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ABSTRACT 

In this paper, we propose a simple set theoretic blind de- 
convolution scheme based on a recently developed convex 
projection technique called Hybrid Steepest Descent Meth- 

ods. The scheme is essentially motivated by Kundur and 
Hatzinakos’s idea that minimizes a certain cost function 
uniformly reflecting all a priori information such that (i) 
nonnegativity of the true image and (ii) support size of the 
original object. 

The most remarkable feature of the proposed scheme is 
that the proposed one can utilize each (II priors information 
separately from other ones, where some partial informations 
are treated in a set theoretic sense while the others are 
incorporated in a cost function to be minimized. 

1. INTRODUCTION 

In many image processing applications, the degradation of 
an image can be represented as the convolution of the true 
image with a blurring function known as a point-spread- 
function (PSF). The blurred image can be modeled as 

!?(X? Y) = WE, Y) * f(z, Y) + n(rt Y), (1) 

where (2, y) : discrete pixel coordinates of the image frame, 
g(z,y) : blurred image, f(z,y) : trueimage, h(z,y): point 
spread function (PSF), n(z, y) : additive noise, * : discrete 
two-dimensional (2-D) linear convolution operator. 

Although the effect of PSF is usually assumed to be 
explicitly known in classical image restoration techniques 
to recover the true image f(r, y), it is well known that ac- 
curate measurement of the degradation is often difficult, 
costly, dangerous, or physically impossible for example in 
applications such as astronomical speckle imaging and cer- 
tain medical imaging etc. This situation motivated a notion 
of Blind zmage restoration that estimate both the true im- 
age and PSF simultaneously. 

As seen in broad reviews on the blind deconvolution 
problem[l, 21. numerous strategies have been proposed to 
tackle this problem because of its great importance in ap- 
plication as well as in theoretical interest. 

In particular, recently, Kundur and Hatzinakos reported 
that the blind image deconvolution problem is successfully 
resolved by constructing a restoration filter with a little a 
priori information such that (i) nonnegativity of the true 
image and (ii) support size of the original object, where 
the true image is estimated by minimizing a certain cost 

function uniformly reflecting the all a priori information[3]. 
However, since each a praori information is a interpreta- 
tion of absolutely required different physical constraints, 
separate and flexible use after examining the role of each 
information would be more desirable to the problem. For 
example, only nonnegativity of the filtered image is required 
to be satisfied over the support while the complete a priori 

information on the signal value is known as a background 
grey-level outside the support. This implies that the set 
theoretic strategy[4] is natural to utilize the a priora infor- 
mation over the support while optimization is suitable to 
do outside the support. 

In this paper, motivated by the idea shown by Kun- 
dur and Hatzinakos, we propose a simple blind deconvolu- 
tion scheme based on a recently developed convex projec- 
tion technique called Hybrid Steepest Descent MetRods[5, 61. 

The most remarkable feature of the proposed scheme is that 
the proposed one can utilize each a prior-z information sep- 
arately from other ones, where some partial informations 
are treated in a set theoretic sense while the others are in- 
corporated in a cost function to be minimized. 

In addition, some variants of the proposed method can 
still be applied to the blind deconvolution problems in which 
an inconsistent set of a przorz informations is imposed. In 
such a case, these methods lead to the unique optimal FIR 
restoration filter among all FIR filters that attain the least 
sum of squared distances to all sets defined by each infor- 
mation. 

A couple of simple numerical examples are presented to 
demonstrate the performance of the proposed blind decon- 
volution scheme in noisy case as well as in noiseless case. 

2. REVIEW OF A NONPARAMETRIC BLIND 
DECONVOLUTION SCHEME 

In this section, we present a brief review of the idea of 
a nonparametric blind deconvolution scheme proposed by 
Kundur and Hatzinakos[3]. 

Assume that the following a przori information on the 
imaging process, the true image, and the PSF. 

