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ABSTRACT

This paper presents a detailed performance analysis of third-
order nonlinear adaptive systems based on the Wiener model. In
earlier work, we proposed the discrete Wiener model for
adaptive filtering applications for any order. However, we had
focused mainly on first and second-order nonlinear systems in
our previous analysis. Now, we present new results on the
analysis of third order systems. All the results can be extended
to higher-order systems. The Wiener model has many
advantages over other models such as the Volterra model. These
advantages include less number of coefficients and faster
convergence. The Wiener model performs a complete
orthogonalization procedure to the truncated Volterra series and
this allows us to use linear adaptive filtering algorithms like the
LMS to calculate all the coefficients efficiently. Unlike the
Gram-Schmidt procedure, this orthogonalization method is
based on the nonlinear discrete Wiener model. It contains three
sections: a single-input multi-output linear with memory
section, a multi-input, multi-output nonlinear no-memory
section and a multi-input, single-output amplification and
summary section. Computer simulation results are also
presented to verify the theoretical performance analysis results.

1. INTRODUCTION

The nonlinear discrete-time Wiener model, which is based on
orthogonal polynomial series derived from the Volterra series.
The particular polynomials to be used are determined by the
characteristics of the input signal that we are required to model.
For Gaussian, white input, Hermite polynomial is chosen [1][2].
This Wiener model gives us a good eigenvalue spread of
autocorrelation matrix which implies that faster convergence
speed can be achieved. However, to calculate all the
coefficients in the model sometimes is very difficult. This
problem can easily be solved by using adaptive algorithm. The
simplest way is to apply LMS (Least Mean Square) algorithm
which has been applied to linear filtering problems because of
its simplicity and low computational complexity. Another
alternative way is to apply the RLS (Recursive Least Square)
adaptive algorithm. However, the RLS algorithms are either
computationally intensive or over-parameterized [3].

Different from the most previous works which are mostly based
on Volterra model [4] and Gram-Schmidt procedure [5], this
paper presents LMS adaptive filtering method which is based on
the discrete nonlinear Wiener model. Similar concept as [6] but

without using DFT, the main object of this model is to expand
third-order truncated Volterra series by using some other
orthogonal polynomial functions.. Theoretically, any M-sample
memory third-order truncated Volterra series can have a three-
channel, third-order nonlinear discrete Wiener model
representation. For practical application, the efficient delay-line
structure is developed in this paper. From the performance
analysis, we find that the autocorrelation matrix of adaptive
filter input vector can have much smaller eigenvalue spread
than Volterra model. It is also interesting to note that , by using
the nonlinear Wiener model, the linear adaptive filtering
properties can be still preserved.

The rest of this paper is organized as follows. Sections 2
presents the Wiener model for the third-order Volterra system.
Section 3 contains the analysis of LMS adaptive algorithm. The
computer simulation examples are examined in Section 4. For
simplicity and without loss of generality, we only consider the
real input data case. Finally, the conclusions are given in
Section 5.

2. NONLINEAR WIENER MODEL

The Volterra filter is based on the Volterra series, where each
additive term is the output of a polynomial functional that can
be thought of as a multidimensional convolution. The M-sample
memory third-order Volterra filter output is the combination of
various of these functionals which can be written as
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where {hj(k; ,..., kj), 0< j< 3} is the set of third-order Volterra
kernel coefficients. Assume that the kernels are symmetric, i.e.;
hi(ky, ..., kj) is unchanged for any of j! permutation of indices k;
, ..-» Kj. One can think of a Volterra series expansion as a Taylor
series with memory.

We can express the output y(n) by the equivalent third-order
discrete nonlinear Wiener model which is [1]
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The superscript i indicates the ith degree é—polynomial, o, =
perm(ng, 0, ..., n;) which can be obtained by the permutation of
the elements of ng, ny, ..., njand z = z, (n). The (3 -polynomial

is defined as
Q. @=T1H, [z, @] 3
where iki =i and H,_(z) means Hermite polynomial. If z is
- i
the zero mean Gaussian signals with variance Gf, the first four
Hermite polynomials are Ho(z) =1, Hi(z) = z, Hx(z) = ZZ—Gj and

Hi(z) =2’ - 3zcj and (3 -polynomial satisfies E{ éf: (z)} =0 and
has the orthogonal property

E(Q” 2)QY (2)} = const.§ (a— b3 (p— @) @

where E{ } is statistical mean and & is Dirac delta function. To
realize (2), we can select orthonormal bases as a delay line. The
block diagram is shown in Fig.1:
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Fig.1 Delay line structure of thir-order nonlineadicretes Wiener model

3. ADAPTATION AND PERFORMANCE
ANALYSIS

To explore the adaptive nonlinear Wiener filtering algorithm,
consider a system identification application shown in Fig.2:
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Fig.2 System identification model

For Gaussian white input x(n) and Gaussian white plant noise
ng(n), it is very suitable to apply nonlinear Wiener model in
adaptive plant block. It is because the (3 -polynomial has perfect
orthogonality that allows us to perform LMS algorithm with a
reasonably good convergence rate. To develop it, we need to
write (2) in a matrix form
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where the superscript T means transpose, 6(11) =1, (3;1), v
éﬁ)—lM—lM—l]T and C(n) = [wo(n), wi(n), ..., wi(n)]T are vectors
with L+1 length. Sg is a scale matrix which can make
-1 —1 . . .

