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ABSTRACT 

The blind estimation of mixing channels resulting from fre- 
quency selective fading and multipath in a multi-user CDMA 
system is an important problem in wireless communica- 
tions. We present a novel frequency-domain approach using 
second order spectral statistics for recovering the unknown 
channels. Unlike other methods which are based on time- 
domain analysis we make no particular assumption about 
the support of the mixing channels except that they have 
finite length (FIR). The method is based on the fact that 
the source sequences obtain a known spectral color derived 
from the corresponding spreading code used in CDMA. 

1. INTRODUCTION 

Code Division Mulitple Access (CDMA) communication sys- 
tems have attracted a lot of attention recently due to their 
efficient utilization of the available bandwidth and their 
flexibility in accommodating variable traffic patterns. In a 
CDMA channel all users share the same frequency band and 
different orthogonal spreading codes are designed and as- 
signed to different users so as to minimize the cross-correlation 
between the transmitted signals. In addition to multi-user 
interference, CDMA suffers from inter-chip interference (ICI) 
induced from multipath and frequency selective channels. 
The multipath problem is most severe in indoor and urban 
environments which are of great interest to mobile com- 
munications applications. Channel equalization techniques 
are necessary in order to compensate for these problems. 
In general two approaches can be taken: (a) to use special 
training sequences which however reduce spectral efficiency, 
or (b) to use blind equalization methods. 

Although the blind multi-user CDMA equalization prob- 
lem looks similar to the blind SIIMO deconvolution problem 
[S] it is in fact a lot simpler than that. The reason is the 
fact that the user signals are colored by known frequency 
shaping filters called spreading code sequences. Therefore, 
the recovery of the transmitted sources is not quite a blind 
process as some information about the sources is known 
to the receiver. The rich structure of these colored sig- 
nals can be taken advantage of and various algorithms have 
been proposed for that particular problem [3, 4, 2, 51. In 
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[4] a zero-forcing receiver is proposed which completely re- 
moves Multi-User Interference (MUI) and ICI under certain 
conditions, using however knowledge of the signature wave- 
forms. In [2] a subspace algorithm is developed which is 
applicable however when only a few users are active. In 
fact the method will fail if the code length L, is less than 4 
times the number of users. Other subspace methods have 
also been proposed [5, 31 meeting with success under cer- 
tain conditions. All these methods however, are based on 
the time-domain analysis of the observed signals and they 
make explicit use of the mixing channel length L. 

In this paper we propose a frequency-domain approach 
which recovers the spectra of the unknown channels regard- 
less of their lengths - provided of course, that the observa- 
tion sequence is long enough. The method uses the second 
order characteristics of the signal spectra and it is based on 
the fact that the source signals are colored with different 
shaping filters which are known to the receiver. 

2. DATA MODEL AND PROBLEM FOR.MULATION 

An n-user CDMA system with M receivers can be described 
by the following equation for the i-th receiver baseband 
signal: 

n m 

j=1 I=-ca 

where j is the user index, s,(l) is the transmitted symbol 
sequence (each symbol usually taken from a finite alpha- 
bet, e.g. {+I, -l}), and T, is the symbol duration. For 
user j each symbol is multiplied by the pre-assigned spread- 
ing code sequence {cl (l), . . . , c,(L,)} at L, times the sym- 
bol frequency T,, so that the resulting chips have duration 
T, = T,jL,. The signature gZ3(t) couples the j-th user 
with the i-th receiver. By construction, g,](t) incorporates 
the known sequence c,(k) and the unknown channel h,,(t) 
which represents the multipath fading environment between 
the j-th user and the i-th receiver. In particular we have 

g,l (t) = 5 hi, (t - mTc)c, (ml (2) 
WI=1 

In general h,,(t) may be modeled by an FIR filter with 
finite support [0 LT,]. L is not known and we shall make 
no particular assumption about it. 



