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ABSTRACT

The information-theoretic framework for source separa-
tion is highly suitable. However the choice of the nonlin-
earity or the estimation of the multidimensional joint
probability density function are nontrivial. We propose
here a generalized Gaussian model to construct a general-
ized blind source separation network based on the mini-
mum entropy principle. This new separation network can
suppress the interference to a significant amount compared
to the traditional LMS-echo-canceler. The simulation is
given to show the disparity of the performance as o varies.
Finally how to choose the appropriate o in our generalized
anti-Hebbian rule is discussed.

1. INTRODUCTION

Recently, source separation or independent component
analysis has been a new direction in signal processing
research because of its relevance for medical instrumenta-
tion, interference removal in communication networks and
speech enhancement in noisy environments. Previous
research [1, 2] has addressed an unrealistic simplified
model: the instantaneous mixture model. In this case the
maximum likelihood estimation of the demixing matrix
can be related to the Kullback-Leibler divergence between
the source probability density function and the underlying
model density function associated with the nonlinearity
used in the processing elements (PEs).

However, in the more realistic case of convolutive mix-
tures, the characterization of the joint probability density
function is not available. The simple relationship between
the output and input through a Jacobian determinant does
not exist any more [2]. In addition, the nonlinearity
restricts the separation performance due to the mismatch
problem [2]. Hence, in this paper, we utilize the minimum
entropy principle applied to the marginal probability den-

sity function to compensate for the lack of the Jacobian in
convolutive mixtures. Moreover, we provide a family of
symmetric generalized Gaussian distributions to match the
source statistics and derive the generalized anti-Hebbian
rule for source separation for sources with different kur-
toses.

2. PROBLEM STATEMENT

The problem of blind separation of independent sources
can be depicted in Figure 1. A vector of n source signals

s(t)y € R" are transmitted through an unknown linear
channel with time delays. The mathematical expression is:

L

x(f) = ZH(k)s(t—k) )
k=1

where H(k) parameterizes a series of mixing matrices
composed by the transforms of the echo and interference
paths, and ¢ denotes time. The problem is to reconstruct
s(t) in the form of

M

y(0) = Y Wihx(1—k) = s(0). @)
k=1

or its scaled version
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from the given input x(¢).



Mixing Path

Separation System

Figure 1. The BSS problem.

Generally speaking, the recovered sources at the outputs
of Figure 1 may not always be the true original sources as
described in Equation (3), since the statistical indepen-
dence condition is still verified among s’(f). However, it is
satisfactory to obtain any version of s’(f) under the inde-
pendence assumption.

3. MINIMUM ENTROPY PRINCIPLE

The minimum entropy deconvolution (MED) was uti-
lized in early seismography processing [3]. The MED
design of an inverse filter was based on an estimator such
that its outputs produced the best possible approximation
to a delta function. The inverse filtered outputs are thus
less Gaussian, have higher kurtosis and less entropy than
the inputs. Hence the single channel MED blind deconvo-
lution algorithms [3] or the multichannel blind separation
algorithms [5] maximize the Gray norms.

On the other hand, we may minimize the output entropy
directly by estimating the separating matrix by

n

W(z) = argming~E{ Y log(A((yi| WD) . @)

i=1

where f(.) denotes the probability density function.

4. GENERALIZED GAUSSIAN DISTRIBU-
TION

In Equation (4), it is obvious that we need the a priori
knowledge of the probability density function, i.e., the sta-
tistical model of the estimator. The generalized Gaussian
distribution model [3, 4] can be a good candidate. That
specific family of symmetric distribution can be character-
ized by a two parameters set (¢, B) as

fo) = exp(—m)a (5)

o
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where I is the gamma function. From Equation (5), we
can easily derive

B = al{|y, ]} (6)

Hence the parameter B is associated with parameter @, i.e.
a. is the only parameter which needs to be determined.
Figure 2 shows some members from the generalized Gaus-
sian distribution family with different o's all with unity
variance.
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Figure 2. The generalized Gaussian distribution.

5. GOODNESS-OF-FIT TEST

From Figure 2, we can clearly see the relationship
between the parameter o and the tailweight of the distribu-
tion. For the generalized Gaussian distribution we may
obtain the measure of the tailweight, generalized kurtosis,
“K(p.y)" as
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Equation (7) can be a test measure for goodness-of-fit
between the distribution model and the true source PDF.
We can utilize Equation (7) to choose the optimal o.

