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ABSTRACT

A control-oriented identification and uncertainty estimation
approach from input-output data is presented, for use in the
design of control systems for paper machines. The application of
this approach is demonstrated on a high fidelity simulator. An
estimate of the process model along with the uncertainty bounds
that describe the confidence limits of the model, consistent with
the robust control theory, is obtained. These results can then
used to design a multivariable controller based on loop-shaping
principles and guided by the estimated uncertainty bounds. The
simulations demonstrate the suitability of the approach and
illustrate that the technique can be used to provide high
bandwidth performance for both servo and regulatory control.

1. INTRODUCTION

Motivation for this work has been driven by the goal to improve
the control of paper machines. Recently multivariable predictive
controllers have been used for controlling paper machines.
Although multivariable predictive control technology is
relatively mature, it has not taken full advantage of the
developments in the area of robust control theory. Success of
robust loop shaping techniques such as those used in controlling
temperatures in diffusion/CVD furnaces [1,2], motivated the
authors to use these concepts for paper machine control. While
this paper presents the application to a high fidelity paper
machine simulator, a preliminary evaluation of the concepts with
real plant data has produced similar results.

In a quick description, a paper machine process begins by
spraying diluted paper pulp (~3% solids) onto a wire mesh. After
evaporation of some of the water content, the paper is fed
through a sequence of dryers, coated with latex (depending on
the type of paper produced) and, eventually, collected on a reel
(see Fig.1). Important parameters include machine speed, paper
dry weight and paper dryness that are measured by sensors
located at different points in the production line. Stock flow and
dryer temperatures are among the variables used to control the
process. While the actual set of control inputs and process
outputs includes more variables, only the ones listed above are
considered here. An existing paper machine simulator is used to
validate the performance of the Loop Shaping controller. This
simulator had been developed several years earlier, and has been
used in the development and verification of other Honeywell
paper machine control products. It is a full First Principles
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simulator, covering the process areas from the machine chest to
the reel. It includes high fidelity models for the thick stock
system, approach flow, head box, forming table, press and dryer
sections. It also has a size press, speed/draw system, and a
closed-loop white water system. Disturbances can be added at
various points in the process, and the variations can be spectrally
tailored to approximate real machine conditions. Over the course
of many evaluations, it has been shown to be a faithful
representation of an actual paper machine.

Paper machine control provides a particular challenge. Many of
the process variables are interacting, so a combination of single
loop controllers is not effective. For a multivariable approach,
the situation is complicated by the wide range of process
responses, which need to be solved simultaneously. For example,
some relationships have long dead-times, but short settling times,
(eg. Stock/Weight), some have short dead-times and long time
constants, (Steam/Moisture) and others can have a minimal dead-
time and fast dynamics, (Speed). Historically, forming a
decoupled control strategy to solve this problem, and maintaining
robust control in the presence of model errors, has been a
difficult challenge.
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Figure 1. Paper Machine Schematic

There are two main objectives that the controller must address.
The most common requirement is to minimize the long and
medium term variability of the process. The control must thus be
optimized for disturbance rejection. Bearing in mind the presence
of some long transport delays, there is a practical limit on how
fast a variation can be reduced, but by using a computationally



fast, robust, controller the bandwidth can be maximized. The
other requirement is for the controller to allow smooth changes
to its operating point. The system must therefore perform well at
set-point tracking. Whilst some traditional controls could be
optimized for either objective, but not both, the Loop Shaping
approach allows for a complete control solution, making use of
the available extensive insight and computational tools.

To solve this problem a multivariable controller is designed
using a traditional implementation approach consisting of: step
test, modeling and uncertainty estimation via system
identification, controller design, and controller validation. The
key design approach is to use an integrated and systematic
method to obtain control models using input-output data and
design a multivariable H., controller to meet the desired
objectives. Particular attention is focused on the computation of
uncertainty estimates that limit the achievable controller
performance. The success of implementation in terms of
performance and expediency in implementation depends
critically on the correct estimation of the limitations imposed by
the model uncertainty.

2. MODELING VIA SYSTEM
IDENTIFICATION

2.1 Parameter Estimation

The system identification relies on a least squares parameter
estimation algorithm to obtain parameter estimates for a linear
model that describes the process locally around an operating
point. The main objectives of identification are to determine a
system model that describes the input-output data and to estimate
uncertainty bounds that describe the confidence in the model.
The choices of system model structure and uncertainty
description during identification are not unique. In this
application, the approach follows that of [1,2].

To describe the dynamical system, a state-space model is used
with the states and outputs given by:

X=Ax+Bu;y=Cx+Du

For multiple-input, single-output (MISO) systems, under an
observability assumption [3], the above model can be written as:

X=Fx+0u+0,y;y=qgx+0,u

where F' and ¢ are selected a priori so that F is Hurwitz, (F,q) is a
completely observable pair, and @,,8,,0, are adjustable

parameters. The usefulness of this description is that it can be
readily converted into a linear model form, which is convenient
for parameter estimation, that is, y=w’©. Here © is a vector
containing all the adjustable parameters (elements of 01,02,03)

as well as the initial conditions x(0). The regressor vector w
contains the signals (sI-FT)'Iun, (sI-FT)'Iqu, 1, and (sI-FT)'IqT,
where the last term corresponds to the unknown initial
conditions. After generating the regressor vector, @ can be
determined in a least squares sense from:

0 =g miny el

For systems with multiple outputs (MIMO), the above
formulation is repeated for each output and the resulting state-
space model is concatenated to produce the overall model of the
system. Since this approach may result in a non-minimal model,
it is followed by a model order reduction step.

