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ABSTRACT 

A system is presented for transform coding of imagery. Specifi- 
cally, the system uses the 2-D discrete cosine transform (DCT) in 
conjunction with adaptive classification, entropy-constrained trellis- 
coded quantization, optimal rate allocation, and adaptive arith- 
metic encoding. Adaptive classification, side rate reduction, and 
rate allocation strategies are discussed. Entropy-constrained code- 
books are designed using a modified version of the generalized 
Lloyd algorithm. This entropy-constrained DCT-based system is 
shown to achieve outstanding coding performance as compared to 
other DCT-based systems. 

1. INTRODUCTION 

Recent advances in image compression technology have yielded 
coders capable of outstandmg compression efficiency [l]. This 
new generation of image coder has been based primarily on sub- 
band decomposition. Although subband decomposition enables 
very efficient decorrelation of the image data prior to quantization, 
it suffers from two major drawbacks. First, the associated com- 
putational complexity is roughly an order of magnitude greater 
than that of an 8 x 8 DCT (assuming reasonably short length fil- 
ters). Secondly, various types of imagery which contain significant 
high-frequency information suffer from “subband artifacts” when 
encoded at low bit rates. An example of imagery that is not well 
suited to subband decomposition is synthetic aperture radar (SAR) 
imagery. It can be been shown that although subband techniques 
can produce compressed SAR imagery with greater signal-to-noise 
ratios than DCT-based systems, DCT coding is capable of produc- 
ing imagery of greater perceptual quality as judged by trained im- 
age analysts, in spite of possible blocking artifacts. 

The purpose of this paper is to combine DCT decomposition 
with several advanced technologies used by the latest generation 
of subband coders. The technologies chosen for this coder are 
among the best presented in the literature. These technologies 
include fully-optimized entropy-constrained trellis-coded quanti- 
zation, maximum-coding-gain adaptive classification, optimal rate 
allocation, and adaptive arithmetic encoding. These technologies 
combine to produce a DCT-based coder that exceeds the perfor- 
mance of other DCT systems, and rivals the performance of many 
subband-based systems. Moreover, the computational complexity 
of this system is much less than those of most competing systems. 

In the coder discussed herein, the image is divided into non- 
overlapping 8 x 8 blocks and transformed using the DCT. Each 
block is classified into one of J classes by maximizing the cod- 
ing gain. All resulting sequences are quantized using entropy- 

constrained trellis-coded quantization (ECTCQ). Codebooks are 
optimized for different generalized Gaussian distributions. Code- 
book design uses a modified version of the generalized Lloyd al- 
gorithm m a training-sequence-based iterative scheme. Rate allo- 
cation is performed in an optimal fashion by an iterative technique 
which uses the rate-distortion performance of the various trellis- 
based quantizers. The quantization indices are losslessly encoded 
using adaptive arithmetic coding. 

2. ENTROPY-CONSTRAINED TRELLIS-CODED 
QUANTIZATION 

Trellis Coded Quantization was developed in [2]. For encoding a 
memoryless source at R bits per sample, a codebook of size ZR+’ 
is partitioned into four subsets, each containing 2a-’ codewords. 
These subsets are labeled De, DI. D2 and D3. and are used as 
labels for the branches of a suitably chosen trellis. An example is 
shown in Figure 1 for R = 2. 

Sequences of codewords that can be produced by the TCQ sys- 
tem are those that result from “walks” along the trellis from left to 
right. For example, if beginning m the top left state of the trellis 
in Figure 1, the first codeword must be chosen from either DO or 
D2. If a codeword from D2 is chosen, then we walk along the 
lower branch (shown with a heavy line) to the second state from 
the bottom, at which we must choose a codeword from either D1 

or D3. 

Note that at each step in the encoding, the codeword must be 
chosen from either A0 = DO U Dz or AI = DI U D3. Each of 
these “supersets” contains 2R codewords and hence, given an ini- 
tial trellis state, the sequence of selected codewords can be trans- 
mitted using one R-bit label for each sample. 