The i-th receiver baseband signal z;(t) is sampled at the 
chip rate l/T= to obtain the following discrete time systems 

J=l I=-00 

LC 

gaJ(k) = 
c 

kJ (k - m)cj(m) (4) 
m=l 

where we write z;(h), g,J(lc), and h;,(k) instead of zi(kTc), 
giJ(kTc), and h,, (kT,) respectively. Rewriting (3) and (4) 
into 

J=l ?I,=--oo 

n k 

= c c h*J(lc -m)eJ(m) (5) 
J=l m=k-L 

we readily find the sampled observation at the i-th receiver 
to be the multi-channel mixture of the following colored 
processes 

k-l 

l=k-Lc 

(the symbol * denotes convolution). 
Stacking the discrete observations in (5) for antennas 

i = 1 through M into a column vector x(k) we obtain 

L 

x(k) = c H(l)e(k - I) 

where [h,i (1), . . . , h,,(l)] is “The i-th row of H(l) and e(k - 
1) = [el(k - 1) ..- e,(k -l)] . 

We arsume that the symbol sequences {sj(lc)} are un- 
known, wide-sense stationary, white sequenc& which are 
also pairwise uncorrelated 

E{Si(k)Sj(k + 1)) = { i(” ftfziise (8) 

On the other hand, the sequences e,(k) are colored, and are 
pairwise uncorrelated as well: 

E{e,(k)e,(k + I)} = {2*(l) ft~~=!,, (9) 

The covariance function T,, (I) is easily derived to be 

L,-1 

re.(l) = c Cz(ll)C*(~ + Il) (10) 

f,=l 

Since the spreading codes c,(k) for all the users are known to 
the receiver the covariance functions re,(l) are also known 
for all i. 

Our problem is to find both the mixing filters h,,(k) 
and the transmitted symbols s,(k) given the M sampled 
observation sequences z,(k). Although the problem is rem- 
iniscent of the blind multi-channel separation problem the 
rich spectral structure of e(l) and the the fact that its statis- 
tics are known makes it a lot easier to solve. In order to 
simplify the discussion in the following we shall assume that 
A4 = n. 

3. FREQUENCY-DOMAIN APPROI-\CH 

Our approach is based on the frequency domain analysis of 
the signals. If we take the length-N DFT’ (N > L) on both 
sides of Eq. (7) we obtain 

x(w) x H(w)e(w) (11) 

where the element H,,(w) of the matrix H(w) is the DFT of 
the unknown filter h,, (k). The approximate equality above 
would be replaced with equality if the sequence s(k) is pe- 
riodic with period N, or if the length of the sequence x is 
larger than L plus the length of e. 

Let us define the covariance matrix of the complex stochas- 
tic DFT process x(w) for a pair of frequencies WI, ~2: 

R*(Wl,WZ) = E{~(wdx(wz)~} 

= H(wI)R&w)H(w~~ (12) 

(the superscript H denotes the matrix Hermitian trans- 
pose). We have, 

R(Wl,W2) = E{e(wl)e(wz)H} 
N-l N-l 

Since E{e(k)e(l)H} is diagonal, the matrix R,(wi,wz) is 
also diagonal. The i-th diagonal entry is equal to: 

N-l N-l 

[&],,(Wl,W2) = c c e-J2*‘Y’~-w”‘~ci(k _ 

k=O 1~0 

N-l N-l-l 

= 
c 

e ; 2n(w~;w?ll 

ce 
I=0 7=-I 

1) 

(13) 

For wi = w2 = w, Eq. (13) is simplified into the following 
expression 

N-l N-l-l 

[R.],,(w) = C C em3 * re, (7) 

I=0 7=-I 

N-l N-l-r 

= Nre,(0)+ CT=,(T) c e-‘y 
SC1 l=s 

+ 2 ,e,(T,N~Te-J~ 

r=-(N-l) 1=-r 

N-l 

= Nr., (0) + 2 c re, (T)(N - 27) COS( T) 
7=1 

(14) 

where by a slight abuse of notation we write R, (LJ) instead 
of R,(w,w). R,(w) is by definition positive definite and by 
Eq. (14) it is also real and diagonal. 

‘We use the following convention in which we define 
DFT: Z(W) = ~,z(/c)ezp{-jy} and IDFT: z(k) = 

+ C, z(w)ezp{jy}. 