1. The degradation of the true image is modeled by (1) 

2. The object is imaged such that it is entirely encom- 
passed by the observed frame. 

3. The true image is nonnegative, and its support is 
known a priori; the support is defined to be the small- 
est rectangle encompassing the object. 



4. The background of the image is uniformly grey, black, 
or white. 

5. Fourier Transformation of PSF H(wl,wz) satisfy the 
following condition H(0, 0) = 1. 

6. The inverse of the PSF exists, and both the PSF and 
its inverse are absolutely summable. 

Most of these are commonly assumed in numerous deter- 
ministic blind deconvolution problems. The validity and 
broad availability of these assumptions are briefly discussed 
in [3]. 

The essential strategy of Kundur and Hatzinakos’ scheme 
is best approximating the role of FIR restoration filter {u(x, y)} 
to that of the inverse of the PSF over the support by ap- 
plying part of the above a praori information. In other 
words, the consistency of the obtained estimate j(r,y) := 
U(Z, y) * g(.r, y) of the true image with these Q priori infor- 
mations is adaptively updated by minimizing a convex cost 
function: 

J(u) = c j2(v/)Cl(f(~~ 31)) 

(s,y)EDsa, 

where 

0, 
cl(f) := l 

{ ’ 

if f 2 0 

if f < 0, 

DsuP is the set of all pixels inside the region of support, DsuP 

is the set of all pixels outside the region of support, Ln is 
the background grey-level value(if the background is black, 
then LB = 0 ), and y is introduced as a sort of penalty. 
Obviously, the first term in (2) measures the consistency 
with the above 3rd assumption, the second term measures 
one with the 4th assumption, the third term reflect the 
5th and 6th assumptions. The third term is additionally 
introduced in [3] to constrain the parameter {u(r, y)} from 
the trivial all-zero solution when the background is black 
(i.e., Lg = 0). 

Fig.1 illustrates the principal strategy of the blind de- 
convolution scheme proposed in [3], where 

if i(z, y) 2 0, (rly) E Dsup 
if f(z, y) <O,(x, Y) E Sup 

if (x, y) E Dsup 

It should be noted that, in the problem, only nonneg- 
ativity of the filtered image is absolutely required to be 
satisfied over the support while the complete Q priori in- 
formation is known as a background grey-level outside the 
support. However, the nonnegativity f(t,y) over the sup- 
port is not guaranteed in general by minimizing J of (2). In 
addition, the final compensation by operating function for, 
to the part of image f(z,y) over the support seems debat- 
able because it conflict with the principal strategy of best 
approximating the role of FIR filter over the support to that 

Figure 1: Kundur and Hatzinakos’s Blind image deconvo- 
lution 

of the inverse of the PSF. On the other hand, the operation 
to the remaining part of image f(.r, y) outside the support 
is persuasive due to the known background grey-level. 

This situation implies that the set theoretic strategy[4] 
would be more natural to utilize the a priori information 
over the support while the strategy of minimizing the dis- 
tance between f(z, y) and background image is suitable to 
do outside the support. 

Remark 2.1 Alternative straightforward set-theoretic strat- 
egy would be utilizing set-theoretically the a priore infor- 
mations outside the support as well as its inside. However 
applying the well-known algorithms, for example POCS, in 
[7] for convex feasibility problems would fail to find the fea- 
sible solution to satisfy all requirements in general unless a 
restoration FIR filter has sufficiently large size, which will 
be shown through numerical examples in Section 5. 

3. HYBRID STEEPEST DESCENT METHODS 

Hybrid Steepest Descent Methods[5, 61 was recently devel- 
oped to tackle a class of signal processing problems to be 
solved both in set theoretic as well as in optimal senses. 