Given an input data sequence ~1, x2,. , the best (minimum 
mean-squared-error) allowable sequence of codewords is deter- 
mined as follows. For the ith stage in the trellis (corresponding 
to z,), the best codeword in the jth subset (J’ = 0. 1. 2, 3). say cJ, 
is chosen and the associated cost pJ = (2, - c~)~ is calculated. 
Each branch in the ith stage of the trellis that is labeled with subset 
D3 is assigned cost pJ. The Viterbi algorithm [3] is then used to 
find the path through the trellis with the lowest overall cost. 

It was shown in [4], that the codeword labels (as described 
above) can be noiselessly compressed using one variable-length 
code for each superset. The theoretical encoding rate achievable 
by this process is the conditional entropy of the codebook C, given 
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Figure 2: Adaptive transform image coder 
Figure 1: A 4-state trellis with subset labeling and codebook. 

the superset: 

WC14 = - c c P(clA,)P(A,) log, P(clA,). (1) 
z=O CEA, 

It can be shown that a 4-state ECTCQ system comes within 
0.55 dB of the rate-distortion function for various generalized Gaus- 
sian distributions. 

In the current system, adaptive arithmetic encoding [5] is used 
to losslessly encode the quantization indices. A separate proba- 
bility table is maintained for each superset, and various codebook 
truncation procedures are implemented at high bit rates. 

3. ADAPTIVE TRANSFORM IMAGE CODER 

Coding of the image is based on the system presented in [6]. The 
basic configuration is shown in Figure 2. The image to be coded 
is divided into non-overlappmg 8 x 8 blocks and transformed us- 
ing the 2-D DCT. Prior to application of the DCT, each block is 
assigned to one of J classes by maximizing the coding gam. For 
each class. DCT coefficients corresponding to the same frequency 
within each block are grouped into sequences to be encoded us- 
ing ECTCQ. All DCT coefficients are normalized by subtracting 
their mean (only the sequences corresponding to the DC transform 
coefficients have non-zero mean) and dividing by their respective 
standard deviations. Since each class contains 64 DCT coeffi- 
cient sequences, the total number of sequences to be encoded is 
645. The DCT coefficient sequences are assumed to have various 
generalized Gaussian statistics. Accordingly. codebooks were de- 
signed using sample sequences derived from generalized Gaussian 
pseudo-random number generators. Additionally, rate allocation 
is performed using the algorithm in [7]. 

The classification algorithm is similar to that presented in [8]. 
Consider a source X of length NL divided into N blocks of L 
consecutive samples. with each block assigned to one of J classes. 
If the samples from all blocks assigned to class i (1 < i < J) 
are grouped into source X,, the total number of blocks assigned 
to source X, is N,. Let UP be the variance of X, and p, be the 
probability that a sample belongs to X, (i.e., pz = N,/N, 1 5 i 5 
J). The algorithm in [S] is a pairwise maximization of coding gam 
and is repeated here for convenience: 

1. Initialize Ni , Na, , NJ to satisfy cf=, N, = N, N, > 
Oforl<i<J.Letj=land~~rev=[N1,Na,...,NJ]’. 

2. Find N: and N:,, such that N,’ + Ni,, = N, + N,+1 

and (af)p: (u;+i)“: is minimized. 

3. NJ = N; and NJ+1 = NJ,,. 

4. j = j + 1. If j < J, go to step 2. 

5. Let & = [Ni, Na, , NJ]‘. If N is equal to i&,,, then 
STOP. Otherwise. j = 1. gp,,, = &. Go to step 2. 

Here, the average mean squared energy of a block (i.e., E = 

(c,“=, x:)/L) is the criterion for classification. 
The side information required to encode the image consists 

of the mean of the J DC sequences, and the standard deviations of 
all 645 sequences. These quantities are quantized using 16-bit uni- 
form scalar quantizers to yield 16(645 + J) bits. Since 4-state trel- 
lises are used exclusively throughout the system, the initial trellis 
state of each sequence requires 2 bits. The total side information is 
then 11685 bits, which corresponds to 2336/(512)2 = 0.0089 bits 
per pixel (bpp) for a 512 x 512 image and J = 2, or 4672/(512)2 
= 0.0178 bpp for J = 4. 