S QNRQQ (Nn) S 3 become an identity matrix, where RQQ =

E{Q(m)Q Tm)}. The coefficients can be updated according to
C(n+1) =C(n) + 2p e(n) Sgd (n) ®)

where | is the step size and measurement error e(n)=d(n) -y(n).
The detailed performance analysis of LMS algorithm of Fig.2
is shown as follows. For the M-sample memory truncated third-
order Volterra system, the plant input vector is

X(n) = [ x(n), x(n-1), ..., x(@-M +1), x(n),... x2(0-M+1),
x()x(n -1), ..., (@), ... x¥’(@-M+1), x*(n)x(n -1), ...,
x(0-M-Dx(n-M)x(n-M+1)]7 (7

Assume the unknown plant has C = [Wo*, wl*, e WL*]T weight
vector of length L+1. For Volterra model, the output d(n) is
equal to

d(n) = CTQm) = CT[1, X"m)]" = wo" + WTX(n) (8)

where Q(n) = [1, XT(n)]T and W™ = [w,", ..., w.|T. ‘Consider
third-order discrete nonlinear Wiener structure as in Fig.1, in
section A, there are M-1 delay elements. Hy, Hi, H, and Hs are
applied in section B. The input vector of section C is

)Ni(n) = S;zl [x(n), x(n-1), ..., x(n-M +1), Xz(n)—cj, -
XOM+D)-67, .., x(Wx(n -1), ..., X’(0)-36x(1),..., (9)
XO-M+1)-36 x(n-M+1), ..., (x*(n)- 6 Hx(n-1), ...,
x(0-M-Dx(n-M)x(n-M+1)]T

The output of adapted plant y(n) is
ym = C"(m) Q () =C (1, X"m)]"= wo+ W(mSg X (n)(10)

where C(n) = [wo(n), WT)]T, W) = [wi(n), ....wr(n)]" and
6(11) =11, )NKT(n)]T. C(n) is the coefficient vector in section C.
These coefficients are adapted to the proper values, then the
model of adaptive plant will match exactly where the same
model of the unknown plant. The error signal can be written as

e(n) = d(n) - y(n) + ny(n)
= ni(n) + wor - wo(n) + WTX(n) - Wi(n) s;; X@m (1D

Then, the mean square error £(n)= E{ eX(n)} can be obtained by
expanding (11).

Em=o i + sz + w2o(n) 2wo wo(n)
+2wo B{X () }W"- 2wo(m)E{ X" (n)} W™ + WTR W’

+ W) S¢ Ryz S 2W'(n) S¢ Ry W (12)



where 6. = E{n(n)}, R, =E(XmX"()}, Reg= E{X(n)
X"(n)} and R = E{X(mX"(n)}. To minimize (12), we need
to take derivative respective to C(n) = [wo(n), W), which is

VEMm) =0 (13)

where V means the gradient operator and 0 is a zero column
vector. Then, the optimal solutions can be obtained

Wojoptm= Wo + B{X(n)} W’ (142)
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Substitute (14a) and (14b) into (12), the minimum mean square
error is

Eum= B0’} =0, (15)

It is interesting to note that the unknown plant is Volterra model
and the adapted plant is nonlinear Wiener model which both are
not linear system, but from the derivations, we can see that
(14a), (14b) and (15) have similar forms as LMS algorithm for
linear system. To derive step size range, we need to consider the
instantaneous version of (12). Define €(n) as the error power
¢X(n) which can be obtained

&(n) = [n«(n) + Wy + wom1]* + WXmX" () W
+ Wi(n) S¢ X(m)X () S W(n) + 2n,(n) X ()W’
+2wo XT)W'- 2wo(m)X ()W~ 2n,(n) )XT(n)s;;W(n)
- 2wo" X"(n) S W(n) -2wo(n) )X "(n) S W(n)
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Take derivative of (16), we can obtain
Ve (n) = -2e(n) 28 X (ne(n) (17
Based on steepest descent method, the weight is updated by [7]
Ctl) = -2e(m)Sy Qm+1) (18)

This is similar but different from LMS algorithm for linear
systems. The alternative form of (18) is

Clnt1) = (1- 21 S R 5555 )Cm + 20 Rgo € (19)

where 1 is an identity matrix. Define the weight error vector

V() = sgC(n) - (20)
Substitute (20) into (19), we can have
Vin+)=(I-2p SgRQQ)V(n) 2D

Note (Sé2 RQQ) P = PD where P and D are eigenvector square
. . . -2 .
matrix and eigenvalue square matrix of S o RQQ respectively.

