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ABSTRACT

A system is presented for transform coding of imagery. Specifi-
cally, the system uses the 2-D discrete cosine transform (DCT) in
conjunction with adaptive classification, entropy-consirained trellis-
coded quantization, optimal rate allocation, and adaptive arith-
metic encoding. Adaptive classification, side rate reduction, and
rate allocation strategies are discussed. Entropy-constrained code-
books are designed using a modified version of the generalized
Lioyd algorithm. This entropy-constrained DCT-based sysiem is
shown to achieve outstanding coding performance as compared to
other DCT-based systems.

1. INTRODUCTION

Recent advances in image compression technology have yielded
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new generation of image coder has been based primarily on sub-
band decomposition. Although subband decomposition enables
very efficient decorrelation of the image data prior to quantization,
it suffers from two major drawbacks. First, the associated com-

nutational comnlexity ic ronchly an agrder of maonitude orsater
putationai compiexitly 1§ rougnly an Ooraer of magnitude greater

than that of an 8 x 8 DCT (assuming reasonably short length fil-
ters). Secondly, various types of imagery which contain significant
high-frequency information suffer from “subband artifacts” when
encoded at low bit rates. An example of imagery that 1s not well

enited to subband decomnosition is svnthetic anerture radar (SAR)
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imagery. It can be been shown that although subband techniques
can produce compressed SAR imagery with greater signal-to-noise
ratios than DCT-based systems, DCT coding is capable of produc-
ing imagery of greater perceptual quality as judged by trained im-
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The purpose of lhlS paper is to combine DCT decomposition
with several advanced technologies used by the latest generation
of subband coders. The technologies chosen for this coder are
among the best presented in the literature. These technologies

include fullv_antimized antronv_conctrained trellicccoded ananti-
INCIUGE TUily-oplimuzed entropy-constrained reiis-coded quant

zation, maximum-coding-gain adaptive classification, optimal rate
allocation, and adaptive arithmetic encoding. These technologies
combine to produce a DCT-based coder that exceeds the perfor-
mance of other DCT systems, and rivals the performance of many
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of this system is much less than those of most competing systems.

In the coder discussed herein, the image is divided into non-
overlapping 8 x 8 blocks and transformed using the DCT. Each
block is classified into one of J classes by maximizing the cod-
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constrained trellis-coded quantization (ECTCQ) Codebooks are
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book design uses a modified version of the generalized Lloyd al-
gorithm 1n a training-sequence-based iterative scheme. Rate allo-
cation is performed in an optimal fashion by an iterative technique
which uses the rate-distortion performance of the various trellis-
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using adaptive anthmetic coding.

L MAMARTQTI A TR MDY T IQ MNATYLTY
RUT I"UUNDI L RALNLD 1 RELLLD-VUDULY

QUANTIZATION

Trellis Coded Quantization was developed in [2]. For encoding a
memoryless source at R bits per sample, a codebook of size 27+1
is partitioned into four subsets, each containing 2% ! codewords.
These subsets are labeled Do, D,. Dy and D3, and are used as
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shown in Figure 1 for R =2.
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tem are those that result from “walks” along the trellis from left to
right. For example, if beginning n the top left state of the trellis
in Figure 1, the first codeword must be chosen from either Do or
D,. If a codeword from D, is chosen, then we walk along the

lower branch (shown with a heavv line) to the second state from
owWer pranch (shown wilh a ieavy ine) 1o {he secong state irom

the bottom, at which we must choose a codeword from either D,
or Ds.

Note that at each step in the encoding, the codeword must be
chosen from either Ag = Do U D2 or A1 = D1 U D3. Each of
these “supersets” contains 2% codewords and hence, given an ini-
tial trellis state, the sequence of selected codewords can be trans-
mitted using one R-bit label for each sample.

of codewords that can be nroduced by the TCQ gvs-
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Given an input data sequence z, Z32,..., the best (minimum
mean-squared-error) allowable sequence of codewords is deter-
mined as follows. For the i** stage in the trellis (corresponding
to ), the best codeword in the 3t* subsetU 0. 1.2, 3), say c,,
lb L[lUbCIl d.l'lu l.[lC dbelelCU COst Py = \-L', - (,]}2 8 Ld.lLuldlCU
Each branch in the #** stage of the trellis that is labeled with subset
D, is assigned cost p,. The Viterbi algorithm [3] is then used to
find the path through the trellis with the lowest overall cost.

It was shown in [4], that the codeword labels (as described
above) can be noiselessly compressed using one vanable-length
code for each superset. The theoretical encoding rate achievable

thic nracace tha it al antrany af tha aadahanl €7 aivan
u_y this PIOCTSS 1s the conditional L.uuvy] Ol tne coaeoook L, pividi



Figure 1: A 4-state trellis with subset labeling and codebook.

the superset:

H(C|A) == )" P(c|4)P(A)log, P(c|4). (D)

1=0 c€A,

It can be shown that a 4-state ECTCQ system comes within
0.55 dB of the rate-distortion function for various generalized Gaus-
sian distributions.