In addition, the classification map must also be transmitted. 
The map is arithmetically encoded using “on-the-fly” multi-order 
modeling. The map requires a maximum of 8 192 bits for a 512 x 
512 image (6648 bits for the Lenna image). The Kurtosis values 
for all 64J sequences are also arithmetically encoded (after being 
rounded to one of five possible values). 

3.1. Codebook Design 

The probability distribution of each sequence to be encoded is 
modeled by the so-called Generalized Gaussian Distribution (GGD), 
whose probability density function (pdf) is given by 

jxCx) = 2r(l/a) [ 1 !i!T@d exp{-[q(a, a)]x]]“} (2) 

where 

q(a, a) E u-l 
I?(3/cy) l/2 1 1 qqq 

(3) 

The shape parameter LY describes the exponential rate of decay and 
0 is the standard deviation of the associated random variable [9]. 
The gamma function F( .) is defined as 

I-(n) = Jrn e-=xn-ldx. (4) 
0 

Distributions corresponding to cy = 1.0 and 2.0 are Laplacian and 
Gaussian, respectively. Figure 3 shows generalized Gaussian pdfs 
correspondmg to (Y = 0.5, 1.0, 1.5,2.0, and 2.5. 

It can be shown that 

E[X4] = Jrn x4fx(x)dx = Ka4 (5) 
-cc 
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Figure 3: Probability density function for generalized Gaussian 
distributions with alpha values of 0.5, 1.0. 1.5, 2.0, and 2.5. 
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Figure 4: Kurtosis vs. alpha. 

K = E[X41 = r(5/a)r(i/(r) 
d w42 

(6) 

where K is the fourth central moment, or Kurtosis. Recall that the 
Kurtosis is a measure of the peakedness of a given distribution. If 
a pdf is symmetric about its mean and is very flat in the vicinity of 
its mean, the coefficient of Kurtosis is relatively small. Similarly, 
a pdf that is peaked about its mean has a large Kurtosis value. 

The sample Kurtosis of any sequence can be calculated easily 
and used as a measure by which the distribution of the sequence 
can be determined. Figure 4 shows the relationship between the 
shape parameter (Y and K. This graph is used to determine the ap- 
propriate (Y for a particular sequence. 

Codebooks were designed for generalized Gaussian distribu- 
tions with (Y values of 0.5, 0.75. 1.0, 1.5, and 2.0, using the algo- 
rithm in [4]. It was shown m [4] that for the Gaussian distribution, 
optimum codebooks do not yield significant MSE improvement 
over uniform codebooks at rates greater than 2.5 bits/sample. Ex- 

perimentation revealed that this is also true for (Y = 1.5 and cy = 
1.0. However, for o = 0.75, optimum codebooks are superior 
up to 3.0 bits/sample. while for cy = 0.5, optimum codebooks 
should be used up to 3.5 bits/sample. Accordingly, for (Y values 
of 2.0, 1.5. and 1.0, optimum codebooks were designed in one- 
tenth bit increments up to 2.5 bits/sample, while for LY = 0.75 and 
cr = 0.5, optimum codebooks were designed in one-tenth bit in- 
crements up to 3.0 and 3.5 bits/sample, respectively. Thereafter, 
uniform codebooks were designed m one-tenth bit increments up 
to 12 bits/sample. Training sequences consisted of 100,000 sam- 
ples derived from generalized Gaussian pseudo-random number 
generators, each tuned to the appropriate cv value. 