A by-product of the above approach is that the minimized error
corresponds to the contribution of coprime factor uncertainty [5].
For this, the above parametrization of the system can be written
as:

y=M"[Nw) +e]

where ¢ is the fitting error, and M and N are stable proper
systems determined by F,q and @,,8,,0,. The coprime factor

uncertainty arises from attributing the error to the input and the
output, i.e.,

e=A [ul+A, [yl

Summarizing, the system identification procedure is described as
follows: Generate an input excitation signal [4,9]. Compute the
filtered signals and estimate the parameters of the linear models
by solving the least squares problem. Compute the corresponding
state-space representation of the identified system [A,B,C,D] and
perform model order reduction, if necessary, [5]. Compute the
uncertainty bounds for the identified system.

2.2 Uncertainty Estimation

The estimation of model uncertainty bounds (or confidence
limits) is an important component in system identification. It is
even more crucial in the context of feedback, since it imposes
constraints on the achievable performance that enters as user
selected parameters in the standard controller design techniques.
Violation of such constraints may lead to poor control
performance and possibly closed-loop instability.

It should be emphasized that the role and usefulness of feedback
is to reduce the effects of certain forms of uncertainty and
modeling errors. Feedback controllers can typically tolerate and
attenuate low-frequency uncertainty but are more susceptible to
modeling errors in the mid-frequency range (the separation is
based on the closed-loop crossover frequency). The implications
of this observation are twofold. On one hand, the identification
procedure should emphasize the model accuracy in the frequency
range around the crossover. This can be achieved by a proper
selection of the excitation sequence and the identification design
parameters (input signal, prefilters, etc. [4,9]). On the other hand,
once a model becomes available, it is important to compute
uncertainty estimates that are suitable for the controller design
technique used. Furthermore, these estimates -although
approximate - should be able to detect a possible infeasibility of
the controller design problem with the given closed-loop
performance objectives.

Concentrating on the last issue, and with H,, as our controller
design technique, we express the uncertainty estimates as weights
for the loop sensitivity (S={I+GK]") and complementary
sensitivity (I'=GK{I+GK]™") functions. This is compatible with
standard software (MATLAB’s Robust Control Toolbox, [6]). In
this form, H., design draws considerable insight from classical



loop-shaping principles, while fundamental feedback limitations
are easily observed (e.g., S+7=I).

Various model error structures have been used in control systems
design for describing the uncertainty in a manner consistent with
robust control theory [S]. In a typical uncertainty estimation
approach from data, the model-data mismatch is described by a
multiplicative uncertainty, say A such that y = (I+A)G[u], where
G in the nominal (identified) model of the plant. To ensure
closed-loop stability, the magnitude of A imposes a constraint on
the magnitude of T in the frequency domain.

In this work, we adopt the coprime factor uncertainty approach of
[1,2] which is defined as follows. Let G = M*N be a coprime
factorization of the nominal plant model. Then the coprime factor
uncertainty is defined in terms of two stable operators Ay and Ay
such that the actual plant is y = (M+Ay) (N+Ay)[u]. This
approach is well suited for the earlier described identification
scheme since Ayfu]+Ayfy] equals the estimation error which is
the signal minimized during the parameter estimation. Its main
advantages lie in its handling of low-frequency perturbations and
perturbations that can change the number/location of unstable
modes.

A difficulty with this formulation arises from the fact that the
correlation between the plant input and output prohibits the
estimation of separate bounds for the two uncertainty
components from input-output data. To alleviate this problem,
we adopt an unfalsification approach, similar to [7] but with the
perturbation sources being both the plant input and output. That
is “we seek to find a bound for the most favorable uncertainty
that is required to describe the residual error.” Of course, the
interpretation of such bounds in the controller design is also
modified. Instead of sufficient condition for stability, we now
have the pseudo necessary conditions for instability. That is,
loosely speaking, if the controller design violates the given
bounds, then it is likely that the closed-loop system will be
unstable. In this case, we should design the controller so that it
maintains some distance from the estimated stability boundary
(interpreted as a risk factor).