In this section, we briefly review Hybrid Steepest De- 

scent Methods to the following optimization problem: 
(Pl) (Convex optimization over generalized convex feasible 
set): 

Let ‘H be a real Hilbert space with inner product (., .) 
and induced norm ]I . I]. Suppose that C, (i = 1,2,. . . , m) 
and K are nonempty closed convex sets and the function cf, : 
‘H --+ Iw is defined by Q(r) := Cz”=, zu,d(z, C,)‘,C~“=, w, = 

landw,>Oforz=l,..., m. Let 

and 

he* := {U 6 K ( a(u) = inf @(h-)} # 0 

if fiG, #0, 

G := *=l 

if fiGt =O. 
r=l 

Then, for a given continuous convex function 0 : ‘H - Ilp., 
the problem is 

Minimize 0 over G. 

We call K a control set and G a generalazed convex feasible 

set. ll 



Remark 3.1 Note that the problem (Pl) is not solvable 
by standard convex projection techniques[7] or nonlinear 
programming techniques[8, 91. 

A mapping T : ‘H -+ 7-i is called nonexpansive if 
llT(x) - T(y)11 5 113: - yII for all Z, y E I-L A fixed point of 
a mapping T : Ii - ‘H is a point z E 7-l such that T(x) = x; 

the set of all fixed points of T is closed convex and denoted 
by Fax(T). For any nonempty closed convex set C C 7-l, 
the mapping that assigns every point in If to its unique 
nearest point in C’ is called the metric projection onto C 
and is denoted by PC. It is easy to see that Fix (PC) = C 

and to deduce that PC is nonexpansive. 

Definition 3.2. Let S be a subset of a Hzlbert space Ii, and 

let a function 0 : 7-l - W U {m} be twice d?gerentaabZe on 

some open set U 1 S. Then 0” : U + B(H) 2s saad to be 

uniformly strongly positive and uniformly bounded 
(or, briefly, 0” is USPUB) over S if O”(x) is self-adjoent 

for all x E S. and there exzst scalars M 2 m > 0 such that 

mllw112 5 (O”(x)w, v) 5 Mllvl12 for all x E S and v E ‘NH. 

Example 3.3. Suppose that b E Ii and A : X - fi is 

a strongly positive bounded lznear operator, i.e., (Ax, x) > 

(~ll.rII~ for some (Y > 0 and all x E ‘If. Define a qvadmtzc 

fun&on 0 : 3t - IR by 

O(u) := :(A., u) - (b, u) for all u E ‘H. 

Then 0” : X + B(X) satzsjies the conditzon USPUB over 

3-1. 

Fact 3.4. (Hybrzd Steepest Descent Method (I)) Suppose 
that T, : 1-I - ‘H (Z = 1, . , N) are nonexpansive mappings 

with F := nf”=, Fzx (T,) # 0 and 

F = FZX(TN ...T~)=F~x(T~TN...T~Tz) 

= . . = F~x(T~-~T~-* . . .T,TN) # 0, 

which is automatically satisfied for firmly nonexpansive map- 
pings (moregenerally, for attracting nonexpnsive mappings) 
T, ‘s with F # 0. Let A := UE, co(T,(‘H)) and let a func- 
tion 0 : ‘H -* IF”. U {co} be twice differen Gable on some open 
set U > A. Suppose that 0” : U -+ B(N) satisfies the con- 
dition USPUB over A. Suppose that (X,),2, is a sequence 

of parameters in [0, l] that satisfies 

(BI) lim X, = 0, 
n-tm 

(B2) c A, = SC-, 
n>l (3) 

Then for an arbitrarily fixed ,u with 0 < p < 2/M and 
any point uo E 31, the sequence (u~)~>O generated by 

ul,tl := T(nrnoa~)+~(~LL,) 

-Ant1 PLO’ (T( nmodN)+l("n)) 

converges to the unique minimizer ti* of the the function 0 
over F. 

The simplest example ot oblivious sequences (A, ) satistymg 
(3) may be X, := k for n = 1,2,. . . . 

When 0 is given as a quadratic function in Example 
3.3, the problem (Pl) is solved by the following scheme. 

Corollary 3.5. Let h-m # 0. (Y E (0,3/2] and p E (0,2/llA11). 

