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ABSTRACT

Large image sensors usually contain some defects. Defects are
pixels with abnormal photo-responsibility. As a result they often
generate outputs different from their adjacent pixel outputs and
seriously degrade the visual quality of the captured images. How-
ever, it is not economically feasible to produce sensors with no
defects for rendering images. A limited number of defects are usu-
ally allowed in an image sensor as long as the defective outputs
can be corrected with post signal processing techniques. In this
paper we present a robust sequential approach for detecting sen-
sor defects from a sequence of images captured by the sensor. With
this approach no extra non-volatile memory is required in the sen-
sor device to store the locations of sensor defects. In addition, the
detection and correction of image defective outputs can be per-
formed efficiently in a computer host. Experimental results of this
approach are reported in the paper.

1. INTRODUCTION

A fabricated solid state image sensor, such as CCD or CMOS sen-
sor, usually contains some defects. Defects are pixels with abnor-
mal photo-responsibility [1]. As a consequence they often produce
outputs different from their neighboring-pixel outputs, and seri-
ously degrade the overall visual quality of the captured images.
However, due to the complexity of a sensor fabrication process,
the occurrence of such defects is hard to prevent. To have a prof-
itable manufacturing yield, a limited number of defects are usually
allowed in an image sensor as long as the defective outputs within
each captured image can be corrected with post signal process-
ing techniques. Conventionally, the defects within each fabricated
sensor are identified with some test procedures performed under a
controlled environment. The locations of the defects are recorded
and then transferred to some non-volatile memory in the sensor
device (e.g., digital camera, scanner, etc.). The size of the memory
space required for storing the locations of these defects depends
upon the size of the sensor array and the maximum number of de-
fects allowed in a sensor. For example, approximate 2000 bits (250
bytes) memory space is needed to store, with a simple bit-packing
scheme, the locations of up to 100 defects of a megapixel sensor
(i.e., sensor with & 1000 x 1000 pixels). In addition to an increase
in the production cost of sensor devices, a great amount of data
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handling is also required to transfer the locations of sensor defects
into the devices during sensor assembly. An alternative way of us-
ing image sensors with defects is to consider the defective outputs
within each captured image as noises. Without knowing their exact
locations, the defective outputs are usually corrected by applying
a noise reduction function over the entire image. However, most
of the effective noise reduction algorithms are computationally in-
tensive and normally provide some low-pass filtering effects. As
a result, the function not only conceals the defective outputs but
also reduces the overall image sharpness, which is a precious im-
age quality to sacrifice.

In this paper, we present a robust sequential approach for de-
tecting the defective pixels in an image sensor from a sequence of
images captured by the sensor. The contents of the images are as-
sumed not to be known a priori. With our proposed approach, both
the defect detection and correction algorithms can be implemented
with software and run in a computer host. Since the result of the
defect detection, such as a location map of the defective pixels, can
be stored as a file in the host, no extra memory space is required
in the sensor device to store the defect locations. After the defect
location map has been generated, the defective outputs in each cap-
tured image can be promptly corrected according to the outputs of
their functional neighboring pixels. Furthermore, as only the de-
fective outputs are modified, the overall image sharpness can be
well preserved.

The rest of this paper is organized as follows. Section 2 briefly
describes some common types of sensor defects. Section 3 reviews
some properties of a sequential probability ratio test procedure
based on which the proposed sensor defect detection algorithm
is designed. A pixel attribute, minimum neighboring-pixel differ-
ence, and the characteristics of its values measured from both func-
tional and defective pixels are introduced in section 4. In section
5, we propose a robust sequential algorithm for detecting sensor
defects using a sequence of images whose contents are not known
a priori. Experimental results are reported in section 6 to demon-
strate the efficacy of the proposed approach. In section 7, we con-
clude.