In the current system, adaptive arithmetic encoding [5] is used
to losslessly encode the quantization indices. A separate proba-
bility table is maintained for each superset, and various codebook
truncation procedures are implemented at high bit rates.

3. ADAPTIVE TRANSFORM IMAGE CODER

Coding of the image is based on the system presented in [6]. The
basic configuration 1s shown in Figure 2. The image to be coded
15 divided into non-overlapping 8 x 8 blocks and transformed us-
ing the 2-D DCT. Prior to application of the DCT, each block is
assigned to one of J classes by maximizing the coding gain. For
each class. DCT coefficients corresponding to the same frequency
within each block are grouped into sequences to be encoded us-
ing ECTCQ. All DCT coefficients are normalized by subtracting
their mean (only the sequences corresponding to the DC transform
coefficients have non-zero mean) and dividing by their respective
standard dewviations. Since each class contains 64 DCT coeffi-
cient sequences, the total number of sequences to be encoded is
64.J. The DCT coefficient sequences are assumed to have various
generalized Gaussian statistics. Accordingly, codebooks were de-
signed using sample sequences derived from generalized Gaussian
pseudo-random number generators. Additionally, rate allocation
is performed using the algorithm in [7].

The classification algorithm is similar to that presented in [8].
Consider a source X of length NL divided into N blocks of L
consecutive samples, with each block assigned to one of J classes.
If the samples from all blocks assigned to class 7 (1 < ¢ < J)
are grouped into source X,, the total number of blocks assigned
to source X, is N,. Let o be the variance of X, and p, be the
probability that a sample belongs to X, (ie,p, = N,/N;1<i <
J). The algorithm in [8] 1s a pairwise maximization of coding gain
and is repeated here for convenience:

1. Initialize N1, N, ..., Ny tosatisfy S°7_ N, = N, N, >
Oforl1<i< J. Letj=1land N

prev

2. Find N and N, such that N; + N;,; = N, + N,
and (af)”lf (afﬂ)”la is minimized.

3. N] = NJ’ and NJ-H = NJ,-H'

=[N, Na, ..., Ny).
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Figure 2: Adaptive transform image coder.

4. j=j+1.1fj < J, gotostep2.

5. Let N = [Ny, N,,...,Ny]'. If Nisequal to NV

STOP. Otherwise. j = 1. N, . = N. Go (o step 2.

then

Here, the average mean squared energy of a block (i.e., £ =
(3oL, 27)/L) is the criterion for classification.

The side information required to encode the image consists
of the mean of the J DC sequences, and the standard deviations of
all 64J sequences. These quantities are quantized using 16-bit uni-
form scalar quantizers to yield 16(64J + J) bits. Since 4-state trel-
lises are used exclusively throughout the system, the initial trellis
state of each sequence requires 2 bits. The total side information is
then 1168 bits, which corresponds to 2336/(512)* = 0.0089 bits
per pixel (bpp) for a 512 x 512 image and J =2, or 4672/(512)2
=0.0178 bpp for J =4.

In addition, the classification map must also be transmitted.
The map is anthmetically encoded using “on-the-fly” multi-order
modeling. The map requires a maximum of 8192 bits for a 512 x
512 1mage (6648 bits for the Lenna image). The Kurtosis values
for all 64.J sequences are also arithmetically encoded (after being
rounded to one of five possible values).

3.1. Codebook Design

The probability distribution of each sequence to be encoded is
modeled by the so-called Generalized Gaussian Distribution (GGD),
whose probability density function (pdf) 1s given by

fx(@) = [%] (-l )lell’) @

where

F(3/°‘)J 1/2. 3)

I'(1/a)
The shape parameter o describes the exponential rate of decay and

o is the standard deviation of the associated random variable [9].
The gamma function I'(-) is defined as

—

F(n)=/ e "z dx. 4)
0

Distributions corresponding to a = 1.0 and 2.0 are Laplacian and
Gaussian, respectively. Figure 3 shows generalized Gaussian pdfs
corresponding to = 0.5, 1.0, 1.5, 2.0, and 2.5.

It can be shown that

E[XY = / T fx(z)dz = Ko* 5)
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Figure 3: Probability density function for generalized Gaussian
distributions with alpha values of 0.5, 1.0, 1.5, 2.0, and 2.5.
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Figure 4: Kurtosis vs. alpha.
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where K 1s the fourth central moment, or Kurtosis. Recail that the
Kurtosis is a measure of the peakedness of a given distribution. If
a pdf is symmetric about its mean and is very flat in the vicinity of
its mean, the coefficient of Kurtosis is relatively small. Similarly,
a pdf that 1s peaked about 1ts mean has a large Kurtosis value.

The sampie Kurtosis of any sequence can be caicuiated easily
and used as a measure by which the distribution of the sequence
can be determined. Figure 4 shows the relationship between the
shape parameter « and K. This graph is used to determine the ap-
propriate o for a particular sequence.

