as (slightly) generalized forms 
of the Hammerstein type systems. 



Furthermore, the linear part consists of a time-varying 

FIR filter and hence, the system output can be written as 

k-l 

yl(tle) = COh(t-1) y,(t-a)+e(t) = $CT(t-1) yJt)+e(t), 

a=0 

(3) 
where 

YJ) = [y,(t) y,(t - 1). . . yn(t - k + l)lT (4) 

and e(t) is additive zero-mean white Gaussian measurement 

noise with variance rz. It will be assumed that the time- 

varying linear parameters ;f the true system, &(t - 1) = 

[hO(t - 1) . . @l(k--l)(t - I)] , can be modeled as a random 

walk process. Thus, 

l&(t) = &(t - 1) + 3!Jq> (5) 

where z(t) is a sequence of zero mean random vectors with 

covariance matrix R,(t). This assumption may be justified 

when considering a scenario where no information on the 

dynamics is available. In order to avoid ambiguity it will 
be assumed that the FIR filter is manic. 

The following model description will be used: 

j&(t) = $- g(t) + ha(t). (7) 

k-l 

~1(t18=Csc,(t-1)g,(t-.)=~T(t-1)~~(t), (8) 
a=0 

Thus, it is assumed that the system can be completely de- 

scribed by the chosen model structure. If the coefficient for 

the direct term is unknown 6 should be substituted for b in 

(7). In addition, $Jt) is an estimate of (4). It is assumed 

that i has the same continuity properties as f. - - 

3. A RECURSIVE PREDICTION ERROR 
ALGORITHM 

Recalling the description of the system and the model 

in section 2, it follows that the prediction error becomes 

El(f) = .?/l(@) - WI&. (9) 

A Recursive Prediction Error Method, RPEM can be ob- 

tained as a result of minimizing the quadratic criterion func- 

tion V(t) = iE[Ef(t)], [7, pp. 88-921 using the stochastic 

Gauss Newton method. In the following, the RPEM will 

be applied to the class of nonlinear Hammerstein type sys- 

tems treat,ed here. In order to avoid matrix inversion, a 

‘P-matrix formulation’ of the algorithm will be considered. 

Thus, calculate 

P(t) = ( I - 
et - l)?l,WfM 

gmw - l)?$t) + x(t) ) 
-L(t - 1) X(t) 

(10) 
and update the parameter estimates according to 

e(t) = e(t - 1) + P(t)4(t)El(2)* (11) - 

where @ = & iz i]’ and the gradient vector, i.e. the 
derivative of the prediction error w.r.t. the parameter esti- 

mates. can be evaluated as 

g&(f) 
\ &f(t,&) c...-&T(t-k+l,&&) &--1) 

-n 
I 

\ if-(t - I) [zt(t) . . . ,u(t - k + l)lT I 

(12) 
In case the coefficient b for the direct t,erm in (2) is known, 

the last row of the expression for the gradient above van- 

ishes. In order to obtain w differentiate (6): 
-n 

a&(t + T&J 

where 

and 

(13) 

(141 

(15) 

Here M is used to denote the dimension of the vect,ors f 

and i. Furthermore, p is the number of nonlinear parameter 

estimates. In order to evaluate (13), the initial estimates 

e,(o) and ‘%;;+;;)) are required. 

As a t&“- varyzng scenario is considered, the for- 

getting factor x(t) should be allowed to assume values less 

than 1.0 in order to be able to discount old information and 

thus respond more quickly to changes. It is proposed that 

a method devised in [8] for on-line adjustment of X(t) is 

adopted. Hence, calculate 

Xl(t) = p+ (1 - p)[l - ezp(-:)I. 0.9 5 p < 1.0 (16) 

x,(t) = 1 - $-+ 

x(t) = xl(t) X,(l), (18) 



Here T is the desired memory or equivalently the time con- 

stant with which the influence of old information vanishes. 

In (17) s(t) is a weighted sum of over T samples of the 

squared predict,ion error, calculated as 

s(t) = 
r- 1 Ef(t - 1) 
-s(t - 1) + -. 

r i- 

Inclusion of the factor x,(t) guarantees that the forgetting 

factor X(t) attains a relatively low value initially. Further- 

more, X,(t), and thus also A(t), decreases when the squared 

residual ET(~) increases and vice versa. It is noted that this 

method does not require an estimate of (or knowledge of) 

neither the noise variance nor the statistics of the time dy- 

namics. 

In conclusion, the proposed algorithm with a variable 

forgetting factor. hereafter named the VRPEM. based on 

a Hammerstein model with a nonlinear part on a state 

space description in cascade with a time-varying FIR-filter, 

is given by eqs. (6-19). 

4. NUMERICAL EXAMPLE - ACOUSTIC 
ECHO PATH 

In telephony systems, such as conference telephony and 

mobile telephone handsfree, where the loudspeaker and the 

microphone are separated, the remote end talker’s speech 

may be echoed via acoustic coupling. Typically the echo 

propagates via a direct path between the loudspeaker and 

the microphone as well as via one or several reflections in 

the room. It is usually possible to model the echo pat,h in 

the acoustic cavity using a linear filter. The duration of 

an acoustic echo in a teleconferencing system may be sev- 

eral hundred milliseconds. In addition, the system may be 

time-varying. While the propagation can be considered as 

essentially linear, it is usually necessary to account for non- 

linearities in some of the electrical components. Typically, 

the loudspeaker is the main source of nonlinear distortion. 