2. SENSOR DEFECTS

Sensor defects are results of fabrication errors such as impurity
contamination and silicon dislocation. According to its location, a



sensor defect can be classified as a point defect (an isolated defec-
tive pixel), a cluster defect (a group of contiguous defective pixels)
or a column/row defect (a column/row of contiguous defective pix-
els) [1]. In this work, we are interested in detecting three common
types of point defects: stuck high, stuck low and abnormal sensi-
tivity defects. A stuck high defect is a pixel that always has a very
high or near to full scale output. On the other hand, a stuck low
defect always has a very low or near to zero output. An abnor-
mal sensitivity defect is a pixel that produces an output different
from the output of a functional pixel by more than a certain amount
or percentage when both are exposed to the same light condition.
These point defects are usually allowed in an image sensor since
their defective outputs can be readily corrected according to the
outputs of their functional neighboring pixels. However, to avoid
changing the outputs of functional pixels when correcting the de-
fective outputs, the locations of sensor defects need to be known a
priori. In the next section, we shall describe a sequential decision
rule based on which our proposed algorithm for detecting sensor
point defects is developed.

3. SEQUENTIAL PROBABILITY RATIO TEST

A sequential probability ratio test (SPRT) [2][3] is an optimum de-
cision rule for identifying one out of the two underlying hypothe-
ses from a sequence of observations. Specifically, an SPRT over a
sequence of observations y = (y1, ¥2, . - - , Yn) is the decision rule
given by

H17 An (y) > B
n(y) = ¢ Ho, An(y) <A (D
take another observation, otherwise

which accepts hypothesis H; if the likelihood ratio, A, (y) =
P1(y)/Po(y), is above a pre-defined threshold B; accepts hy-
pothesis Hy if the likelihood ratio is less than a threshold A; oth-
erwise continues taking observations until either one of the thresh-
olds A and B is attained; where the decision thresholds (A, B)
satisfy the condition 0 < A < 1 < B < oo, while Py and P; are
the probability density functions of the observations under the two
underlying hypotheses Hg and H1, respectively.

The properties of an SPRT have been extensively investigated
in the field of statistical signal processing [2][3]. Some of the prop-
erties that are useful in designing our proposed defect detection
algorithm are summarized here. Let A' = min{n : A,(y) €
(A, B)} be the random number of observations required to make a
decision. A well-defined SPRT has the following properties: I) Fi-
nite Decision Time: Wald showed in [2] that Prob(N < o) = 1.
Namely, a decision can always be made with an SPRT decision
rule as long as the two underlying hypotheses are statistically dis-
cernible and an enough number of observations are available; IT)
Reliability: Let o = Prob(6a(Y1,Y3,...,Yx) = Hi|Hp) and
B = Prob(dy(Y1,Y2,...,Yx) = Ho|H1) be the false detection
probability and miss detection probability of an SPRT decision
rule, respectively . According to Wald’s approximations rule [4],
an arbitrary target error-probability performance level (a, §) can
be achieved, approximately, by setting the decision thresholds as

A=B/1-a) ad B=(-p)/a @

Notice that the decision thresholds (A, B) are chosen indepen-
dently of the probability densities Po and P; of the two hypothe-
ses; III) Optimality: Consider the expectations E{(N|Hp) and

E(N|H,) as the average number of observations required to make
a decision under each respective hypothesis. The SPRT decision
rule is optimal in the sense that any other decision rule with the
same error-probability performance (a, 3) would require, in aver-
age, more observations to make the decision. This result is known
as Wald-Wolfowitz theorem [3].

Although an SPRT decision rule can make a decision in some
optimum sense as described above, it requires the probability den-
sities of the two underlying hypotheses to be known accurately to
a certain extent. Furthermore, while the average number of ob-
servations required to make a decision is finite with probability
one, it can be very large to be of no practical use if the probability
densities of the two hypotheses overlap with each other to a large
extent. In the next section, we introduce a pixel attribute whose
values measured from functional and defective pixels are statisti-
cally discernible, and describe methods for estimating the proba-
bility densities of this pixel attribute from the images observed.