Define the n x n complex matrix V(w) by the following 
pre-whitening operation 

V(w)R,(w, w)V(W)~ = I (15) 

V(w)H(w)R,(w)H(~)~v(w)~ = I (16) 
and let 

y(w) = V(w)x(w) = V(w)H(w)e(w) 

Furthermore, define 

(17) 

W(w) = V(W)H(W)R.(W)“~ (18) 

so 
W(W)W(W)~ = I, for all w E C 

Consider now the covariance matrix for different frequency 
pairs WI, wz 

%(w,wz) = Ei~(wd~(w2)~) 

= V(wdH(w~)Re(w~, w)H(w~)~V(W~)~ 

= W(w1)D(wwz)W(w2)~ (19) 

D(w1, ~2) = R.(wI) -“21qwl,w2)Fqw2)-1’2. PO) 

The matrices W(wi), W(wz), are orthogonal whereas the 
matrix D(wi,wz) is diagonal. It is interesting to note that 
the diagonal entries of D are the complex correlation coef- 
ficients between e;(wi) and ei(wz): 

[D]ii(WlrwZ ) = p(-%(Wi), ei(W2)) 

hence, 0 2 I[D],,(wI,w~)I 5 1. Let us define 

G4(~l,W2) = R&w2)Ety(WlrW2)H 

so 

(22) 

c,(w,wz) = W(wi)D(wi,wz)D(wi,w~)~W(w~)~ (23) 

Equation (23) represents the eigenvalue decomposition of 
C,(wi, wz). Once we estimate C,(wl, wz) we can then per- 
form a standard eigenvalue decomposition in order to es- 
timate W(wi). Notice that although the matrix C, is a 
function of both wi and wz the eigenvector matrix W is 
only a function of WI. That gives us the luxury to ver- 
ify the results for different wz and also allows us to com- 
bine matrices C, with same LJ~ but different wz in order 
to obtain more robust eigenvector estimates. Another im- 
portant point is the fact that the eigenvectors are unique 
(upto a permutation and scaling) only if the eigenvalues 
I[D1&1,~2)1~ are distinct. In general the eigenvalues are 
distinct since the signals e; have different colored spectra. 
Nevertheless, for some frequency pairs it is possible that 
the eigenvalues be very close to each other. In that case the 
eigenvector estimates are quite unreliable. We discuss this 
problem in more detail in [I]. Finally, the eigenvalues can 
be computed by substituting (13) into (21), so they can be 
estimated from the covariance sequences r,, (1). Using these 
estimates we can resolve the eigenvector ordering ambiguity 
provided that the eigenvalue estimates are close enough to 
the real values. 

4. BLIND MULTIUSER CDMA EQUALIZATION 
ALGORITHM 

Our method is composed of two parts. In the first part, 
described in Section 4.1, we estimate the magnitudes of 
the mixing filters H,, as well as their relative phases. In 
the second part, described in Section 4.2, the phase of the 
channels is recovered using any ARMA parameter estima- 
tion approach. 

4.1. Estimating channel magnitude and relative phase 

Once we have resolved the eigenvector ordering ambiguity 
we can then use the eigenvector estimates W(w) in order to 
estimate the unknown channels H,,(w). There is still some 
ambiguity left in W(w) as any matrix of the following form 

W(w) = w(w)*(w) (24) 

is an orthogonal eigenvector matrix of C, (WI, wz), where 
+(w) = diag[&dl(“) .+. eJrn(w)], is a diagonal matrix with 
unknown, unit-norm, complex diagonal elements. Still we 
can use Eq. (24) in order to estimate H(w): 

fi(w) = v(w)-‘lv(w)Re(w)-1’2 (25) 

so we have H(w) = V(w)-‘W(w)~(w)&(~)-~/~. Since 
both %(w) and &((w)-~‘~ are diagonal they commute and 
we obtain H(w) = H(w)%(w), or 

lfftj(W)l = lHtj(W)l, (26) 

Lfiij(w) = LHsJ(w) + +j(w). (27) 

From (26) follows that the magnitude of the channels is 
perfectly reconstructed. Eq. (27) shows that the phase es- 
timate contains an unknown offset which is, however, the 
same for all channels Hlj, . . . . H,,, , suggesting that the reia- 
tive phase LH,, (w) - L HJj (w) is perfectly recovered as well. 