3.2. Rate Allocation 

Rate allocation is performed by using the algorithm presented in 
[7]. The overall MSE incurred by encoding the coefficient se- 
quences using ECTCQ at an average rate of R, bits/coefficient 
is represented by 

where u,” is the variance of sequence i, E,, (r,) denotes the rate- 
distortion performance of the jfh quantizer (e.g., the quantizer cor- 
responding to the Kurtosis of sequence i) at rz bits/sample, K is 
the number of data sequences, and (Y% is a weighting coefficient to 
account for the variability in sequence length. For 8 x 8 blocks 
and J classes, K = 645. 

The rate allocation vector B = (ri, r-2, , rK) is chosen 
such that E, is minimized, subject to an average rate constraint: 

K 

c 
(Y,T, 5 R, bits/coefficient. (8) 

1=1 

It is shown in [7] that the solution B* (T; , r;, , v;() to the un- 
constrained problem 

minimizes E, subject to c,“_, cyZrz 5 c:, cx,rr. Thus, to find 
a solution to the constrained problem of equations (7) and (8). 
it suffices to find X such that the solution to equation (9) yields 

c&;~, - 
* < R,. Procedures for finding the appropriate X are 

For a given X, the solution to the unconstrained problem is 
obtained by minimizing each term of the sum in (9) separately. If 
S, is the set of allowable rates for the jth quantizer and r: is the 
a ‘th component of the solution vector B’, then r: solves 

(10) 

4. RESULTS AND CONCLUSIONS 

Coding simulations were performed on the 512 x 512 8-bit 
Lenna image. The number of classes was chosen to vary from 
zero to four. The compression rates were calculated from actual bit 
streams produced by the coder, and include all side information. 
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Figure 5: Comparison of different number of classes for the Lenna 
image. 

Figure 5 shows the PSNR performance of the coder at various 
bit rates. Note that for higher encoding rates, greater performance 
is obtained as the number of classes increases. However, no perfor- 
mance is gained when the number of classes in increased beyond 
four. In this case, the increased side mformation overwhelms the 
increase in coding gain. The performance of the four-class sys- 
tem IS greater than that of the one-class system at rates above 0.15 
bits/pixel. Below that rate, the additional side information required 
by the four-class system becomes a very large percentage of the 
overall bit rate, thus leaving less rate for the quantizers. Finally, 
the two-class system performs almost as well as the four-class sys- 
tem at high rates, and outperforms the four-class system at rates 
below 0.25 bits/pixel. Note that the two-class system outperforms 
the system with no classification above 0.1 bits/pixel. 

Figure 6 shows the performance of the four-class system as 
compared to other DCT-based coders in the literature. The com- 
peting coders are the DCT/ECTCQ coder presented in [6], the 
perceptually-weighted adaptive DCT/ECTCQ coder presented in 
[lo], and JPEG. Our coder outperforms the coders in [6] and [lo] 
at rates above 0.3 bits/pixel. Below that rate, the reported per- 
formance of the two competing coders is greater than our system. 
However, the systems in [6] and [lo] utilize 16 x 16 DCTs, which 
provides a vast performance increase over the 8 x 8 DCT used in 
our system. Additionally, the bit rates reported for the two com- 
peting systems are output entropies. and are not calculated from 
actual bit streams. 

We have presented an image coder which combines the 2- 
D DCT, maximum-coding-gain adaptive classification, fully opti- 
mized entropy-constrained trellis-coded quantization, optimal rate 
allocation, and adaptive arithmetic encoding. To our knowledge, 
this coder outperforms any system that uses an 8 x 8 DCT, and 
that produces an actual bit stream. In addition, our coder is com- 
petitive with many systems using subband decomposition, while 
being vastly less computationally complex. 

1 
Optimum Coder, 6X6 DCT, Arlthmetlc Encodlng 
Marcelh et al [6], 16X16 DCT, Output Entropy 

[I j( i ,PEG,6XyHb;E”co; , j 
Farvardin et al [lo] 16X16 DCT Output Entropy 

Figure 6: Comparison of encoding performance for the Lenna im- 
age. 
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