4. MINIMUM NEIGHBORING-PIXEL DIFFERENCE

In this section we consider a pixel attribute, minimum neighboring-
pixel difference (MND), which will be used to sort out the defec-
tive pixels from the functional pixels in an image sensor . The
MND value of a pixel (4, §) under examination is defined as
y(id) = min{|1G,4) = I(m,n)|} 3
where G (%, j) denotes the locations of the pixels within a neigh-
boring support around pixel (i, §), I(z, ) is the output of pixel
(3,4) and I(m,n)’s are the outputs of the neighboring pixels.
The support of neighboring pixels around each pixel of interest
can be properly selected for different types of sensors. Figure 1
shows some example supports of neighboring pixels (shaded re-
gions) around a pixel in a monochrome sensor and a sensor with
Bayer color filter array pattern. To assist the following discus-
sion, we denote the output of the neighboring pixel with the min-
imum difference from the output of pixel (4, 7) as z(¢,7), ie.,
y(2,5) = [I(¢, 3) — 2(¢, §)|- To simplify the notation, from now on
we will also suppress the location of the pixel under examination.

Figure 1: Four example supports of neighboring pixels (shaded
regions) around a pixel (central pixel) in monochrome sensor (left
two) and sensor with Bayer color filter array pattern (right two).

Let pr(y) be the probability density function (pdf) of the
MND value measured from a functional pixel in an observed im-
age. In order to model the pdf pr(y), we make the two following
assumptions. First, at least one of the neighboring pixels of any
functional pixel in the image is functional. Second, the MND val-
ues measured from all the functional pixels in the image can be
considered as realization of a stationary and ergodic random pro-
cess. These assumptions imply that the pdf pr(y) of a functional
pixel is statistically equivalent to the distribution (or histogram) of



the MND values measured from all functional pixels in the im-
age, and furthermore the pdf pr(y) is independent of the outputs
of the neighboring pixels, ie., pr(y|z) = pr(y). As the con-
tent of a general scene is highly spatially correlated, the pdf pr(y)
would normally has a significant peak near the zero MND value
and decreases rapidly when the MND value becomes large. From
our findings, the pdf pr(y) of each observed image can be well
approximated by a discretized Gamma distribution, given as

1 y+1Aa$a 1,—Xz
p(y)—g/y Wdl‘ for y=0,1,...,L (4

with0 < @ < 1, where y is the measured MND value, I'(c) is the
Euler’s gamma function defined as I'(ar) = [ 0°° " le~® dx for
positive a, L is the maximum possible MND value, and scalar ¢ is
a normalization factor that makes p(y) a legitimate density func-
tion [5]. The parameters o and A can be computed as A = m/ o?
and @ = m?/a?, where m and o are the mean and variance of
the MND values measured from all the functional pixels in the im-
age. Since a usable sensor normally contains a very small number
of defective pixels (for example, 100 ~ 200 defective pixels in a
megapixel sensor) and the MND values of the defective pixels are
bounded within the pixel output range, they can be considered as
negligible outliers in estimating the pdf pr(y) . Therefore, the pdf
pr(y) of a functional pixel can be approximated very well by the
normalized histogram, or the discretized Gamma density function
with parameters « and A, computed from the MND values mea-
sured from all pixels (both functional and defective) in the image.

To model the MND pdfs of different point defects, we assume
that none of the neighboring pixels of a defective pixel is defec-
tive. Although this constraint appears somewhat strict, it is not an
unreasonable assumption given that each usable sensor has only
a very small number of defects. Sensors with defects which do
not satisfy this assumption can be sorted out after the fabrication.
Now, suppose fsr(-) and fsg(-) are the output pdfs of stuck low
and stuck high defects inferred from existing data. According to
equation (3), the MND pdf of a stuck low or stuck high defect,
given that the output of its minimum difference neighboring pixel
is 2z, can be expressed as

fx(2) y=

where X = SL or SH denotes the stuck low or stuck high de-
fect. Similarly, let fas(-) be the pdf of an abnormal sensitivity
defect whose output is r x 100% different from its minimum dif-
ference neighboring-pixel output. The MND pdf of an abnormal
sensitivity defect, given that the output of its minimum difference
neighboring pixel is z (where z # 0), can be approximated as

px(ylz)={f"(z+y)+fx(z—y) y;éO 5

pas(ylz) = { Ji[;‘?;)(y/z) * fas(-y/2)] Z i 8 (6

Hence, with the assumption that the pdfs fsr.(-), fsa(-) and
fas(:) can be determined from a set of existing data, we are able to
obtain the MND pdfs of different types of defects after the outputs
of their minimum difference neighboring pixels have been known.
Our experience shows that the MND pdfs of these point defects
are usually very distinguishable from the MND pdf of a functional
pixel.