This effect is mainly due to nonlinearity in the flexible sus- 

pensions to which the diaphragm, (cone) is mounted and 

inhomogeneity in the magnetic flux density in the air gap 

of the permanent magnet, [9, ch.71. In particular for high 
input levels, these sources of distortion may severely de- 

grade the sound quality. These nonlinearities can be well 

approximated by respectively third and second order poly- 

nomials in the diaphragm displacement, [lo]. The following 

loudspeaker model, has been suggested in [lo]: 

&I121 + 87L2Il 

0 

en313 + en4x223 + &x;x~ 

-I- 13 (20) 
&11 d + en1213 

For an interpretation of the state g(t) = [xl(t) az(t) x3$t)lT 

and the nonlinear parameters e, = [6’,, , f&2,. . . , &12] in 
terms of actual physical loudspeaker parameters cf. [10,6]. 

the corresponding discrete form is obtained as 

z(t+ 1) = z(t)+l k~.lt~8,),4~).~nl = 

Assuming that the derivative is approximated with a for- 

ward difference and that the sampling period equals unity, 

( 

-1.1 

0 

0.6 

( 

-o.o4rz(t)z3(t) 

+ 0 

-0.04x;(t)- 0.322;(t) ) 

+ 

( 

-o.o5&t)Q(t) 
0 

) 

(21) 
O.Olxl(l)z*(t) + 0,0221(~)x;(t) 

Yn(t) = [O 1 Olc(t) (22) 
which corresponds to the associated nonlinear parameters 

e, = [&21, &I2 . &121T 

[&I . ..&I= [0.4, -Id,-0.2,-0.04,-0.05,0.6]. 

[&7 . . .&12] = [0.01,0.02, -0.5, -0.04, -0.32, -1.151, 

(23) 
(cf.(20)). This choice of parameters corresponds to a loud- 

speaker with rather low quality. The level of nonlinear dis- 

tortion is quite high. In particular, with a 0 dB sinusoidal 

input, the first odd order harmonic is only 24 dB below the 

fundamental tone. 

Next, it is noted that for the considered problem the 

gradients corresponding to (15,14) become 

( 

U il i3 i2i3 ctzi3 0 0 0 0 0 0 0 

000000000000 

) 

y (24) 
0 0 0 0 0 il d192 ?li; & i; 2; %3 

( 

8n2 &4?3 + 2en5*223 en3 

0 0 1 . 

in6 + kz722 in721 $ 2&6ili2 + &,9 &xl2 

To summarize, a ‘typical’ acoustic echo path in a confer- 

ence telephony or telephone handsfree system can be mod- 

eled with a Hammerstein system composed of a nonlinear 

part as described above in series with a time varying FIR 

filter. Consequently, the algorithm derived in sect,ion 3 can 

be used for acoustic echo cancelation. 2 In this example 

21n practice the problem is further complicated since the 

echo is typically contaminated by various kinds of disturbances 
that are picked up by the microphone. Also during periods 
with double-talk, i.e. simultaneous two-way speech, the near-end 
speaker acts as an additive disturbance. 



the initial values of the 12’th order linear time varying FIR 

filter were chosen as 

&* = (1.0 0.1578 0.3548 0.3820 0.2872 0.1388 - 0.0018 

-0.0954 - 0.1300 - 0.1147 - 0.0706 - 0.0201 

0.0197). (261 

The estimation problem becomes very difficult in case all 

the nonlinear parameters are unknown. In practice, the odd 

harmonics often dominate over the even harmonics. Con- 

sequently, it might be interesting to study a scenario where 

all the nonlinear parameters are assumed known, except for 

those corresponding to the nonlinear relationship between 

the magnetic force and the diaphragm, i.e. [ 0,s 0,,rs 0,,ir 1. 

The variance of the white Gaussian measurement noise was 

r-2 = 10m5 and the covariance matrix of the random walk 

parameters was fixed R, = lo-’ x 1. The input to the 

system was zero mean white Gaussian noise with variance 

1.0 The variable forgetting factor, used in the VRPEM, was 

calculated according to (16-19) with p = 0.94 and r = 8. 

This value of r was found empirically to be a good choice 

for the considered scenario. As a comparison, the RPEM, 

with a fixed forgetting factor X = 0.99 was also simulated. 

As evident from Fig.1 the tracking performance is clearly 

improved by inclusion of a variable forgetting factor. The 

VRPEM exhibits a smalI tracking lag, but follows the linear 

parameter variations very good. In addition, it was noted 

that the VRPEM yields better performance, in terms of the 

expectation of the squared prediction error, E[..$‘(t)], (esti- 

mated with data from 20 independent trials), as compared 

to the RPEM with a fixed forgetting factor. The squared 

prediction error corresponds to the level of the residual echo 

that remains after subtraction of the echo replica from the 

actual echo. In this experiment, the average attenuation 

in the system was 6 dB. The peaks of E[$(t)], were ap- 

proximately 37 dB below the input level, when running the 

VRPEM, hence corresponding to an echo suppression in 

excess of 30 dB. This figure is quite good for this applica- 

tion, considering the time variations and the high level of 

nonlinear distortion. The echo suppression provided by the 

RPEM in this case was approximately 24 dB. 

5. CONCLUSIONS 

The problem of identifying a class of Hammerstein sys- 

terns, composed of a nonlinear block given on a state space 

description followed by a time-varying FIR filter, was ad- 

dressed. A Recursive Prediction Error Method with a vari- 

able forgetting factor was derived. It was demonstrated 

that the suggested algorithm can be successfully applied to 

the problem of acoustic echo cancelation. 
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