With V(n) = PV’ (n), then
V(@) = (I-2uD)"V'(0) (22)

For convergence, the range of pis 0 <p < 1/ lmax or

0< p< l/tr[Sg Reg 1< /A, (23)
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where A___is the maximum eigenvalueof Sx R~.
max Q QQ

To derive the misadjustment, we need to consider the steady
state condition. The steady state of (12) can be expressed as

£ () = B{ [n(n)+ wo'-#, T} + W BX@X" m)}W’
+W'SZ BR@X" (m)Sg W) +2w E{X" )W’
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where the header A means steady state. In steady state, from

S -1 *
(14b) we can assume that Sg W) = R)NQN(R)N(XW , and
substitute this formula into (24), expand, rearrange and simplify

we can obtain
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where {7(n) = Sa éT(n) - C". Define the excess mean-square
error as

excess MSE = E{ é(n) - émm }= VT(n)RQQ.i}(n)
E{VIm)P™D P V() }
V' @DV () (26)

where P and D are eigenvector square matrix and eigenvalue
square matrix of Ras respectively. Define ’V(n) = l’SV'(n),
then Consider

Ve(m) = Vem)+ Nmn) (27

where N(n) is defined as a gradient estimation noise vector [7].
In steady state,V e(n) = 0, then

Ve(m) = N(m) = -2 e(m)S5 Q(n) (28)
There are three steps to find E{ v (n) % (n) } = cov{ v (n) }.
Assume e(n) and Q(n) are independent. First, find the
covariance of N(n) which is
- -1 -1
Second, define N’(n) = 1371N(n), then
o _ 1Ty -l
Third, use (29), (30) and (21), we can have [§]
cov{ V' ()} = p&,, s (3D

Finally, the excess mean square error is
excess MSE = E{’V'T (n)ﬁ’V'(n)} ~ },Lémjntr[sé2 Rg5! (32

The misadjustment now is defined as [7]
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For time constant analysis, let us rewrite (21) in scalar form
v'(n) = (1-2pA, ) v/(0) 3H

The term (1—2pA )"can be approximated by (em“ )Lt T,
is large, then

1-2uh =~e"™ =1/2 (35)
The time constant is found as
T, = 1/2pA (36)

All the derivations above can be extended to higher-order
without difficulty.

4. SIMULATION

To evaluate the adaptive nonlinear Wiener filter, let us consider
that the unknown plant contains a 3-sample memory third-order
Volterra filter which has following input-output relationship:

y(n) = -0.78x(n)-1.48x(n-1)+1.39x(n-2)+0.54x*(n)-1.62x*(n-1)
+1.41x%(x-2) +3.72x()x(n-1) +1.86x(n)x(n-2)
+0.76x(n-1)x(n-2)+0.04x>(0)-0.76x>(n-1)+0.5x>(n-2)
-0.12x*(n)x(n-1)-1.52x4(m)x(n-2)-0.13x*(n-1)x(n)
+0.15x%(n-1)x(n-2)-0.23x%(n-2)x(n)-0.75x*(n-2)x(n-1)
+0.33x(n)x(n-1)x(n-2) 37

We can use delay-line structure as in Fig.1 of 2 delay elements
in section A. Ho, H;, Hy and Hj are used in Section B. There are
20 coefficients in Section C. Properly select scale matrix which
can let autocorrelation matrix become an identity matrix. With
SNR = -40 db, the simulation results of ensemble average for
the 50 independent runs for both Wiener model and Volterra
model are shown in Fig.3. For p = 0.0005, we see that Wiener
model adaptive filter has much better performance than Volterra
model which does not converge to the right values. For
p =0.003, the Wiener model adaptive filter is still very stable.
But the Volterra model becomes unstable and fails to identify
this third-order Volterra system. This is because all (3—
polynomials in nonlinear Wiener model are orthogonal which
reduces the eigenvalue spread and improves the nonlinear LMS
adaptive filter performance dramatically. For an ensemble
average over 50 runs, the misadjustment of Wiener model of
p =0.0005 is equal to 0.012 which is close to the theoretical
value 0.01. To examine the eigenvalue spread characteristics,
we need to evaluate the eigenvalue of autocorrelation matrix.
We can find that for Volterra model, the eigenvalue spread is
equal to 64.136 (compared with the theoretical value 63.779).
For Wiener model, the eigenvalue spread is 1.12 (compared
with the theoretical value 1). The eigenvalue spread is reduced
about 64 times. The autocorrelation matrix of Wiener model is
shown in Fig.4.

S. CONCLUSIONS

Different from most previously published Volterra model
structure, this paper presented LMS adaptive filtering
algorithm based on nonlinear discrete Wiener model for third-
order Volterra system identification. For Gaussian white input,

the é—functional can characterize the nonlinear system
behaviors. In practical application, , it allows us to have small
cigenvalue spread and good convergence rate which are
confirmed by the performance analysis and computer
simulations. Future work will involve application to least-
squares and fast adaptive algorithms.
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Fig.4 Autocorrelation matrix of Wiener model
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