5. THE PROPOSED DETECTION PROCEDURE

Having a pixel attribute whose pdfs measured from functional pix-
els and defective pixels are statistically discernible, we can now
formulate the detection of sensor defects from a sequence of im-
ages as a sequential probability ratio test. Let Hg be the hypothesis
saying that the pixel under examination is well functional and H;
be the hypothesis saying that the pixel is a certain type of point de-
fect of interest. For each pixel, by assuming that its MND values
measured from different images are independent of one another,
the SPRT rule for determining whether a pixel is defective after
observing n images is equivalent to comparing the accumulated
log-likelihood ratio, given as

Loy, z)= 1

1<k<n

pl yk7zk
pE(ye, 2t)

=> I k(yk M

1<k<n

to two decision thresholds (A, B') which are chosen to meet a
desired error-probability performance according to a logarithmic
form of equation (2). In equation (7), the property p&(yx|2s) =
pE(yk) of the MND pdf of a functional pixel (discussed in Section
4) has been used to obtain the second equality; yg and 2z are the
MND value and the output of the minimum difference neighboring
pixel, respectively; p¥(yx|2x) is the MND pdf of a certain type of
point defect as defined in (5) and (6); and k is the number of the
image being processed.

Since the MND pdf under each hypothesis is only an es-
timate probability density, the likelihood ratio defined in (7)
could be very sensitive to errors in the estimate pdfs, es-
pecially for those observations where the log-likelihood ratio,
U(yr, 2t) = log [p’f(yk|zk)/p’(§(yk):|, becomes unbounded, i.e.,
when pf (yx|2#) > p6(yk) or p¥ (yk|2k) < p6(ys). One way to
improve the robustness of the detection procedure is by limiting
the range of the log-likelihood ratio obtained from each observa-
tion in equation (7) as

c’ U (Y, 21) >
gk(yr,ze)) =9 Wlye,ze) ¢ Sy, ze) <7 (8)
c Ui (Y, z1) <

where ¢’ and ¢’ are two proper limiting constants that satisfy
—o00 < ¢ <0 <" < oo. Infact, the decision rule with this
limiting log-likelihood ratio is an optimum decision rule if the ac-
tual MND pdf under each hypothesis can be modeled as a mixture
of the estimate MND pdf and a small but arbitrary contaminating
pdf [4]. Generally, we consider the decision rule with the accumu-
lated log-likelihood ratio given by

Laly,z)= Y wlz)-g

1<k<n

(T (yrs 22)) )

where g (Ix(yr, 2%)) is defined in (8) and w(zz) is a weighting
function which depends on the minimum difference neighboring-
pixel output 2z as well as the type of the defect to be detected.
The reason of incorporating such a weighting function is that it is
easier to detect a specific type of defect from observations where
the minimum difference neighboring-pixel outputs fall under a cer-
tain intensity range. For instance, a stuck high defect is easier to
be detected when the outputs of its neighboring pixels are small.
Similarly, it is easier to detect stuck low and abnormal sensitivity
defects from high intensity image regions. As an example, one



could set the weighting function for detecting stuck high defects
as w(zg) = 1(zx €[0,b]), where 1(-) is an indicator function
that takes the value 1 if its argument is true and 0 otherwise. Note
that this is nothing but only the observations with the minimum
difference neighboring-pixel outputs below a certain value b will
be used to determine whether a pixel is a stuck high defect.