Assume that (X,),11 is a sequence of parameters satisfying 
(3) in [0, l] (for N = 1). Then for any point uo E ‘H, the 
sequence (u~)~~O generated by 

converges strongly to the unique minimizer of 0 over h-4. 

Remark 3.6 Note that all iterative algorithms introduced 
here are possible to employ any point in ‘H as its start- 
ing point, which implies that all algorithms to find some 
approximate solutions, for example POCS[i’] and other al- 
gorithms in [8, 91, can be used as a preprocessing of Hy- 
brid Steepest Descent Method. Suitable preprocessing leads 
to great improvement of the convergence speed of Hybrid 
Steepest Descent Method. 

4. PROPOSED BIND DECONVOLUTION 
SCHEME 

As remarked in Section 2, certain mixture of set theoretic 
treatment as well as optimization is desired to solve the non- 
parametric blind deconvolution problem. In this section, we 
propose a simple set theoretic scheme to demonstrate how 
Hybrid Steepest Descent Method can be applied to the blind 
deconvolution problem. 

Denote by {~(x,y)}~~~~~~~’ or u E IWNIXNZ the im- 
pulse response of a 2-D FIR restoration filter to be approx- 
imated to the inverse of PSF. 

Define a collection of closed half spaces in a Euclid space 
@‘I xNz by 

c qz,y) = 
1 

u E RN’XNz I (9 * u)(x, Y) 2 o} , 

for every pixel (2, Y) E Daup. Obviously, ncz,yjED,,p Cl(r,yJ 
is the set of all FIR filters that output nonnegative values 
over the support Dsup. 

Define also a hyperplane in RN’ ’ N2 by 

{ 

N1 -1 N>-1 

cz= uEIWN’xN? I c c U(X,Y) = 1 . 

x=0 y=o I 

The set Cz is imposed due to the assumptions 5 and 6 in 
section 2. Then, the projections onto these sets are trivially 
given as follows. Projections onto Cl(,,,) and Cz are easily 
computed by 

and 

l- (lJ+ 
h(u) :=u+ ,,1,12 1 



where gzY := (dz, Y),dZ, Y---l), . . . ,s(~,Y-Nz+l),... ,g(z- 

Nl+l,y-Nz+~))~ and 1 := (l,l,. . . ,I)’ E IWNlXN2, where 
t denotes the transposition. 

Our cost function 0 : RN’ ’ N2 - Iw is simply defined as 
a quadratic function 

where we can assume by Example 3.3 that 0 satisfies US- 
PUB everywhere in RN1 xNJ in almost practical situations[3]. 

It is obvious that, for consistent case i.e. 

C := n C1(z, y)nCz # 0, Fact 3.4 with p := Tract(O,T, 

(~&)ED.up 
X, := i and {T,} := {P~(,,y)}(z,y)~o.yp U {Pz} can realize 
a simple set theoretic scheme to find the unique minimizer 
of 0 over C. 

5. NUMERICAL EXAMPLES 

Though the following examples are only the cases where the 
condition C # 0 is satisfied, we can apply Corollary 3.5, in 
similar ways, to the inconsistent cases as well. 

Suppose that (i) the size of the image to be restored 
is 30 x 30, (ii) the support size of the original object is 
8 x 8, (iii) the Z-transform of PSF is sum of all monomials 
{h(m. n)z~~~}0<~~5,0<~<5 of Taylor series expansion of 
i( 1 - 0.521)-‘(1 - 0.5~;)~) (iv) the background grey-level 
is LR = 0. iv) For noisv case. noise is added at 40 dB - I ~ , 
BSNR.where BSNR := 1Olog,o 

Blurred image power 
noise variance 

and (vi) the size of the FIR restoration filter is 5 x 5 i.e. 

(Nl, N2) = (5,5). 
The examples shown in Fig.2 suggest that the proposed 

scheme based on Fact 3.4 outperforms POCS in all cases, 
but its performance seems still strongly affected by addi- 
tive noise. This situation should be improved by imposing 
additional a priori information such as the notion of Total 

uariation[lO], which will be presented elsewhere. 
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