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ABSTRACT

In the area of information processing one fundamental
issue is how to measure the relationship between two vari-
ables based only on their samples. In a previous paper, the
idea of Information Potential which was formulated from
the so called Quadratic Mutual Information was intro-
duced, and successfully applied to problems such as Blind
Source Separation and Pose Estimation of SAR (Synthetic
Aperture Radar) Images. This paper shows how informa-
tion potential can be used to train a MLP (multilayer per-
ceptron) layer-by-layer, which provides evidence that the
hidden layer of a MLP serves as an “information filter”
which tries to best represent the desired output in that
layer in the statistical sense of mutual information.

1. INTRODUCTION

Many signal processing problems can be regarded as
manipulation of information at the output space of a map-
per or its internal hidden space such as the hidden layer of
a MLP. In many real world problems, however, the only
available information about the domain is contained in the
data collected. It is therefore practically significant to esti-
mate the information entropy of a variable or the statistical
relation between variables based merely on the given data
samples, without further assumption. This paper and the
previous ones [1], [2], show how information measures
can be related to a “potential energy” of the collected data
when the samples are interpreted as physical particles. In
fact, data samples are atoms conveying information. For
both reasons, a data sample will be called “information
particle” (IPT). The potential energy of IPTs is therefore
called “information potential” (IP). The derivative of IP
with respect to the position of IPT can be interpreted as
interactions among IPTs and is thus called “information
force” (IF). Variations of information entropy or mutual
information are equivalent to the variations of their corre-
sponding IP, which can be implemented by moving IPTs
along the direction of the IFs they receive. If one seeks to
manipulate information at a certain layer of a network, the

IFs can not move IPTs directly but instead can be propa-
gated through the dual network to adapt each parameter.

Information potential is a rather general and non-paramet-
ric way to estimate information from data samples. It has
wide applications and was successfully applied to Blind
Source Separation, Pose Estimation of SAR Images, etc.,
[1], [2]. We will restrict in this paper our discussion to the
problem of MLP training in a layer-by-layer manner.

The much higher computational power of the MLP when
compared with the perceptron was recognized many years
ago [3]. We know today that the MLP is an universal map-
per [4]. However, because of the lack of an efficient train-
ing algorithm comparable to the perceptron learning rule,
we had to wait until 1985 for the back-propagation (BP)
algorithm to harness the power of the MLP. In the BP pro-
cedure the output error is first computed and then back-
propagated though the dual network to parameters, which
meets the goal but raises problems such as lack of biologi-
cal evidence [5], difficulty in explaining what is really
learned in the hidden layer, slow convergence speed, etc..
If the MLP can be trained layer-by-layer, such problems
will be alleviated.

Information Theoretic Learning can help us implement
MLP training layer-by-layer. Linsker [6] pointed out that a
linear or nonlinear network can be treated as an informa-
tion channel. A principle for self-organizing such net-
works is to transfer as much information as possible
through the network. Linsker’s idea can be extended fur-
ther to include not only the input information but also
other sources of information which are usually character-
ized by desired outputs. So, from this point view, each
layer of a MLP can be regarded as an “information filter”,
and the training purpose is to maximize the mutual infor-
mation between the output of each layer and the desired
output. The IP method can thus be used when only sam-
ples of inputs and desired outputs are provided.

Finally, it should be pointed out that because of the simi-
larity between an information particle and a physical parti-



cle, we believe that this method may be suitable for
implementation of Quantum Computing which will facili-
tate the computation of IP and IF.

2. Quadratic Entropy and IP

Let a; € Rm,i = 1,...,N, be a set of samples from the
output ¥ € R” of a mapping R" > R": Y = ¢(X, 9),
where O is a set of parameters. Based on Renyi’s Qua-
dratic Entropy and Parzen Window pdf estimation with

Gaussian Kernel, the idea of IP and formula (1) can be
derived.

Ry(¥]a) = —log[f,(y)’dy = —logV(a)
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where G(y,6°) = exp(-(y'y)/(267))/((2m)""*c™),

£, = z i’i 1 G(y—a;62)/N is the Parzen Window

estimation of pdf for Y, R,(Y|a) is the estimation of

Renyi’s Quadratic Entropy on a data set a. V(a) is called
Information Potential (IP) because each term in the sum-
mation can be interpreted as an potential between two par-
ticles a; and a;. As pointed out in [1], Renyi’s entropy is
equivalent to Shannon’s entropy with regards to entropy
maximization. So, maximization of entropy is equivalent
to minimization of V(a). The derivative of IP with
respect to each parameter 6 of the mapping can be

decomposed into two parts as (2), where f; = dV/da; is
the “information force” (IF) that particle a; receives,
da;/ 00 is the sensitivity of a; with respect to each param-

eter 8. Notice that both f; and da;/d0 are vectors. By

i
analogy with error back-propagation [7], equation (2) can
be interpreted as information force back-propagation

(IFBP), where sensitivities da;/ 00 serve as the “transmis-
sion mechanism” through which IFs are back-propagated
to the parameter 0.
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Once the forces are calculated, they will be back-propa-
gated exactly the same way as error back-propagation. To
calculate IP and IF, two matrices can be defined as (3) and
their structures are illustrated in Figure 1.
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5 (3)
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Figure 1. The structure of Matrix D & V

Notice that each element of D is a vector in R” space

while each element of V is a scalar. It is easy to show that

Ly @
fi= N_zczg;v"’d" i=1,..,N
We can also define the IP for each particle g;