We now describe the proposed procedure for detecting sensor
defects. In our setting, each type of defect is detected separately.
A binary decision map, which indicates whether or not a decision
has been made on each pixel, is initialized to all zero before the
detection starts. The images are then processed one after another.
While processing an image, for each pixel if the accumulated log-
likelihood ratio of any defect types falls outside the pre-selected
decision thresholds (A’, B'), its corresponding location in the de-
cision map is set to 1, i.e., a decision is made. If the accumulated
log-likelihood ratio is above the threshold B’, the pixel is consid-
ered to be defective and its location is recorded in a sensor defect
map. For each observed image, the detection procedure processes
only those pixels which cannot be classified from the previous im-
ages. Therefore, the number of pixels required to be processed de-
creases rapidly as the number of the processed images increases.
When there is no more input image, or the number of the processed
images exceeds a certain limit, or the number of the unclassified
pixels drops below a certain threshold, the procedure is terminated
by declaring that all the unclassified pixels are defective, or only
those unclassified pixels with terminal accumulated log-likelihood
above a new threshold, say zero, are defective.

6. EXPERIMENTAL RESULTS

In this section, we report the experimental results of the proposed
sensor defect detection procedure. A sequence of gray-scale im-
ages, 20 in total, were used in the experiments. The contents of
the images include human portrait, outdoor, indoor, low key, and
high key scenes. All the images have size 640 x 480 pixels and 8
bits output per pixel. Three different types of point defects (50 for
each type) discussed in this paper were embedded in the images.
In each image, the outputs of stuck low defects were uniformly se-
lected from intensity range [0, 20]. Similarly, the outputs of stuck
high defects were uniformly selected from intensity range [230,
255]. For each abnormal sensitivity defect, we first decided its ab-
normality r, where 0.15 < |r| < 1, with some random probability.
Then, its output in each image was set to a value that is r x 100%
different from the output of one randomly selected neighboring
pixel. The 8-connected neighboring-pixel support shown in Fig-
ure 1 was used in the experiments. Figure 2 shows the percentage
of the unclassified pixels versus the number of the processed im-
ages. We can see that the decisions on most pixels can be made
after only a few images have been processed. Table 1 reports the
numbers of both false detection and miss detection in identifying
different types of defects after all the images have been processed.
For example, out of 307200 (640 x 480) pixels, the 50 stuck low
defects were successfully detected and 55 non-stuck low pixels
were incorrectly classified. It should be noted that most of the false
detection in identifying stuck low or stuck high defects are actu-
ally due to the other two types of defects. Combining the results
of the detection of different types of defects using OR operation
(i.e., a pixel is classified defective if it is identified as a stuck low,
or stuck high, or abnormal sensitivity defect), all the defects were
successfully detected by the proposed procedure with only 3 false

detection, as shown in Table 1.

3 2 8
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4 6
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Figure 2: Percentage of the pixels which have not been classified
versus the number of the processed images.

[ Defect || miss-detection # [ false-detection # |
Stuck low 0 55
Stuck high 0 78
Abnormal sensitivity 0 3
Combine results using OR 0 3

Table 1: The numbers of miss detection and false detection in clas-
sifying stuck low, stuck high, abnormal sensitivity defects and the
combination (using OR operation) of the detection results.

7. CONCLUDING REMARKS

We have proposed a robust sequential approach for detecting dif-
ferent types of sensor defects using a sequence of images whose
contents are not known a priori. In the approach, a pixel at-
tribute, minimum neighboring-pixel difference, is measured from
each pixel to sort out the defective pixels from the functional pix-
els. To reduce the impact due to the errors in estimating the pdfs
of the pixel attributes measured from different types of pixels, ro-
bust detection techniques are engaged to enhance the performance
of the detection procedure. Our experimental results show that
most of the sensor point defects can be detected by the proposed
procedure with only a very small number of false detection. The
detection methodology can be readily extended to identify other
types of sensor defects by considering different pixel attributes and
appropriate neighboring-pixel supports. For example, to identify
sensor cluster defects with at most k contiguous defective pixels
in each cluster, we can define the pixel attribute as the value of
the k** minimum neighboring-pixel difference (in an ascending
order) and select a neighboring-pixel support that contains at least
k pixels.
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