Codebooks were designed for generalized Gaussian distribu-
tions with « values of 0.5, 0.75, 1.0, 1.5, and 2.0, using the algo-
rithm in [4]. Tt was shown 1n [4] that for the Gaussian distribution,
optimum codebooks do not yield significant MSE 1improvement
over uniform codebooks at rates greater than 2.5 bits/sample. Ex-

perimentation revealed that this is also true for o = 1.5 and o =
1.0. However, for o = 0.75, nntlmnm_ codebooks are superior
up to 3.0 bits/sample. while for « = 0.5, optimum codebooks
should be used up to 3.5 bits/sample. Accordingly, for « values
of 2.0, 1.5, and 1.0, optimum codebooks were designed in one-
tenth bit increments up to 2.5 bits/sample, while for o = 0.75 and
o = 0.5, optimum codebooks were designed in one-tenth bit in-
crements up to 3.0 and 3.5 bits/sample, respectively. Thereafter,
uniform codebooks were designed 1n one-tenth bit increments up
to 12 bits/sample. Training sequences consisted of 100,000 sam-
ples derived from generalized Gaussian pseudo-random number
generators, each tuned to the appropriate o value.

3.2. Rate Allocation

Rate allocation is performed by using the algorithm presented in
[71. The overall MSE incurred by encoding the coefficient se-
quences using ECTCQ at an average rate of R, bits/coefficient
is represented by

K
Es = Zazasz] (T'z) (7)
=1

where o7 is the variance of sequence i, E.,(r.) denotes the rate-
distortion performance of the j¢" quantizer (e.g.. the quantizer cor-
responding to the Kurtosis of sequence 2) at r, bits/sample, K is
the number of daia sequences, and «, is a weighiing coefficient to
account for the variability in sequence length. For 8 x 8 blocks
and .J classes, K = 64J.

The rate allocation vector B = (ri,r2,...,Tk) is chosen
such that Es is minimized, subject to an average rate constraint:

K
Z a,r, < R bits/coefficient. (8)

=1

It is shown in [7] that the solution B*(ri,r3,...,r%) to the un-

constrained problem

K

. b}
ml;n iZ(azafEu (r) + z\am)} )]

1=1

minimizes E subject to Zle ar, < Z’K:l a,r;. Thus, to find
a solution to the constrained problem of equations (7) and (8),
it suffices to find A such that the solution to equation (9) yields
Zfil a,r; < Rs. Procedures for finding the appropriate A are
given1n [/].

For a given A, the solution to the unconstrained problem is
obtained by minimizing each term of the qnm in (9) separately. If
S, is the set of allowable rates for the 5° quantlzer and r; is the

”‘ component of the solution vector B”, then r; solves

min

2
€S, {0, By (1,) + A, } (10

4. RESULTS AND CONCLUSIONS

Coding simulations were performed on the 512 x 512 8-bit
Lenna i image. The number of classes was chosen to vary from

zero to four. The compression rates were calculated from actua] bit
streamns produced by the coder. and include all side information.
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Figure 5 shows the PSNR performance of the coder at various
bit rates. Note that for higher encoding rates, greater performance
is obtained as the number of classes increases. However, no perfor-
mance is gained when the number of classes in increased beyond
four. In this case, the increased side information overwhelms the
increase in coding gain. The performance of the four-class sys-
tem 1s greater than that of the one-class system at rates above 0.15
bits/pixel. Below that rate, the additional side information required
by the four-class system becomes a very large percentage of the
overall bit rate, thus leaving less rate for the quantizers. Finally,
the two-class system performs almost as well as the four-class sys-
tem at high rates, and outperforms the four-class system at rates
below 0.25 bits/pixel. Note that the two-class system outperforms
the system with no classification above 0.1 bits/pixel.

Figure 6 shows the performance of the four-class system as
compared to other DCT-based coders in the literature. The com-
peting coders are the DCT/ECTCQ coder presented in [6], the
perceptually-weighted adaptive DCT/ECTCQ coder presented in
[10], and JPEG. Our coder outperforms the coders in [6] and [10]
at rates above 0.3 bits/pixel. Below that rate, the reported per-
formance of the two competing coders is greater than our system.
However, the systems in [6] and [10] utihize 16 x 16 DCTs, which
provides a vast performance increase over the 8 x 8 DCT used in
our system. Additionally, the bit rates reported for the two com-
peting systems are output entropies, and are not calculated from
actual bit streams.

We have presented an image coder which combines the 2-
D DCT, maximum-coding-gain adaptive classification, fully opti-

muzed entropy-constrained trellis-coded quantization, optimal rate
allocation, and adaptive arithmetic encoding. To our knowledge,
this coder outperforms any system that uses an 8 x 8 DCT, and
that produces an actual bit stream. In addition, our coder is com-

petittive with many systems using subband decomposition, while
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