It we choose p = 2, K(2, y;) is the kurtosis. Figure 3 will
show the kurtoses for different o variables.



dotted line: kurtosis = 3, Gaussian.
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Figure 3. The kurtoses versus different o.

In Figure 3, we may see that we need to model the
super-Gaussian sources with o>2, and sub-Gaussian
sources with o.<2. o can be fractional.

6. GENERALIZED ANTI-HEBBIAN LEARN-
ING

If we replace the marginal distribution f(y,/|W(z)) in

Equation (4) by the generalized Gaussian model in Equa-
tion (5), we can derive the learning rule for source separa-
tion. For a feedforward separating system, we can

formulate the iMoutputs as

M
yi(t) = x;+ z 2 wi(R)x (1 =k) . (8)
J=Lj#ig=0
On the other hand, for a recurrent separating system, we
can formulate the Moutputs as

M
y,‘(t) =X+ z 2 W,‘j(k)y]‘(t—k) . (9)

j=Lj#igo

Hence we have formulated the generalized anti-Hebbian
learning rule for source separation:

U—Bly. o-1 . ‘
A (k) = =P izgn(y,(r)) o
ET{|yi(t)| }

for the feedforward system, and
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for the recurrent system, where 1 is the step size and the
Ep operator is the time averaging o.-moment estimator
with window-length 7. Two special cases of temporal anti-
Hebbian rules have been shown before for Laplacian dis-
tribution (kurtosis = 6, oo = 1) [6] and Gaussian distribu-
tion (kurtosis =3, ou = 2) [7].

7. SIMULATION

7.1 The tailweight of the original sources: kurtoses of
audio signals

In this section we will conduct two sets of experiments.
For quantification convenience, we use CD audio sources

and mix them in a computer with H,,(z) = 0.822+0.1z3
and Hy (z) = 0.7z + 0.4z2 +0.25, with H|(z2)=Hy(2) =
1. The first pair of sources are two male speakers from the
TIMIT database, and the pair of sources in the second
experiment are two rock music. The waveforms of the
sources are depicted in Figure 4. Before we choose the
appropriate anti-Hebbian rule to separate the mixing sig-
nals, we utilize the kurtoses as the tailweight measure in
order to quantify the goodness-of-fit of the distribution
model. Again the kurtosis is defined as

E st (0}
E{S (0}

where Ep denotes the window averaging operator. This

k(2,s(t)) = (12)

window averaging can be long-term (averaging over the
whole data set) or short-time (averaging over the local data
only). Table 1 gives the kurtosis estimate computed with
the whole data sets.

Speech source 1
Speech source 2

Music source 2

Music source 1

Figure 4. Two pairs of sources.



Figure 5 depicts the short-time kurtoses (20 msec. widow).

TABLE 1.  Sources and mixed signals kurtoses
Speech 1 Speech2  Musicl Music2
Original 28.65 26.55 420 3.82
Mixing 9.62 10.41 3.07 3.07
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Figure 5. Short-time kurtosis estimates.

7.2 Anti-Hebbian learning with different o values

First we use the recurrent separating system in Equation
(9) with the learning rule described in Equation (11) to
separate the speech mixture and to compare the signal-to-
interference values in dB among different o values. The
learning curve is plotted in Figure 6.
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Figure 6. The learning curves by a recurrent system.

(From top to bottom: 0. =1, 2, 4, 6).

Then we use the feedforward system in Equation (8) with
the adaptation rule in Equation (10) to separate the speech
mixture as well as the music mixture. Both the results are

listed in Table 2.

TABLE 2.  The performance of feedforward separator
speech speech speech music music
0=0.6 o=1 o=2 o=1 o=2
17.72 18.44 16.20 8.09 8.47

Although speech has large global kurtosis (in Table 1), the
local kurtoses will be much smaller (in Figure 5). Hence o
=1 for speech and o = 2 for music gave us the best results
as shown in Table 2.

8. CONCLUSION

We derive the generalized anti-Hebbian learning rule
for source separation and propose to utilize the kurtoses as
a measure to choose the appropriate o.. Although the origi-
nal sources are not observable, we may use the kurtosis
estimated from the mixing signals instead to roughly
determine the appropriate o.. Simulation shows that the
appropriate o will lead to better separation performance in
generalized anti-Hebbian learning.
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