The key ideas for the computation of uncertainty bounds and the
corresponding S and T weights for H., design were introduced in
[1,2]. These computations are fairly efficient for systems with
similar channel bandwidths and “low” condition numbers and
where the objective is channel matching (i.e., S and T are scalar-
times-identity). Here, however, the same computation may lead
to undesirably conservative results due to (possible) channel
bandwidth separation and conditioning problems. Notice that in
[1,2] the inputs and outputs had comparable magnitudes and
frequency contents, while here the inputs and outputs represent
physically different quantities, which can easily cause
conditioning problems by a simple unit transformation. To avoid
such problems and reduce the conservatism of the bounds, we
use diagonal input and output scaling transformations and an
error whitening filter, as shown in Fig. 2. The diagonal scales are
computed so that all channels (input or output) contribute the
same energy. The objective of these operations is to extract the
obvious structural information from the uncertainty blocks so
that a lumped estimate of their gain is not too conservative. For
the above system, the application of the Small Gain Theorem [5]

with “D-scale” optimization yields the following robust stability
condition:

FU KSM "W, I5[A 1+ 5Y.SM'W,15[A,] <1

where & denotes the maximum singular value. For square
systems, writing KS as G™'T, the uncertainty bounds are then
computed as in [1,2], by solving the following optimization
problem:

min& U GTM "W, B, +5ly sM W, ],
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Figure 2. Structure of Identification Uncertainty

With T and S replaced by the respective target values, these
uncertainty bounds are attractive as they depend only on the
desired loop properties and not the controller itself. In addition,
the various quantities have simple frequency domain definition
and can be readily computed via FF1’s. By defining T and S as
diagonal transfer matrices, the design requirements can be
specified to accommodate significant variations in the channel
bandwidths (not the most general but covering most practical
objectives). Notice that guidelines for the selection of the target
loop sensitivities can be obtained from this expression by
analyzing the per-channel contributions. It is also worthwhile to
mention that there is no loss of information when the uncertainty
is split. Simply the energy of the error is distributed to the two
uncertainty blocks. Consequently, if the actual design does not
match the target loop, the evaluation of the robust stability
condition will simply be suboptimal and more conservative.
Based on practical experience, there is rarely a need to iterate the
uncertainty decomposition step as long as the designed closed-
loop is “close” to the target. After the controller design is
complete, the robust stability condition should be re-evaluated
for the actual controller to obtain a more accurate estimate.

For plants with highly mismatched channels, better estimates
could be obtained by using a formal p-analysis (e.g., see [11]).
Nevertheless, in our case, the simpler approach relying on error
whitening and scaling has proven to be adequate.



While the above analysis provides only estimates of the
uncertainty bounds and closed-loop stability is not strictly
guaranteed, practical experience indicates that there is a very
strong correlation between these bounds and successful
controller designs.

3. CONTROLLER DESIGN AND
IMPLEMENTATION

Using a (sensitivity) loop-shaping approach the uncertainty
bounds obtained in the system identification step are used to
define simple sensitivity and complementary sensitivity weights.
The weights are chosen to maximize the disturbance attenuation
properties without violating the constraints imposed by the
uncertainty estimates. These together with the identified plant are
then converted in the format required by the computational
software [6]. An H., approach was selected for the controller
computations because it minimizes the weight selection iterations
for achieving a target loop shape. (Of course, other controller
design tools may be used as well, as long as the loop-shaping
objectives are met.) This process may require a few iterations for
a first-time design, especially when right-half plane zeros (or
delays) appear close to the desired bandwidth. The entire process
is quite fast; starting with raw data, it takes less than an hour
(considerably less for second-time designs) to generate and
validate the final controller. In our case, we performed an
additional iteration for controller refinement by appending
closed-loop step data to the original PRBS and repeating the
identification and controller design.

Following this initial solution, the obtained controller is reduced
and discretized and is augmented with an observer-based anti-
windup scheme [8] to handle control input saturation. The final
controller is also augmented with a plant observer to supply an
estimated plant output in case of bad or missing sensor
measurements. This augmentation helps to preserve the
controller integrity, since the sensors (scanners) used in paper
production, undergo frequent cleaning/resetting procedures and
paper breaks are not uncommon.

The final controller was implemented in the TDC3000' at a
sampling rate of 2 seconds. Step set-point changes showed
excellent tracking performance and channel-decoupling along
with smooth control activity. Subsequently, the closed-loop
response to a large unmeasured disturbance (a change in
consistency), the transition to a grade change under closed-loop
control, and the closed-loop response to various set point
changes at the new operating region were successfully evaluated.
Due to space limitations, more details on the controller
evaluation have been included in the second author’s web page
http://enuxsa.eas.asu.edu/~tsakalis.

4. CONCLUSIONS

The above “experimental” results demonstrate that the robust
loop shaping control design is a sound methodology for
designing controllers for paper machine applications. Similar
results were obtained in a preliminary evaluation of the design
approach with actual plant data. Moreover, the incorporation of
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the uncertainty bound in the controller design is intuitively
appealing. The control performance was excellent. The user time
requirement for the input-output data collection is in the order of
2 to 3 hours for a typical paper machine. The identification,
controller design, and validation cycle can be completed within
an hour. This leads to a significantly fast turnaround time. This
technology utilizes traditional control design concepts whereby
an extensive insight and computing tools available.

Even though, the above controller worked quite well at a
different operating region, this may not be true for all possible
regions of operation (e.g., making different grades of paper). For
such cases, a non-linear or a gain-scheduled controller may be
designed and, possibly, coupled with an outer loop optimizer.
The details for this are left as a subject of future work, together
with the evaluation of other anti-windup mechanisms [10].
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