1 N . 1 N
as:v; = — v;; . Obviously, v = — v,

3. Quadratic Mutual Information & CIP

As section 2 indicates, the quadratic form of a pdf can be
simplified as an IP when the Parzen Window is used for
the estimation of the pdf. Unfortunately, the mutual infor-
mation based on both Kullback-Leibler divergence and
Renyi’s divergence is not quadratic on the pdfs [1]. So,
based on the Cauchy-Schwartz inequality

2
lal*I5]* = (a"b)” where quadratic forms are basic terms,

a measure of statistical relation between two random vari-
ables which is called Cauchy-Schwartz Quadratic Mutual
Information (CS-QMI) was proposed in [1]. In this paper,

a simpler inequality la—b]* = [lal* +]b]*~2a"b 20
is used to construct a similar measure
D(Y!, Y?) =
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where Y1 and Y2 are two random variables with joint pdf
fyiy2(¥!, ¥?) and marginal pdfs £, (y!) and f,.(y?) . Obvi-
ously, D(Y!,Y2)>0 and equality holds if and only if ¥!



and Y2 are statistically independent. Basically, it measures

the Euclidean distance between joint pdf f,.,.(y!, y?) and

factorized marginal pdfs fy.(y!)fy.(y?), and thus will be

called Euclidean Distance Quadratic Mutual Information
(ED-QMI). As [1] has shown, it is evidentially a measure
for independence, and [2] also shows experimentally its
validity as an dependence measure.

If a set of data samples for joint variable (Y, r2)"

a = {a= (a},a?)’, i= 1,...,N } The Parzen Win-

dow estimation of joint pdf and marginal pdfs will be:
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With (5), it is not difficult to obtain (6):
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where all v/, v, v, [ = 1,2 are similarly obtained

as v, v, Vv insection 2 respectively. / = 1,2 is the

index for marginal spaces and the names for v/, v/, v/ will

l]’
be prefixed with “marginal” correspondingly. v, is called
“cross information potential” (CIP). Actually, from (6), we
can see that v, is an overall measure of cross-correlation

between two marginal IPs ( ZX(v}v7), Z(v}v?) and

v1y2 are cross-correlations at different levels). So, maxi-
mizing ED-QMI D((Y', Y?)|a) is equivalent to maximiz-

ing v, and minimizing D((Y', Y?)|a) is equivalent to

minimizing v, . Since v§ = vk, k = 1,2,

2
i NZl_lv Vi

= 2 vhvi = 20 =Y vIv}, ete.. Thus the CIP
and the IFs in CIP field can be calculated as (7), where C¥
are cross matrices which serve as modifiers and this can be
clarified by the similarity between (7) and (4). Equation
(7) just states that the CIP can be calculated as an marginal
IP modified by the corresponding cross matrix and the
marginal IF of the CIP field can be computed by the IF of
the original marginal IP field modified by the elements of
its corresponding cross matrix. After computing the IF of
the CIP field, we can back-propagate it for the purpose of
maximizing or minimizing QMI.
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4. Training MLPs with CIP

As Figure 2 shows, a MLP can be regarded as a communi-
cation channel. Each hidden layer in a MLP is one stage of
the channel. The purpose of the training of a MLP is to
transmit as much information as possible about the desired
signal at each stage or layer. So, from this point of view,
different layers can be trained one by one. First, the input
layer can be trained so that the mutual information
between the output of the layer and the desired signal is
maximized. Then the hidden layers and the output layer
can be trained in the same way respectively.

D

Figure 2. MLP as a communication channel.
X: input signal Y: hidden layer signal
Z: output signal D: desired signal

As an example, the input layeris R" = R": Y = ¢(X, 0),
where 0 is the weight set of the layer, and the training set
is {(X;, D;)|i= 1,...N}, where X; are input patterns and
D, are corresponding desired output signals, then there are
actual outputs Y, corresponding to each input pattern X .
The mutual information between the output Y and the
desired signal D can be estimated by cross information
potential V.(b), where b = {(Yi,Di)|i= 1,...,N} is the

data set for CIP. To maximize the CIP, the gradient method
can be used and the gradient can be calculated as:

N
0 _ r 9Y; _ 0
%Vc(b) = Z(f,) 30’ fi = a—Ych(b) 8

i=1



where dY,/00 are sensitivities, f; are information forces

in CIP field for each data point Y;, and the calculation of

them are exactly the same as described above.

To test the method, the problem of “frequency doubler” is
tried, where the input signal is a sine wave and the desired
output signal is still a sine wave but with its frequency
doubled (as shown in Figure 3). A focused TDNN with
one hidden layer is used. There are one input node with 5
delay taps in input, two nodes in hidden layer with tanh
nonlinear function and one linear output node (as shown in
Figure 4). The training scheme described above is used.
The hidden layer is trained first followed by the output
layer. The training curves are shown in Figure 5. The out-
put of the hidden nodes and output node after training are
shown in Figure 6 which tells us that the frequency of the
final output is doubled.

5. Discussion and Conclusion

From the above experiment, we can see that even without
the involvement of the output layer, CIP can still guide the
hidden layer to learn what is needed. The plot of two hid-
den node outputs already reveals the doubled frequency
which means the hidden nodes best represent the desired
output. The output layer simply selects what is needed.
These results, on the other hand, further confirm the valid-
ity of the CIP method proposed.

From the training curves, we can see the sharp increases in
CIP which suggest that the step size should be varied and
adapted during the training process. How to choose the
kernel size of Gaussian function in CIP method is still an
open problem. For these results, it is determined experi-
mentally.
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Figure 6. The output of the nodes after training