4.2. Source reconstruction 

Based on (26) and (27) we get: 

a,, cw) 

Ej,, 

(28) 

Thus, the ratio of H,,(w) and H,,(w) is can be esti- 
mated. Assuming that h,,(n), h,,(n) have no common ze- 
ros, they can be computed from their ratio using any ARMA 
parameter estimation method. Although so far we did not 
need the lengths of the channels, at this point, some ARM.4 
methods will require the lengths of h,,(n), hjJ (n). 

The proposed method can be summarized as follows: 

.4lgorithm 1 Let x(k) be the sampled vector observation 
sequence in the multiple receivers. Select a segment size 
Nf and perform the following steps: 

1. Estimate r,,(I) from (10) and R,(wi, w2) from (13) 
for all pairs of discrete frequencies WI, w2 = 0, . . . , NJ - 
1. 



2. Estimate T,,,,, (1) from ensemble data for all pairs of 
indices i, j. Also estimate R, (WI, wz) using the fol- 
lowing expression (obtained similar to equation (13)) 

N-l N-l 

[f&z],, (WI, wz) = c c L--~-T E,,l, (k,l) 

k=O I=0 

3. Let V(w) be the prewhitening operator for R.(w,w): 

V(w)R+(w, w)V(W)~ = I 

4. Estimate R,(LJI,~~) by V(wl)R,(wl,wz)V(~z)~. 

5. For each frequency wi = 0,. . . , Nf - 1, select a fre- 
quency ws (typically wz = wi *l) and form C, (WI, wz) 
as in (22). Compute the eigenvalue decomposition 

C,(w,wz) = ~(w)~(w,W2)~(wy. 

6. Use (21) to compute [D]si(wi,ws). Theoretically for 
any frequency pair wi, ~2, we should have ][D]ii]’ = 
[C]*(i)n(;) for some permutation function ~0. Ar- 
range the eigenvalues [Cl,, in the same magnitude 
order as ][D]il]’ and arrange the eigenvectors in the 
same order as well. 

7. Compute A(w) using (25) and form the ratios G,j = 
Ei,,/lj,j, for all j # i. 

8. Estimate the channels H,,(w), Hjj(w) from their ra- 
tio G;, via any ARMA parameter estimation method. 

5. PRELIMINARY RESULTS 

In this section we include some preliminary simulation re- 
sults for the case of P-input 2-output system. Since the 
performance of the method will eventually depend on the 
ARMA parameter estimation approach required at step 8 
of the algorithm, we here try to eliminate this dependence 
as follows. If H is used instead of H for deconvolution, then 
based on (26),(27) we reconstruct @-‘(w)e(w). Thus the 
reconstructed signals ei (k) and e2(k) have the correct mag- 
nitude spectra, but their phases differ from the correct ones 
by 41(w) and $2(w), respectively. In the sequel we test the 
success of the proposed method in estimating $I by com- 
paring the estimated magnitude spectra of cl(k) and e2(k) 
versus the correct ones. 

We formed the signals ei (k) and ez(k) of length N = 
16384 by convolving two white independent binary random 
processes (source signals) with the signatures 
cl(k) = [0.5774,0.0000, -0.5774,0.5774] and 
cz(k) = [O., -0.7071,0.,0.,0.7071]. 
The channels were taken to be 
hll(k) = [[l.OO, 1.0270,0.3338,0.0339,0], 
hlz(k) = [l.OO, 1.6908, 1.3609, 1.6603, 1.68831, 
h(k) = [l.OO, 1.5908,1.6609,1.7603, 1.70831, 
hzz(k) = [l.OO. - 1.9000,0.6500, -0.0770,0.0030]. 

The matrix R,(w~, wz) was estimated as shown in Step 
2 of the algorithm. The frequency wz was selected equal to 
w+ 1 for all wi. The prewhitening vector V(w) was obtained 
as 

V(w) = R;“*(w) (29) 
Figure 1 illustrates the true versus the estimated mag- 

nitude spectrum of cl(k) and ez(k) in db, corresponding to 
50 independent input realizations. 

Figure 1: True (dotted line) vs. estimated magnitude spec- 
tra. Solid line indicate the estimated mean of 50 Monte 
Carlo simulations; gray area indicates standard deviation 
around the estimated mean. 
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